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A study into the maximum acceleration gradient, Emax
z , in a collinear dielectric wakefield accelerator due

to single bunch beam breakup (SBBU) is presented. The longitudinal wakefield is proportional to charge
over radius squared (Ez ∼Q=a2) which implies small a is favorable for fixed Q. However, when the
transverse wakefield (E⊥ ∼Q=a3) is also considered then the SBBU instability severely limits the charge
that can pass through a long structure as required for a large transfer of energy from the drive bunch to the
witness bunch and hence limits the sustained acceleration that can be obtained.
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I. INTRODUCTION

Future large-scale accelerator facilities such as X-ray
FEL light sources and linear colliders will significantly
benefit from accelerating techniques with high acceleration
gradients. In the collinear dielectric wakefield acceleration
(DWA) method considered here, a leading, high-charge, Q,
drive bunch loses energy while traversing a dielectric-lined
waveguide and generates wakefields. The longitudinal
wakefield, Ez, is used to accelerate a low-charge witness
bunch which trails collinearly through the same structure.
While high accelerating gradients in excess of 1 GV=m
have been demonstrated [1] in DWA structures, sustained
acceleration, as required for high final witness bunch
energy, has not. The final energy is the product of the
gradient, Ez, and the distance, L, that the drive bunch and
the witness bunch have propagated in the structure. The
overall wall-plug efficiency of the accelerator is propor-
tional to the fraction of energy extracted from the drive
bunch, η ¼ 1 − Ef=E0, where E0 is initial kinetic energy,
Ef a final energy and η is proportional to the propagation
length of drive bunch. For example, consider an E0 ¼
1 GeV drive bunch that generates a gradient of 1 GV=m
and decelerates at 0.5 GeV=m. If it only propagates L ¼
0.1 m then Ef ¼ 0.95 GeV thus η ¼ 5%, which is unac-
ceptable for a large-scale accelerator facility.
As seen above, to obtain both high final witness bunch

energy and high efficiency requires a long propagation
distance, L. However, large longitudinal wakefields are
accompanied by large transverse wakefields and these later

wakes drive the single bunch beam breakup (SBBU) [2]
instability. This causes the loss of the drive bunch in the
DWA structure (i.e., short L) before its energy can be fully
extracted. The longitudinal wakefield scales as Ez ∝ Q=a2

where Q is the drive bunch charge and a is radius of the
structure channel. This scaling implies that high gradient
can be achieved by either increasingQ or decreasing a. The
transverse wakefield scales as E⊥ ∝ Q=a3, (⊥ ¼ x; y) thus
decreasing a to raise the gradient will increase the SBBU
even more quickly. Since large longitudinal wakefields are
desired, efficient control of SBBU is essential for a
practical DWA-based facility. SBBU control is complicated
by the fact that the drive bunch energy spread is approach-
ing 100% towards the end of the structure.
In this paper, we derive a scaling law for the high

gradient limit of a DWA due to SBBU. Furthermore, we
choose quartz as an example to show that it is not possible
to operate at high acceleration gradients, close to the
material breakdown threshold [1], unless the accelerator
is operated at low efficiency.

II. SBBU CONTROL BY A FODO CHANNEL

The wakefields generated by a single ultrarelativistic
particle in a DWA structure have already been solved [3,4].
In our previous paper [5], simulations showed that SBBU
effects could be controlled by means of a tapered focus-
drift-defocus-drift (FODO) lattice around the DWA struc-
ture of inner and outer radius of a and b (Fig. 1). The field
gradient of the quadrupoles (B0) decreases along the beam
axis to compensate for the energy loss of the drive bunch. In
this paper, we extend this work to determine the maximum
acceleration gradient achievable as a function of channel
radius, a, when η is considered. In this paper, only the
single DWA geometry is considered. For other DWA
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geometries, such as slab geometry, it is difficult to apply
strong focusing by quadrupole magnets.
The focusing force of the FODO lattice is periodic and

continuous. The length of the quadrupoles in the FODO
lattice is constant while the field gradient is tapered to
match the drive bunch energy loss due to the longitudinal
wakefields,

B0ðzÞ ¼ ð−1ÞnB0
0

�
1 − η

z
L

�
; ð1Þ

where n is the quadrupole number along the linac, used to
set the sign of the focusing or defocusing force; B0

0 is the
quadrupole field gradient; L is the total length of the DWA
linac (equal to the length of the FODO lattice); and η is
called the tapering factor in this context but it is equal to the
fraction of energy extracted from above.

A. Two-particle study of SBBU control

Our method of controlling SBBU in a DWA structure
is a generalized version of Balakin-Novokhatski-Smirnov
(BNS) damping [6], where a transverse oscillation fre-
quency chirp is imparted from the head to the tail of the
bunch to suppress coherent oscillations. We begin by
considering a two-particle model of SBBU in the DWA
structure imbedded into FODO lattice before presenting the
multiparticle simulations results. Assume that both the
head, “1”, and tail, “2”, particles have the same velocity
v1 ¼ v2 ≈ c and initial transverse offset x1ð0Þ ¼ x2ð0Þ ¼
x0 and angle x01ð0Þ ¼ x02ð0Þ ¼ 0. The longitudinal wake-
fields cause both particles to lose energy linearly along z,
γ1ðzÞ ¼ γ0ð1 − α1zÞ, γ2ðzÞ ¼ γ0ð1 − α2zÞ, where α1 and α2
are the rates at which the energy decreases. Notice that the
different rates of energy loss are a source of difference
between BNS damping in a DWA and a conventional linac:
the energy chirp across the bunch is growing larger as the
bunch propagates along the linac in the former case but it is
fixed in the later. The quadrupole field gradient is decreased
in proportion to the tail particle’s energy for better SBBU

control so that η=L ¼ α2. Finally, we replace discrete
focusing with continuous focusing to obtain the equations
of motion for the head and tail particles respectively,

x″1 − α1
1 − α1z

x01 þ k2β

�
1 − α2z
1 − α1z

�
x1 ¼ 0;

x″2 − α2
1 − α2z

x02 þ k2βx2 ¼
eðQ=2ÞWx

γ0mc2
x1

1 − α2z
; ð2Þ

where γ0mc2 is the initial particle energy, kβ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eB0

0=4γ0mc
p

is the initial betatron wave number, e is
the elementary charge,Q is the bunch charge, andWx is the
transverse wakefield in units V=ðCm2Þ.
Equation (2) does not have exact analytic solutions so

that we attempt to give approximate solutions for the
trajectories of the head and tail particles,

x1ðzÞ ≈
x0

1 − α1z
cos kβ�z;

x2ðzÞ ≈
x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − α2z
p cos kβzþ

eQWx

2γ0mc2
x0

k2β − k2β�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2z

p

·

�
1

1 − α1z
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − α2z
p

�
sin

�
kβ þ kβ�

2
z

�

× sin

�
kβ − kβ�

2
z

�
; ð3Þ

with kβ� ¼ kβ½1 − 3ðα2 − α1Þz=4πð1 − α1zÞ�. Note that
when both particles have the same rate of energy decrease
(α1 ¼ α2), then Eq. (3) will approach the results presented
in Ref. [7] and normal BNS damping can be applied.
Numerical and analytic solutions to the equation of

motion [Eq. (2)] are compared in Fig. 2. The numerical
solutions are solved by Runge-Kutta methods (ODE45)
in MATLAB. The approximate analytic solution [Eq. (3)]
is seen to be in reasonable agreement with the numerical
solutions [Eq. (2) was solved with the Runge-Kutta
method]. In the figure, we used γ0¼300, Q¼13×10−9C,

FIG. 1. Schematic of a DWA linac surrounded by a FODO lattice. The quadrupole field gradient B0 is tapered to match the energy loss
of the drive bunch along the linac. The final energy of the drive bunch at the end of the structure is 20% of its initial energy.
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α1 ¼ 0.37 m−1, α2 ¼ 0.74 m−1, B0
0 ¼ 1000 T=m, Wx ¼

5 × 1018 V=ðCm2Þ. Note that Eq. (3) is an approximate
solution of the particle motion equations (2) and will be
invalid when tail particle energy approaches to 0 for large
α2z [note γ0ð1 − α2zÞ describes the tail particle energy].
Practically, we only want the 80% of drive bunch energy to
be extracted before SBBU occurs as shown in Fig. 1, thus we
only need good agreements for α2z ≤ 0.8.
Inspection of the analytic trajectory of x2 (tail) reveals

the sources of the amplitude growth. The first term in
Eq. (3) for x2 corresponds to the betatron oscillation with
adiabatic growth, which does not have a strong effect on the
amplitude growth until z approaches to 1=α2. The second
term for x2 is due to the wakefield force from the head (x1)
particle and reveals beating with a maximum amplitude
growth when z ¼ π=Δkβ, where Δkβ ¼ kβ − kβ�. Pre-
liminary work has shown that other distributions, with
higher transformer ratios, may propagate longer distances
when given an initial energy chirp. (The specific shape
plays an important role in the BBU control as well.) This
will be presented in future work.
Controlling SBBU in a DWA is now seen as a matter of

controlling the amplitude growth of the tail particle due to
the wakefield force [second term in Eq. (3)]. If the
longitudinal wakefields are not strong (α1 and α2 are
small), it will perform a beating pattern. However we want
to study the high gradient limits here, so the longitudinal
wakefields are strong enough and the tail particle will
exhaust its energy with only a small propagation length
Lprop before reaching the first beating point. Therefore
Δkβz is much smaller than π=2 when z ≤ Lprop. Making the
approximation sinðkβ − kβ�Þz=2 ≈ ðkβ − kβ�Þz=2, we can
express the amplitude of the tail, x2ðzÞ, as

AðzÞ ¼ eQWxx0
2γ0mc2kβ

z
2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2z

p 1

2 − 3ðα2−α1Þz
4πð1−α1zÞ

×

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − α2z
p þ 1

1 − α1z

�
: ð4Þ

We now present a case study of a high efficiency DWA
structure with η ¼ 80%, thus α2L ¼ η ¼ 0.8. The head
particle (Q=2) sees half of the maximum longitudinal
wakefield generated by itself, thus α1L ¼ 0.5α2L ¼ 0.4.
The total propagation length is L ¼ ηγ0mc2=eEdec

z ; the
deceleration gradient is Edec

z ¼ ðQ=2ÞWz. The amplitude of
the tail particle (Q=2) at z ¼ L is

AðLÞ ¼ 1.896
ðQ=2ÞWxx0

Edec
z kβ

¼ 1.896
Wxx0
Wzkβ

: ð5Þ

Thus, the amplitude at the end of the DWA linac is a
function of the following five parameters: transverse wake-
fields Wx, longitudinal wakefields Wz, initial energy γ0,
initial offset x0, and initial quadrupole field gradient B0

0.
Next, we parametrize Eq. (5) in terms of only the bunch

charge Q and the channel radius, a, in order to develop a
scaling law for the maximum acceleration gradient.
(1) Wakefields.—The ratio of the outer and inner radii of

the DWA structure b=a was kept so as to keep the ratio of
fundamental to higher-order modes constant. Thus,

Wx ¼ Wx1 · a31=a
3;Wz ¼ Wz1 · a21=a

2: ð6Þ
(2) Free betatron oscillation in the FODO channel.—

First we have the relation between the quadrupole focal
length and the FODO cell length with a betatron phase per
cell φ ¼ 90° as L0=2f ¼ sinðφ=2Þ ¼ ffiffiffi

2
p

=2 [8], where 2L0

is the length of a FODO cell, f ¼ γ0mc=eB0
0Lq is the focal

length of a quadrupole and Lq is quadrupole length.
Because stronger focusing in the FODO lattice allows
for improved SBBU control, we take the upper limit that
Lq ¼ L0 and B0 ¼ Bsat=a, where Bsat is saturation mag-
netization at pole tips and is equal to 1.0 Tesla in this
paper. (A new type of focusing quadrupole whose B0 may
reach 3000 T=m is under development [9].) Then one can
write

Lq ¼ L0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
γ0mca
eBsat

s
; kβ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eBsat

4γ0mca

s
: ð7Þ

(3) Initial x0 relative to axis.—We have assumed that
the x0 is proportional to a bunch rms size σx, i.e., ∼0.5σx.
We assume the dependence of emittance on bunch charge
is approximately linear, εxn ¼ C0Q, with a typical value
of the coefficient C0 ¼ εxn=Q ¼ 1 μm=nC ¼ 1000 m=C.
Thus,

x0 ¼ 0.5σx ¼ 0.5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εxnβx=γ0

p
εxn ¼ C0Q

βx ¼ λβ=2π ¼ 2L0=φ ¼ 4L0=π

9>>=
>>;

⇒ x0 ¼ 0.5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4L0

πγ0
C0Q

s
¼

� ffiffiffi
2

p
mcaC2

0Q
2

π2γ0eBsat

�1=4

: ð8Þ

FIG. 2. Numerical and analytic solutions of the equations of
motion [Eq. (2)] for both the head (1) and tail (2) particles. When
α2z equals 1, the tail particle has lost all of its energy.
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Applying the above equations to Eq. (5) we have an
expression that relates the amplitude of the tail (x2) at
z ¼ L to the charge and the channel radius,

AðQ; aÞ ¼ 4.135ffiffiffi
π

p a1Wx1

Wz1

�
γ0m3c3C2

0

e3B3
sat

�
1=4Q1=2

a1=4
: ð9Þ

Propagation requires that AðQ; aÞ ≤ a, i.e., that the
bunch does not hit the wall. Finally, one can determine
an analytic expression for the maximum charge that can be
propagated through the DWA structure,

QmaxðaÞ ¼
π

17.10

�
Wz1

a1Wx1

�
2
�

e3B3
sat

γ0m3c3C2
0

�
1=2

a5=2: ð10Þ

All the parameters in the above equation are in SI units.

B. Structure parameters

Before we can numerically determine how Qmax scales
with a, several steps remain. First, we numerically calculate
the wakefields,Wz andWx [3,4] for a particular value of a;
we call this the reference case. For the reference case, we
choose a DWA structure with a1 ¼ 1.0 mm, b1 ¼ 1.06 mm
and ε ¼ 3.75 (as an example, we use quartz as the dielectric
material) which uniquely determines the fundamental
frequency, f1 ¼ 300G Hz. Numerical calculation gives a
maximum transverse wake inside the Gaussian bunch as
Wx1 ¼ 4.5 MV=ðnCmmmÞ and a maximum deceleration
wake Wz1 ¼ 8.0 MV=ðnCmÞ shown in Fig. 3.
Next we explain how the ratio b=a and dielectric

constant ε affects wakefields and BBU. By numerical
study we found that thinner dielectric layer (which leads
to higher group velocity vg) would be better for BBU
control because transverse wakefields will be weaker at
higher group velocity case [Fig. 4(a)]. Thus we choose
these particular values as b=a ¼ 1.06 and vg ¼ 0.82c. We

are afraid that an even thinner dielectric layer may be a big
challenge for manufacturing. The dielectric constant can
also affect the group velocity and BBU effects. Lower
dielectric constant ε helps to reduce transverse wakefields
and BBU effects [Fig. 4(b)].
These numerical values of the reference case are used

to scale the wakefields according to Eq. (6). Next, we
set the rms length of a Gaussian bunch according to
σz=λ ¼ 0.2 for all cases and for the reference case we
have λ1 ¼ c=f1 ¼ 1 mm. This value of σz=λ achieves high
acceleration gradient and high transformer ratio [10]. The
initial bunch energy is taken as a constant, 150 MeV, so E0

is not scaled with a. Given the above values, one can use
Eq. (10) to find the maximum charge is 17 nC. Finally,
we substitute the above values into Eq. (10), to obtain
the two-particle model prediction of the scaling of charge
with radius,

Qmax½nC� ≈ 17.1 × a½mm�5=2: ð11Þ

C. Simulations results

Multiparticle simulations were done with a user-written
particle pushing code to simulate beam dynamics including
SBBU in the DWA structure surrounded by a FODO lattice.

FIG. 4. Ratio of longitudinal and transverse wakefieldsWz=Wx
(blue line) and group velocity (red line) as functions of b=a (up)
and dielectric constant (down). Both b=a and dielectric constant
can affect group velocity. Higher group velocity leads to weaker
transverse wakefields and weaker BBU effects.

FIG. 3. Longitudinal and transverse wakefields generated by a
Gaussian bunch in a DWA structure with a1 ¼ 1.0 mm, b1 ¼
1.06 mm and ε ¼ 3.75. The bunch moves towards the right.
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The basic mathematical model is the same as Ref. [5]. It
applies the force due to wakefield and quadrupoles to the
macroparticles and tracks them in the two-dimensional
coordinates (x; z). The wakefields excited by a single
particle in the DWA were decomposed into discrete but
infinite numbers of waveguide modes (mn in Ref. [3,4]).
Unless specifically mentioned, the wakefield calculations
used only the first three modes of both the monopole and
dipole wakes (due to the finite length of the bunch) but
convergence studies were done in all cases. The space
charge effects are much weaker than wakefield forces and
are excluded in our simulations. Based on simple estima-
tions, the transverse space charge force is at least smaller
than transverse wakefields force by one power of 10. We
have also done some simulations in ASTRA. The results
show good agreements with and without space charge. The
only difference is that magnet focusing forces should be a
little bit stronger to compensate space charge forces. Our
simulations were also checked to be in good agreement
with both Elegant [11] and BBU3000 [12].
The scaling of charge with radius (Qmax vs a) according

to multiparticle simulations was determined for several
radii (a½mm� ¼ 0.3, 0.5, 0.75, 1.0, 1.5, and 2.0). Simulation
results (Fig. 5, red circles) are in good agreement with
Eq. (11) from the two-particle model (Fig. 6, blue line).

D. High gradient limits

The scaling of the maximum acceleration gradient, Emax
z ,

with structure radius, a, for both the two-particle model and
the numerical simulations can now be simply obtained from
their above charge scaling results. Given Emax

z ¼ QmaxWacc
z ,

then for the reference case (a1 ¼ 1.0 mm, f1 ¼ 300 GHz,
Qmax ¼ 17 nC and Wacc

z ¼ 2Wz1 ¼ 17 MV=ðnCmÞ) we
find Emax

z ¼ 290 MV=m. This result can be used withWz ∼
Q=a2 to obtain the two-particle model prediction of the
scaling of maximum gradient with radius,

Emax
z ½MV=m� ≈ 290 ×

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a½mm�

p
: ð12Þ

Comparison of the scaling of Emax
z with radius shows

good agreement between the simulation results (Fig. 6, red
circles) and the two-particle model (Fig. 6, blue line). For
reference, we plot the gradient scaling with a when SBBU
is ignored for various fixed charges using, Wz ∼Q=a2

(dashed colored lines in Fig. 6).
The above results [Fig. 6 and Eq. (12)] are the key results

of this paper and can be used to guide the accelerator
designer in the choice of the DWA structure. If high charge
is available (e.g., Ref. [13] has drive bunch ofQ ¼ 100 nC)
then a maximum gradient of 400 MV=m with structure
radius a ¼ 2 mm is obtainable. At the other end of the
spectrum, if the drive bunch charge available is only 1.0 nC,
as is typical for an SRF linac, then the maximum gradient is
150 MV=m for a ¼ 0.3 mm.

FIG. 5. Maximum bunch charge as a function of the radius in
the DWA linac for η ¼ 80%. The blue line is the two-particle
model result and the red circles are the multiparticle beam
dynamics simulation results.

FIG. 6. Maximum acceleration gradient as a function of the
radius in the DWA linac for η ¼ 80%. The blue line is the
maximum gradient and the grey area underneath is the region of
permissible gradients. [The dashed lines show the gradient
scaling (Q=a2) when SBBU is ignored.]

FIG. 7. Maximum acceleration gradient as a function of the
radius in the DWA linac for a different group velocity case. vg ¼
0.82c and vg ¼ 0.54c cases are corresponding to b=a ¼ 1.06 and
b=a ¼ 1.2, respectively.
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For other structure radii ratio b=a and dielectric material,
our simulation results show that smaller b=a and lower
dielectric constant ε can lead to higher group velocity and
higher Wz=Wx, which help to control SBBU effects and
achieve higher gradient limits [Fig. 7].
The maximum acceleration gradient, Emax

z , can be
increased if one is willing to sacrifice the efficiency (by
lowering the requirement for η) and the total energy gain of
the accelerator. This is because the charge must be raised to
increase the gradient Ez0 ¼ QWz which increases SBBU
and therefore reduces the propagation length, L. For exam-
ple, Emax

z can be increased from ∼290 to ∼450 MV=m
(Fig. 8) by doubling the charge in the reference case
(a ¼ 1.0 mm). However, L is then reduced from 85 to 35
cm, thus η drops from 80% to 60% and the total energy gain
decreased from 245 to 157 MeV.

III. MAGNET ALIGNMENT TOLERENCE

BBU control presented in the paper is based on an ideal
quad channel. In practice, many factors need to be
considered. For example, because of the large quadrupole
strength, its alignment becomes critical. Following the
method in [14] (without consideration of transverse wake-
fields), let us consider a random sequence of magnet
misalignment δxi; the ensemble average displacement
due to the misalignment is

hx2ðsÞi ¼
X
i

hðδxÞ2i i
βxðsiÞβxðsÞ

f2xðsiÞ
γðsiÞ
γðsÞ sin

2φðs; siÞ; ð13Þ

where si and s are locations of each quadrupole and
observation, fx, βx and γ are the focal length, beta function
and Lorentz factor at each quadrupole magnet, and φðs; siÞ
is the phase advance between si and s. Because B0 of the
FODO channel is tapered to compensate the energy
decreasing, fx and βx are constant in the DWA linac,
denoted as fx0 and βx0. Consider a uniform rate of energy

decrease, γðsÞ ¼ γ0ð1 − ηs=LÞ, and a large number, N, of
magnets, then we can replace the sum by an integral to
obtain the rms displacement at the end of the lattice
(s ¼ L),

xðLÞrms ¼
βx0
fx0

δx;rms

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 − ηÞN
4ð1 − ηÞ

s
; ð14Þ

where η is the fraction of energy extracted from the drive
bunch, and δx;rms is rms alignment error. Because we want
the displacement at the end of the lattice to be smaller than
the beam size there xðLÞrms ≤ σxðLÞ and the beam
envelope should be smaller than the channel radius
3σxðLÞ ≤ a, the tolerance of random magnet misalign-
ments is given by

δx;rms ≤
fx0
βx0

a
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð1 − ηÞ
ð2 − ηÞN

s
: ð15Þ

For our reference case study (beam aperture 2a ¼ 2 mm),
the above parameters are given as fx0 ¼ 1.4 cm, βx0≈
0.1 m, η ¼ 80% andN ≈ 20, then the tolerance is estimated
as 8.5 μm. The tolerance requirement is even tighter when
transverse wakefields are considered. For the same case, the
numerical simulation shows that a 5 μm randomly mis-
alignment will lead to a 30% reduction of the propagation
length. The tolerance can be remediated by a slight
decrease of the operational gradient.

IV. SUMMARY

In summary, collinear wakefield acceleration in the
dielectric waveguide has the potential to enable future
accelerator science but the SBBU instability imposes a
significant limit on the highest acceleration gradient and
must be carefully controlled with a focusing channel. Since
the achievable focusing is limited by the attainable magnetic
field at the tip of the magnetic pole, our study shows that the
maximum accelerating gradient increases with structure
radius ∼

ffiffiffi
a

p
. This trend is the opposite of what would be

expected by using the simple scaling law, Ez ∼Q=a2.
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