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Charged particle radiography has become a promising new approach in the field of transmission
radiography because of the invention of the magnetic imaging lens. The using of the imaging lens makes it
possible for thick objects to get significantly improved transmission radiography. Currently, the conven-
tional charged particle radiography only uses the information of the flux attenuation and the angular
scattering of the transmitted particles to determine the properties of the sample. However, the energy loss of
the incident particles introduced by ionizations throughout the object limits the spatial resolution of the
image because of the chromatic blur. In this paper a new concept of imaging lens that uses the information
of the energy loss is proposed. With a specially designed imaging lens, the information of the energy loss
could result in apparent contrast in the final image. This design procedure of the energy loss imaging lens is
presented, and a preliminary design is verified by numerical simulations. Experimental demonstration is
also expected on a cyclotron at the Institute of Fluid Physics, CAEP.
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I. INTRODUCTION

Charged particles are useful tools for transmission
radiography. The early charged particle radiography typ-
ically involves incident radiation such as protons or
electrons, a portion of which is transmitted through an
object of interest to a detector plane forming a shadow
graph there. The concept of the range-edge proton
radiography was proposed by Koehler in 1968 [1].
Subsequently, Koehler and others [2–5] demonstrated that
the high-contrast images obtained by proton radiography
can provide improved imaging of low contrast lesions in
human specimens over conventional x-ray techniques.
Hanson described a proton CT method in 1981 [6,7], in
which projections necessary for computer tomography
(CT) reconstructions were obtained by measuring the
proton energy losses. In recent years, research works
[8,9] are driven by the need of using the therapeutic proton
beam for CT imaging.
Information contained in the energy loss was adopted in

all the works mentioned above. However, the multiple
Coulomb scattering (MCS) effect will seriously blur the
final image. The magnetic imaging lens, which can focus
the scattered particles, was suggested by Zumbro and
Mottershead in order to improve the quality of the image
[10]. The so-called Zumbro lens has also been successfully
demonstrated both by simulations and experiments [11–14].

Nuclear interaction with the nucleus [15], MCS with the
Coulomb field of the nucleus [16], and ionization with the
electrons [17] are three major types of interactions occur-
ring when protons pass through materials. They will result
in flux attenuation, angular scattering, and energy loss of
protons, respectively. The effect of interactions may be
somewhat different for electrons or heavy ions, and the
following description is subject to the case of protons.
By using the radiography system with Zumbro lens, the

sample properties can be obtained from the information of
the flux attenuation and the angular scattering, while the
energy loss has been a handicap due to the chromatic
blurring effect. In this paper, a new type of magnetic lens
system, which also uses the information of the energy loss,
is suggested.

II. PRINCIPLE OF THE ZUMBRO LENS [10]

To the first order, the transfer matrix R of a charged
particle transport system maps a particle with initial trans-
verse coordinates (x0, θ0) to a final transverse position

x ¼ R11x0 þ R12θ0: ð1Þ

In order to obtain the point-to-point imaging, one gets

R12 ¼ R34 ¼ 0: ð2Þ
A Zumbro lens is composed of four identical quadrupole

magnets, as shown in Fig. 1.
Under certain conditions [10], the transfer matrix of a

Zumbro lens becomes the minus-identity (−I) matrix,
which satisfies the requirements for the point-to-point
imaging.
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The point-to-point imaging assumes a monoenergetic
incident particles beam. However, when energy spread
exists, the particles will deviate from the central trajectory
due to the chromatic aberration. This problem can be solved
by the second order chromatic matching design.
Suppose an incident particle comes from a virtual point

source at a distance L upstream of the entry plane of the
lens. Because of both the MCS in the object and the
nonzero emittance of the beam, the particle will exit
the object at an angle

θ0 ¼ wx0 þ ϕ; ð3Þ
where wð¼ L−1Þ is the beam correlation coefficient, and φ
is the angular deviation from the ideal position-angle
correlation line. The matrix elements in general are
functions of the fractional momentum deviation
Δð≡δp=pÞ. By expanding the final position of the particle
in Taylor series form to the first order, it is found that w
should satisfy the following equations in order to realize the
second-order chromatic matching design (primes indicate
momentum derivatives)

R0
11 þ wR0

12 ¼ 0: ð4Þ
All positions depend on chromatic aberrations vanishing,

and the final transverse position is then given by

x ¼ −x0 þ R0
12ϕΔ: ð5Þ

The remaining chromatic aberration only depends on the
deviation angle, and the chromatic blur caused by the
energy spread becomes R0

12φΔ.
At the midplane of a chromatically matched identity

lens, the transverse positions of a particles is given by

xmid ¼ M12ϕ; ð6Þ

where M is the transfer matrix of the first half of the
Zumbro lens. Equation (6) implies that after the first cell,
the transverse position of the particle depends only on φ,
not on x. In other words, the trajectories of the particles are

completely sorted by angle φ at the midplane. This plane
is called angular Fourier plane, at which the angular
collimator can be used.

III. CONCEPT OF ENERGY FOURIER PLANE

The concept of a Fourier plane has been widely used in
geometry optics [18] and physical optics, e.g., synchrotron
radiation optics [19].
With a Zumbro lens, thanks to the point-to-point imaging

property and the existence of an angular Fourier plane, both
nuclear attenuation and angular scattering can be used to
generate contrast in the image, while with the energy-loss
effect, as a dominate source of image blur which funda-
mentally limits the resolution of the system, has been left
aside. However, it is found that the energy loss can also
help to generate contrast in the radiography image, if the
imaging lens is designed properly. Similar to the design of
the Zumbro lens, an energy Fourier plane (EFP), at which
the particles are horizontally sorted by their energies, can
be found. At the EFP, a collimator only allows particles
within a specific energy range to pass through and form an
image at the image plane of the lens system.
The goal of this work is to design a new magnetic lens

system, which provides point-to-point imaging in space,
and an EFP which helps to realize the function of energy
sorting at the same time.

IV. DESIGN METHOD FOR AN
IMAGING SYSTEM WITH EFP

The principle of EFP demands the existence of
dispersion. So in an energy-loss imaging lens system,
except for quadrupole magnets, transport elements with
dispersion should be introduced, of which the simplest one
is the dipole magnet, also called bending magnet.
However, a large dispersion will cause serious blur.

Therefore the lens should be achromatic as an ensemble.

A. Achromatic transport system [20]

A traditional achromatic transport system, which con-
sists of two identical dipole magnets and some quadrupole
magnets, can be either symmetric or asymmetric. Figure 2
shows the sketch of a symmetry achromat.
Only symmetrical structure is used in this paper. Similar

results may be obtained with an asymmetrical structure.

FIG. 1. Principle of magnetic lens.

FIG. 2. Sketch of a symmetrical achromatic system. The
trapezoids indicate bending magnets, and the rectangles indicate
quadrupoles.
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Here mainly the bending plane with dispersion, the
horizontal plane, or the X plane, is considered. Without
dispersion, the matrices in the vertical plane, also called the
Y plane, is an equivalent one with the sixth dimension
element omitted.
Suppose the transfer matrix of the first half is A, and that

of the second half is B.

A ¼

2
64
A11 A12 A16

A21 A22 A26

0 0 1

3
75; ð7Þ

and

B ¼

2
64
A22 A12 A12A26 − A16A22

A21 A11 A11A26 − A16A21

0 0 1

3
75: ð8Þ

The transfer matrix of whole lens, R, is then given by

R ¼ B · A ¼

2
64
1þ 2A12A21 2A12A22 2A12A26

2A11A21 1þ 2A12A21 2A11A26

0 0 1

3
75:

ð9Þ

The achromatic requirement of the lens system forces the
(1, 3) and (2, 3) elements of the above matrix R to be zero,
which leads to the following condition:

A26 ¼ 0: ð10Þ

B. Imaging condition

According to Eqs. (2) and (9), the most convenient way
to image in the X plane is to set

A12 ¼ 0: ð11Þ

Similarly, imaging in the Y plane can be obtained by
setting

A34 ¼ 0: ð12Þ

Equations (11) and (12) suggest that the first half of the
achromatic lens is itself an imaging lens. However, some
of its characteristics have prevented it from taking the part
of imaging lens by itself, including (a) chromatic and
(b) difficulties in manipulation of the image magnifications
A11 and A33.

C. Existence condition of EFP

Suppose that the transfer matrix describing the trans-
portation of particles from the initial position to the EFP is
T, the transverse position of a particle at the EFP is given by

xEFP ¼ T11x0 þ T12θ0 þ T16δ: ð13Þ

Similar to Eq. (6) for the angular Fourier plane, the
condition for the EFP can be obtained as

xFourier ¼ T16δ: ð14Þ

Equation (14) will be strictly satisfied if we have
T11 ¼ T12 ¼ 0. But it is impossible for T11 and T12 to
be zero simultaneously since the determinant of T cannot
be zero.
However, a compromised solution can be found, if the

beam incidents are in parallel, i.e., the correlation coef-
ficient w in Eq. (3) satisfies

w ¼ 0: ð15Þ

If the angular spread is omitted, i.e., θ0 ¼ φ ¼ 0, only
the following condition is required:

T11 ¼ 0: ð16Þ

D. The condition of the second-order
chromatic matching

The condition for the second-order chromatic matching
is also needed.
Substituting Eq. (11) into the derivative of Eq. (9), we

have

R0
11 ¼ 2A0

12A21: ð17Þ

If the following condition is satisfied,

A21 ¼ 0; ð18Þ

one gets R0
11 ¼ 0. Equation (4) is now satisfied according to

Eqs. (15) and (17)–(18).
Notice that now the transfer matrix (9) becomes the

identity matrix I.
Similarly, the second-order chromatic matching in the Y

plane can be derived as

A43 ¼ 0: ð19Þ

E. Location of the EFP

It is obvious that the midplane of the whole lens is not the
EFP. Otherwise the determinant of the transfer matrix T
will be zero. [See Eqs. (11) and (16), and consider the fact
that the transfer matrix T becomes A.]
The following analysis will demonstrate that the

midplanes of the bending magnets are the ideal EFPs.
In the first half of the lens, suppose the transfer matrices

before and after the bending magnet are T1 and T2,
respectively, and the transfer matrix of half of the bending
magnet is Thb:
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T1 ¼

2
64
a b 0

c d 0

0 0 1

3
75; ð20Þ

T2 ¼

2
64
e f 0

g h 0

0 0 1

3
75; ð21Þ

Thb ¼

2
64

cos ϕ
2

R sin ϕ
2

R
�
1 − cos ϕ

2

�

− 1
R sin

ϕ
2

cos ϕ
2

sin ϕ
2

0 0 1

3
75; ð22Þ

where a, b, c, d, e, f, g, h are unknowns, R is the bending
radius of the dipole magnet, and ϕ is the bending angle.
The transfer matrix of the first half of the lens system is

given by

A ¼ T2 · Thb · Thb · T1: ð23Þ

The transfer matrix from the beginning of the lens to the
midplane of the first bending magnet is given by

T ¼ Thb · T1: ð24Þ

If conditions (10) and (18) are satisfied, i.e., A26 ¼ 0,
A21 ¼ 0, c in expression (20) and h in expression (21) can
be solved from expression (23). After a great deal of
manipulation, T11 ¼ 0 is obtained, which is just the
condition (16). It implies that the midplane of the first
bending magnet is the right EFP we are looking for. The
midplane of the second bending magnet can be demon-
strated to be another EFP in a similar way.
As a matter of fact, no additional conditions are needed

in this section.

F. Improvement of the design

In the previous section it was demonstrated that the
midplanes of the bending magnets are the EFPs. However,
the chromatic aberration at this plane, which is calculated to
be only of a few micrometers in some cases, is too small to
be made any use of.

For the convenience of beam manipulation, the chro-
matic aberration should be large enough. An effective way
is to divide the bending magnet into two identical parts,
separated by a drift space. It is easy to prove that the
midplane between the two parts is still an EFP.
In practice, the angular spread of the incident beam

cannot be omitted, and the position of a particle at the EFP
is given by

xEFP ¼ T12φþ T16δ: ð25Þ
The influences of the angular spread and the energy

spread cannot always be separated. Therefore the coeffi-
cient T12 should be kept as small as possible. An effective
method for minimizing T12 is to put quadrupole magnets
between the two dipole magnet parts. Following the
procedure in the previous section, one can strictly prove
that if these quadrupole magnets are symmetric about the
midplane of the two dipole magnet parts, the midplane will
remain an EFP.

G. Brief summary of the design method

In this section, design of a symmetric achromatic beam
line was discussed; dispersion introduced by the dipole
magnets was used to form the EFPs. If the transfer matrix A
of the first half of the beam line satisfies the following five
conditions, i.e., A26 ¼ 0, A12 ¼ 0, A21 ¼ 0, A34 ¼ 0, and
A43 ¼ 0, the beam line is proved to be both point-to-point
imaging and achromatic. Furthermore, the midplanes of the
bending magnets are strictly the EFPs with a parallel
incident beam.
To further improve the performance, the bending mag-

nets can be divided into two identical parts. The EFP will
remain at the midplane between the two magnet parts if
quadrupole magnets and drift spaces between them are
designed properly.
The design procedure is roughly accomplished now.

Modifications and improvements are continuing.

V. A PRELIMINARY DESIGN OF THE
ENERGY-LOSS IMAGING LENS

An energy-loss imaging lens was designed for a 35 MeV
incident proton beam. The computer code Transport
[21] was used for the beam dynamics design and the

FIG. 3. G4beamline model of an energy-loss imaging lens designed.

YANG et al. Phys. Rev. ST Accel. Beams 17, 094701 (2014)

094701-4



Monte Carlo code G4beamline [22] was used for the multi-
particle tracking. The EFP of the lens system is also
validated with G4beamline. Figure 3 shows the layout of
the G4beamline simulation. Ten quadrupole magnets and
four dipole magnets are used in this design.
The parameters for the above lens system are given in

Table I. We expect to validate this system on a cyclotron in
Institute of Fluid Physics, CAEP.
In the simulation, a parallel incident beam with Gaussian

radial distribution (10 mm in diameter) was used, according
to the matching correlation designated in the design pro-
cedure. 10,000 protons are simulated for each run.
Figure 4 shows the results of the simulation without

energy spread and angular spread. For convenience,
momentum is used instead of energy in the simulation.
When there is no energy spread, the profile of the beam

is very narrow in the x direction. Since the EFP requires
that the particle position depends only on its initial energy,
this is just the phenomenon expected.
It is found that the offset of the beam centroid is about 11

mm with a 2% momentum offset. This result is in excellent
agreement with the simulation by the Transport code, in
which T16 is found to be 0.554 m.
It is also found that momentum offset will result in beam

expansion in the x direction. This is caused by the high

order dynamics of the transport system, and should be
further studied in the future.
Figure 5 shows the results with 1% rms momentum

spread. With momentum spread included, the beam size in
the x direction is much larger. This confirms the function of
energy Fourier plane of the bending magnet.
Besides the energy spread, the beam profile also depends

on the initial angle because the coefficient T12 couples the
angular spread into the EFP [see Eq. (22)]. In this design,
T12 is calculated to be 1.4 mm=mrad. Figure 6 shows the
results of simulations with rms angular spread of 2 mrad.
The energy sorting capability of the lens system is

potentially limited by the initial angular spread of the
beam, since the transverse beam size at the EFP is a
function of both the energy spread and the angular spread.
Fortunately, measurements can be taken to reduce T12 to a
considerably small value (see Sec. IV F), among which the
simplest one is to use quadrupole magnets. A tentative
design shows that with quadrupole magnets put into the
drift spaces between the two pairs of dipole magnets, the
coefficient T12 can be reduced to a small level around
0.5 mm=mrad, one third that of the former design.
On the other hand, the coefficient T16 is only 0.554 m; a

value that may be too small in some cases. It can be
increased simply by expanding the distance between the

TABLE I. Parameters of the system shown in Fig. 3, expected for future validation.

Parameter Value Parameter Value

T12 (at the EFP) 1.4 mm=mrad T16 (At the EFP) 0.554 m
T126 (at the image plane) −18.22 m T346 (at the image plane) −4.919 m
Bending radius of dipoles 1.5 m Bending angle of dipoles 10 deg
Quadrupole length 0.3 m Quadruple gradients (first five) −0.508761, 0.298810, −0.226922,

−0.082127, 0.099221 T=m
Drift spaces (first eight) 0.3, 1.5, 0.5, 0.5, 6.0,

0.5, 0.5, 1.0 m
System length 24.65 m
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FIG. 4. Numerical simulation result of beam profile at EFP. (a) without momentum offset. (b)with 2% momentum offset.
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two parts of the dipole magnet. However, a long drift space
may lead to an unacceptable large beam profile. To control
the beam profile within a convenient range, quadrupole
magnets may also be needed in the beam line.

VI. CONCLUSIONS

In charged particle radiography, image blur due to
multiple Coulomb scattering can be mitigated by using
the magnetic lens, which images the particles passing
through the object onto the detector. The so-called
Zumbro lens makes the proton radiography possible in
the diagnosis of a thick object. However, the information of
energy loss is useless in the Zumbro lens because the
energy loss is the main source of image blur. In light of the
concept of the Zumbro lens, an energy-loss imaging lens is

proposed in this paper. In the new imaging-lens system, the
information of the energy loss becomes useful in forming
contrast in the image. The design procedure is presented,
and the existence of the energy Fourier plane is proved
analytically. A practical design is also demonstrated by
numerical simulation. In the future, experimental demon-
stration of the new imaging-lens system is expected to be
carried out on a cyclotron [23] at the Institute of Fluid
Physics, CAEP.
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FIG. 5. Numerical simulation result of beam profile with momentum spread at EFP. (a) no momentum offset, 1% rms momentum
spread. (b) 2% momentum offset, 1% rms momentum spread.
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FIG. 6. Numerical simulation result with angular spread of beam profile at EFP. (a) no momentum offset, 2mrad rms angular spread.
(b) 2% momentum offset, 2mrad rms angular spread.
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