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Impedance of a ceramic break and its resonance structures
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A new theory is developed to evaluate longitudinal and transverse impedances of any size of ceramic
break that is sandwiched between metal chambers. The theory has been numerically compared with the
codes ABCI and CST stupIo. Excellent agreements are obtained with both codes, in particular with ABCL
The theory successfully reproduces resonance structures of the impedance due to trapped modes inside the

ceramic break, which are enhanced by the difference of the dielectric constants between the ceramic and the

surrounding space. Moreover, the theory can evaluate the impedance of the ceramic break with titanium

nitride coating. We discuss several characteristics of the impedances, especially the difference between the

impedances of the ceramic break covered with and without a conductive wall on its outer surface.
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I. INTRODUCTION

A short ceramic ring that is sandwiched by metal
chambers is called a ceramic break. Such ceramic breaks
are often inserted between chambers near bending magnets
in proton synchrotrons, to mitigate the eddy current effects
on the chambers excited by the outside time-varying
magnetic fields [1]. The inner surface of the ceramic is
sometimes coated with titanium nitride (TiN) to suppress
the secondary emission of electrons, which is caused by the
collisions between a part of a proton beam and the chamber
surface. The TiN coating is beneficial to prevent the
buildup of the electron cloud from destabilizing the beams
[2—4]. On the other hand, these ceramic breaks are sources
of the beam impedance [5,6]. The precise estimation of
impedance is an important step toward realization of high
intensity beams in proton synchrotrons [7].

The impedance of the ceramic break can be calculated in
principle using three-dimensional simulation codes such as
CST Studio [8] or 2.5-dimensional codes such as ABCI (for
an axis-symmetrical structure) [9]. However, no compre-
hensive theory exists on this matter up to date. The lack of
such a theory makes it difficult to understand the physical
nature of the ceramic break impedance and to evaluate a
degree of accuracy of numerical calculations, particularly,
when agreements between different codes are not too great.
As will be seen, the ceramic break impedances reveal
resonant structures due to trapped modes inside the
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ceramic, and the theoretical approach provides an insight
to the physical nature of these resonances.

From a practical point of view, simulation studies often
encounter limitations in the estimate of the resistive wall
impedances of conductive materials, because the mesh
sizes need to be sufficiently smaller than the dimension of
the materials or the skin depth. In particular, it is almost
impossible to numerically estimate the impedances of a
ceramic break with thin TiN coating.

Prior to the present paper, the authors have examined the
impedance of a gap in slightly different configurations. The
first paper is for a pure short gap (the gap is left empty in
vacuum) [10]. The second case assumes that a short gap is
filled with a thin resistive ring [11]. In both cases, the gap is
sandwiched with thin metal chambers on both sides. In the
present paper, we deal with a gap filled with a dielectric
material. The theoretical framework is generalized at the
same time so that the theory can now handle the ceramic
break of any size, and is not limited by its thickness or
length.

In Sec. II, we derive general formulas of the longitudinal
and transverse impedances of a ceramic break. In Sec. 111,
we will conduct accuracy tests of the theory by numerical
comparisons with the simulation codes ABCI and CST
Studio. The characteristics of resonance structures appear-
ing in the ceramic breaks are investigated. In Sec. IV, we
evaluate the impedances of ceramic breaks with TiN
coating by using the present theory. The study generalizes
the previous results for a short gap filled with a thin
resistive material. We discuss the difference between the
impedances of the ceramic breaks covered with and without
conductive walls on their outer surface. In Sec. V, the
Lorentz-y dependence of the impedances is investigated.
The paper is summarized in Sec. VL.
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FIG. 1. A schematic picture of ceramic (orange object), which
is sandwiched by perfectly conductive metal chambers. The inner
and the outer radii and the length of the ceramic are a, a, and
g(= 2w), respectively. Since the cylindrical coordinates (p, 0, z)
are used, the radial, the azimuthal and the longitudinal compo-
nents of electric and magnetic fields are represented as E, H,
Ey,Hy and E,, H_, respectively.

II. FORMULAS FOR IMPEDANCES OF A
CERAMIC BREAK

A. Longitudinal impedances

Let us start with deriving electromagnetic fields
generated by the interaction between a beam and an

axisymmetric ceramic break. As shown in Fig. 1, the
cylindrical coordinates (p, 6, z) are used. The outer and
the inner radii of the ceramic (and those of the chambers
of the both sides) are given by a, and a, respectively.
The ceramic is located in the region —w <z <w
(namely, the length g of the ceramic is equal to 2w).
In order to obtain formal solutions of the fields, the field
matching technique is applied to this system [12].
Unlike the previous studies [10,11], the ceramic ring
can be thick, and the length g of the ring can be
arbitrary.

It is assumed that the beam has a cylindrically uniform
density with radius ¢ and its total charge is 1 C/m. Namely,
its current density is given by

Jo = pell = O(p — o)]e™/H [ (0?), (1)

where ©(x) is the step function, k = w/fc, f=v/c, v
is the velocity of the beam, c is the velocity of light,
@ = 2xf and f is the frequency. The formal solutions of
the fields at the angular frequency @ inside the chamber
are given by
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for p > o, where A =

V2B — h?, Zy(= 1207Q) is the impedance of free space, J,(z) is the Bessel function, 7,(z) and

K,(z) are the modified Bessel functions [13], y is Lorentz-y, k = k/y and V, is the voltage on the inner surface of the

(m)

ceramic at p = a and V" are expansion coefficients.

The average value of E, [expressed by Eq. (2)] over p gives the longitudinal impedance Z; . It can be expressed as

iZ
7, = - J4o0

kproc?

ZLpreak, L. = — T
breale L cpokly(ka)

where L is the length of the beam pipe. The first term and
the second one Zy.,; in Eq. (6) represent the non-
relativistic space charge impedance [10] and the coupling
impedance of the ceramic break, respectively. The expan-
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of the chamber a, a simple expression of longitudinal
impedance is approximately obtained as
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The positive integer m denotes the number of half wave-
length in the ceramic. This mode plays an important role
to explain the resonance structure of the impedance. The _wcy) (a(z)) — K(()O)<a< 2))
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where (a(z)), <<06(Z)>>m, @), (@D (@)
(Y(2)). (¥(@))nr (Y™ (2)),, are given in Appendix B
The coefficients Aé .Y, k0 Al el 1l and

K(<)m> with positive integer m represent the transfer rates of
the fields on the inner surface (p = a) to the outer surface
(p = a,) of the ceramic, which are determined by the solutions
of Maxwell equations in the ceramic. The concrete expres-
sions of transfer coefficients are given in Appendix C 1.

In Secs. III and IV, explicit calculations of impedances
are done for several different sizes of ceramic, and accuracy

2nZyw

tests are carried out between the theoretical and numerical
simulation results.

B. Transverse impedance
Following the derivation of longitudinal impedance, let
us consider the situation where a beam is traveling in the
chamber with the charge distribution of the azimuthal
dependence as j. = qfcd(p — r;,) cos Qe =% /zr,,. At first,
let us describe the fields inside the chamber as
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for p > r,. Here, i; = qr,, the prime in /,,(z) and J,,(z) means the differential by their argument z, V, is the voltage on the

inner surface of the ceramic at p = a and IN)Em) and f)gm) are expansion coefficients.
Using the Panofsky-Wenzel theorem [5,14], we finally obtain the expression for the transverse impedance as

RZk 7 - (k)
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The first term and the second one Zy,., v of Eq. (17) represent the transverse space charge impedance for a nonrelativistic
beam [10] and the transverse 1mpedance of the ceramic break, respectively. By solving Eqs. (A66)—(A71) in Appendix A 2,
the expansion coefficients V2 and V2 ") are obtained for any order of m. The precision of the theoretical results can be
improved by increasing the correction order m in Eq. (18).

In the lowest order approximation, the expression is simplified as
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(Y2(2)=Y3(z)/R2p*a’). (Y5(2) = Ys(z)/K*pPa3) are given
by Egs. (D12) and (D14) in Appendix D, A\”, ¢\, 1\” and
K §0) are transfer coefficients for the transverse impedance,
and the concrete expressions are shown in Appendix C 2.

III. NUMERICAL COMPARISON BETWEEN
THEORETICAL AND SIMULATION RESULTS

In the last section, we obtain the theoretical expressions
of impedances of ceramic break [Egs. (7) and (18)]. Let us
now compare the theoretical results and numerical simu-
lation results for a relativistic beam.

For the theoretical analysis, the transfer coefficients
Af)o), C(()O),I(()O),K(()O), Aém), C(()m),l(()m> and K(()m) are given
by Egs. (C10)—(C17) in Appendix C 1 for the longitudinal
impedance. The solutions of Eqs. (A20)—-(A23) in
Appendix A1 with the transfer coefficients provide the
expansion coefficients V; and V\"). The final theoretical
results are obtained by substituting the obtained expansion
coefficients into Eq. (7). The transfer coefficients for the
transverse impedances A(10>, C(IO), Igo) , Kio) , A<1'">, B%m),
C(lm)’ E(lm)’ F<1m>, H(lm), I(lm), J(lm), Kgm)’ L(lm), M(lm)’ N(1m>,
0\ and P\" are given by Eqgs. (C31)~(C34) and (C36)—
(C51) in Appendix C2. The expansion coefficients V),
and fiém) are obtained by solving Egs. (A66)—(A71) in
Appendix A2 combining with Egs. (C31)-(C34) and
(C36)—(C51). The final theoretical results for the transverse
impedance are provided by substituting the solutions V),
and f/é’") into Eq. (18).

The ABCI code does not have an option to simulate the
open boundary condition far from the ceramic break in the

100 T T T ! .
ted : theory
real part black : ABCI
blue : CST
g
1 = - 3
s
N
imaginary part
100 ) : : ‘ 1
o 2 4 6 8 10 12

f[GHz]

FIG. 2.

radial direction. Instead, we put a large cavity outside the
ceramic break, so large that the fields radiated from the
ceramic break cannot come back to their origin after
bouncing back at the cavity wall before the test particle
at the very end of the wake potential coordinate passes the
ceramic break. In other words, the radius of the outer cavity
needs to be at least a half of the length of the wake potential
to be calculated. The maximum radius of the cavity used in
all the calculation is 20 m (the longitudinal length of the
cavity is 40 m). The mesh size is 0.625 mm in both the
radial and the longitudinal directions. The root mean square
(rms) bunch length used is 10 mm, though the impedance
does not depend on the choice of bunch length in the
frequency range of interest.

On the other hand, CST Studio can simulate the open
boundary condition [the option is “open (add space)’].
Inside the ceramic, we used a finer mesh than in other parts,
typically 0.5 mm. The rms bunch length used is 5 mm.
Again, the final impedance has no dependence on the
choice of the bunch length.

A. Vacuum gap case

The first example is a vacuum gap [¢' = 1,4’ = 1,0,
(conductivity) = 0]. The inner and the outer radii of
the chambers are ¢ = 65 mm, a, = 70 mm, respectively.
The gaps length g is 10 mm. The calculation results for the
longitudinal and the transverse impedances are shown by
the left and the right parts of Fig. 2, respectively. The red,
the black and the blue lines show the theoretical, ABCI’s
and CST'’s results, respectively. The solid and the dashed
lines show the real and the imaginary parts of impedances,
respectively. The existence of a large resonance at low

4 T T T T T
( Eq.(21) red : theory
3 black : ABCI
i blue : CST i
— 2 real part -
S
~
G
= ! 4
= /
NE 0
1L B
imaginary part
-2 1 1 1 1 1
0 2 4 6 8 10 12
f[GHz]

Impedances of a vacuum gap (¢ = 65 mm, a, = 70 mm and g = 10 mm) calculated by the theory (red), the simulation codes

ABCI (black) and CST Studio (blue). The left and the right figures show the longitudinal and the transverse impedances, respectively.
The solid and the dashed lines show the real and the imaginary parts of the impedances, respectively.
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20 - -

red : ceramic break(ABCI)
blue:vacuum gap(ABCI) 8

.
demo==

SO L
R

1
(9]
T
===
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Y
~
L

L

L 1 1 1

OL 2 4 6 8
f[GHz]

Longitudinal impedance of the ceramic break (¢’ = 11) (red) and that of the vacuum gap (blue). The left and the right parts

show the theoretical result and the numerical one calculated by ABCI, respectively. The solid and the dashed lines show the real and the

imaginary parts of impedances, respectively.

frequency in the transverse impedance was already reported
in the previous paper [10]. The frequency is given by

froe (21)

2ra

(i.e., the wavelength resonates along the circumference of
the chamber 2rza).

In this paper, the theory is expanded from that in Ref. [10]
to cope with a thick gap sandwiched by chambers with finite
thickness. All three results are in good agreement, which
indicates that the generalization was done successfully and
can accurately describe the gap impedances.

20

T, T
coaxlal-mode resonances

(m=1)

Re[zbreak,L] [Q]

cut-off frequencies

B. Overview of longitudinal impedances of the
vacuum gap and the ceramic break

Let us take an overview of the longitudinal impedance of
the ceramic break (¢ = 11) and that of the vacuum gap for
the values of a = 65 mm, a, = 70 mm and g = 10 mm
(this is standard size of the ceramic break in use at the
Main Ring (MR) in Japan Accelerator Research Complex
(J-PARC) [7]). The left and the right parts of Fig. 3 show
the theoretical result and the numerical one calculated
by ABCI, respectively. The red and the blue lines show the
impedances for the ceramic break and those for the vacuum
gap, respectively. The solid and the dashed lines show the
real and the imaginary parts of impedances, respectively.

10 ‘ ‘
cut-off frequencies

FIG. 4. Longitudinal impedances of the ceramic break (¢ = 65 mm, a, = 70 mm, g = 10 mm and ¢’ = 11) calculated by the theory
(red), the simulation codes ABCI (black) and CST Studio (blue).
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20 0.06 ‘ \ \ \
coaxial-mode resonances
: (m=1)
15 1 <«— Eq(22) | 0.04 , .
— 10} 1 _ :
E E 0.02 | ]
g 5l ] I : .
N Qe SN N 7
5| " | -0.02 + ' .
v
10002 04 06 o088 1 .04 A 6 8 10 12
f[GHz]

cut-off frequencies

FIG. 5. Transverse impedances of the ceramic break (¢ = 65 mm, a, = 70 mm, g = 10 mm and ¢ = 11) calculated by the theory
(red), the simulation codes ABCI (black) and CST Studio (blue). The solid and the dot lines show the real and the imaginary parts of the
impedance, respectively. The left and the right figures show the results up to 1 GHz frequency, and those up to 12 GHz, respectively.

The cutoff frequencies are identical for both the ceramic
break and the vacuum gap. It can be clearly seen that another
type of resonance structure is excited in the ceramic break
at high frequency. Despite the existence of the resonances,
the loss factor of the ceramic break is a few times smaller
than that of the vacuum gap (the loss factors for the ceramic
break and the vacuum gap are numerically found to be
22.34 and 73.44 mV /pC, respectively). This is because the
impedance decays more rapidly in the ceramic as a function
of frequency due to the wavelength contraction effect.
Thereby, the ceramic is in general beneficial to suppress
the energy loss of the beam, in particular, for a long bunch.

20

T N T T T
coaxial-mode resonances

(m=1) \

Zbreak L[Q:|

a0
-15 :' -
-20 :I 1 1 1 1 1
0 2 4 6 8 10
f[GHz]

The above observations show that the impedance of the
ceramic break has different characteristics from that of the
simple gap. In the following sections, let us investigate
these new phenomena more closely.

C. Impedances of ceramic break and their
resonance structures

Let us continue numerical comparisons for the same
size of ceramic break (a = 65 mm, a, =70 mm and
g =10 mm) and discuss the resonance structures. The
longitudinal and the transverse impedances are shown in

Figs. 4 and 5, respectively.

coaxial-mode resonances
0.04
0.02
1S
N
G
= 0
=
8
Qo
N H
-0.02| : ]
-0.04L: ! 4
0 2 4 6 8 10 12
f[GHz]

FIG. 6. Theoretical results of impedances of the ceramic break (¢ = 65 mm, a, = 70 mm, g = 10 mm and €' = 11). The red line
shows the calculation results when the higher order term up to m = 2 is included, while the black line shows the results when only the

lowest order term is considered.
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A electric fields in the break
at 8.66GHz

70

radial direction

Y

longitudinal direction

FIG. 7. An example of electric fields in the ceramic break
(a =65 mm, a, =70 mm, g = 10 mm and ¢’ = 11) at a cutoff
frequency of 8.66 GHz. The range of horizontal and that of
vertical axes are —w <z <w and a < p < a,, respectively.
Unit is mm.

In Fig. 4, the red, the black and the blue lines show the
theoretical, ABCI’s and CST’s results, respectively. The left
and the right parts show the real and the imaginary parts of
the impedances, respectively.

In the transverse plane, the real and imaginary parts of
impedances are shown in the same figure by the solid and
the dot lines, respectively. In Fig. 5, the left part shows only
up to 1 GHz frequency, while the right part is up to 12 GHz.
Note that the scales of the vertical axes are different for the
left and right figures. The red, the black and the blue lines
show the theoretical, ABCI’s and CST’s results, respectively.

All the calculation results (the theory, ABCI and CST)
reveal the resonance structures and show good agreements
between them, in particular, between the theory and ABCL.

The large resonance at low frequency in the transverse
impedance (that appears also in the vacuum gap case as
shown in the right part of Fig. 2) is modified as

T T T T T T

! ! ! ! ! !

FIG. 8.

c a’+1.5(a5 — a?)
2ra \| a® + 1.5¢/ (a3 — a®)’

f~

(22)

This frequency is lower than that for the vacuum gap due to
the wavelength contraction effects of the ceramic.

In the presence of the ceramic, additional resonances
appear at high frequency in the longitudinal as well as in the
transverse impedances. Figure 6 presents an example that
shows the importance of the correction term [the second
terms inside the bracket of Egs. (7) and (18)]. The red line
shows the calculation results when the higher order term up
to m = 2 is included, while the black line shows the results
when only the lowest order term is considered. For accurate
calculations, the correction term plays an important role.
Figure 6 indicates that two types of resonances exist in the
impedances.

1. Cavity-mode resonance

The first type of resonances is excited around the cutoff
frequencies and behaves like cavity-mode resonances.
These cutoff frequencies are given by

Jox€
=2 23
fer 2rwa (23)
Jik€
== 24
fc.T 2 ra ( )

for the longitudinal and the transverse impedances, respec-
tively, where j,, are the kth zeros of J,(z). As shown in
Fig. 2, this type of resonances appears also in the vacuum
gap case. At the cutoff frequencies, the fields inside the
chamber can spread out to infinity and stay there without
propagating away.

The electric field pattern in the ceramic break at the
frequency of 8.66 GHz (one of the cutoff frequencies) is
shown in Fig. 7, where the horizontal and the vertical
axes show the longitudinal and the radial directions,

T T T T T T T

! ! ! ! ! ! !

Two types of resonant structure.
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TABLE I. Resonances and cutoff frequencies for the ceramic
break of ¢ = 11, a = 65 mm, a, = 70 mm, g = 10 mm.

m=1 9.28,... GHz
m=2 12.1,... GHz
1.76, 4.05, 6.36, 8.66, 10.96,... GHz

Roots of Eq. (32)

Cutoff frequencies
for Z;

Roots of Eq. (33) m=1 9.28,... GHz
m=2 12.1,... GHz
Cutoff frequencies 2.81, 5.14, 7.47, 9.79, 12.1,... GHz
for Z;
TABLE II. Resonances and cutoff frequencies for the ceramic
break of ¢/ = 11, a = 35 mm, a, = 40 mm, g = 10 mm.
Roots of Eq. (32) m=1 9.31,... GHz
m=2 12.17,... GHz
Cutoff frequencies for Z; 3.27,7.53, 11.8,... GHz
Roots of Eq. (33) m=1 9.33,... GHz
m=2 12.18,... GHz

Cutoff frequencies for Zy 5.22,9.55,... GHz

respectively. The fields are almost symmetric about the
z = 0 line, and they stay inside the ceramic. Theoretically,
the integration of E, along the z direction at p = a is almost
canceled, and the longitudinal impedance is minimized at
this frequency.

In the resonances around the cutoff frequencies, there are
two cases. In one case, a resonance appears just above the
cutoff frequency (the left part of Fig. 8). In the other case, a
resonance appears just below the cutoff frequency (the right
part of Fig. 8) [15].

30 \

. . .
coaxial-mode resonances

=1
25 (m=1) |

Re[zbreak,L] [Q]

cut-off frequencies

The physical reason for the first case (resonances just
above the cutoff frequencies) is as follows. The difference
of the dielectric constants between the ceramic and the
vacuum introduces the reflection of waves at the boundary.
This reflection of electromagnetic fields at the lower and
the upper boundaries of the ceramic creates trapped mode
inside. These trapped modes can leak out of the ceramic
either to the outside or the inside of the chamber. Below the
cutoff frequencies, they couple with unpropagating modes
inside the chamber, and the interaction between the beam
and these unpropagating modes takes place only in a
limited space around the ceramic location. Above the
cutoff frequencies, however, the trapped modes couple
with propagating modes inside the chamber and the
interaction between the beam and the propagating modes
is extended for much longer distance, and as a result, the
impedance is enhanced.

The second case (resonances just below the cutoff
frequencies) is excited by another mechanism. Let us
simplify the formula of longitudinal impedance for
(ap—a)/a<k1l, kw1 and ¢ > 1. In the case,

AE)O) , CE)O) , 1(()0> and K(()0> are approximated as

AV =1, (25)
cy = jla - a)kpz,, (26)
. (ay—a)*k>p>e
o Jlay —a)kpe' (1 — =)
10 = 7 6 . (2
B2 (ar — a)?
K(()O) —1 _W_ (28)
20
5] 1
10+
g s
lll“_ﬂ
e
10k
=15} | cut-off frequencies g
-20 s ‘ ‘ s ‘

FIG. 9. Longitudinal impedances of the ceramic break (¢ = 35 mm, a, = 40 mm, g = 10 mm and ¢’ = 11) calculated by the theory

(red), the simulation codes ABCI (black) and CST Studio (blue).

091001-9



SHOBUDA, CHIN, AND TAKATA

Phys. Rev. ST Accel. Beams 17, 091001 (2014)

40 T T T T

30. Eq.(22) ——>»

----

1

0 02 04 06 08 1

-20 I

f[GHz]

02 [ T R T T T T
coaxial-mode resonances
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FIG. 10. Transverse impedances of the ceramic break (¢ = 35 mm, a, = 40 mm, g = 10 mm and ¢’ = 11) calculated by the theory
(red), the simulation codes ABCI (black) and CST Studio (blue). The solid and the dotted lines show the real and the imaginary parts
of the impedance, respectively. The left and the right parts show the results up to 1 GHz, and those up to 12 GHz, respectively.

Substituting Egs. (25)—(28) into Eq. (9), the longitudinal
impedance of ceramic break is simplified as

1
ZL= jwe'eg2ralar,—a jka Y ’
focedralara) F 4 B2 [(]) + | L iy
2z 2
(29)
1— K p*e (ay—a)?
F = ( ) (30)

a,—a)gk> (Y 2P (ay—a)?*y’
(1_(2 )gﬂ/<>_ 14 (22 ))

where the mathematical expressions of (J) and (Y) are
given by Egs. (B5) and (B9), respectively. The first term of
the denominator represents the admittance of the ceramic
break, because the capacitance C.., due to the ceramic
break is approximately given by

eon(ay +a)(ay —a) €eq2nala, —a)
Coer = g = g ’

(31)

and the factor F goes to one at zero frequency. The second
term in the denominator of Eq. (29) is the admittance of the
gap, or the radiation effects. For a thick gap, the admittance
of the ceramic break is capacitive at low and high
frequency. However, there is a frequency region between
them where the admittance is switched to inductive. On the
other hand, the gap itself works as a capacitor below the
cutoff frequencies, since the electromagnetic fields can be
stored inside without propagating away through the beam
chamber. As a result, the coupling between the inductance
of the ceramic and the capacitance of the gap creates
resonances below the cutoff frequencies in the intermediate
frequency region.

One way to check these conjectures is to change the
radius of the chamber a, and thus the cutoff frequencies. As
shown in Tables I and II, the cutoff frequencies of the two
chamber cases are quite different. Comparing Figs. 4, 5,
and Table I with Figs. 9, 10, and Table II, we notice that the
resonance behavior are drastically changed between them.

2. Coaxial-mode resonance

As seen in Fig. 6, another type of resonances appears in
the ceramic break. This is the coaxial-like mode whose
fields are mainly localized inside the ceramic. Their

electric fields in the break

at 9.387GHz
70— S
69
RS
s [ ey rsiiiddddaedddudaa
|08 T
N e sNNANNANNN NN N s s o
S G NG NG N N N, N W U U WO T O R 2 R o
= \\\\\\\\\‘\\\\'\\\\\\\er ,,,,,,,
~ NN NOARANN
S |67 .ﬂ\\\"\‘\\ SOV R NS s s e
= PN NN R e
s === N NN
XS
ESSSS SSSSs<<ccc |
=SS
S
66=§\\
=SS
§:\\\
4 2 0 2 4
N
>

longitudinal direction

FIG. 11. An example of electric fields in the ceramic break
(a=65mm, a, =70 mm, g=10mm and ¢ =11) at a
coaxial-mode resonant frequency of 9.387 GHz. The range of
horizontal and that of the vertical axes are —w < z < w and
a < p < a,, respectively. Unit is mm.
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20

— ; :
coaxial-mode resonances

break,L][ ]

Re[Z

cut-off frequencies

cut-off frequencies

FIG. 12. Longitudinal impedances of the long ceramic break (¢ = 65 mm, a, = 70 mm, g = 20 mm and ¢’ = 11) calculated by the
theory (red), the simulation codes ABCI (black) and CST Studio (blue).

resonant frequencies are roughly estimated by the con-
ditions given by

Y, (ma) o (fmas) = Jo(ma) Yo (Hmar)]
0 0 af 0 0 _0, (32)

8[Y,I (ﬁma)‘] (ﬁma )_‘]/1 (ﬁma)y (ﬁma )] _
1 Zaf 1 2 _ 0’ (33)

for the longitudinal and the transverse impedances, respec-
tively, where

Eq.(22) —>

[k©/m]

break,T

yA

"
-

i

1

0.8 1

-5 1

0 0.2 0.4 0.6

f[GHz]

4][2 €/f2 m27[2

C2 92 .

fin = (34)

The positive integer m is a longitudinal (coaxial)-mode
number, and denotes the number of half-wavelengths in the
ceramic. Figure 11 shows one example of the electric fields
in the ceramic at a coaxial-mode resonant frequency of
9.387 GHz. The electric fields are almost parallel to the
longitudinal direction at p = a and p = a,. This implies
that the fields behave like antenna both on the inner and

0.06 T — T T T
coaxial-mode resonances
m=2)
0.04{:
E o0z
G .
v
=
§ 0
E !
-0.02 i
i
: g cut-off frequencies
-0.04 L Ihd L L 1 1
0 4 6 8 10 12

f[GHz]

FIG. 13. Transverse impedances for the long ceramic break (¢ = 65 mm, a, = 70 mm, g = 20 mm and ¢’ = 11) calculated by
the theory (red), the simulation codes ABCI (black) and CST Studio (blue). The solid and the dotted lines show the real and the
imaginary parts of the impedance, respectively. The left and the right parts show the results up to 1 GHz, and those up to 12 GHz,

respectively.
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TABLE III. Resonances and cutoff frequencies for the ceramic

break of ¢ = 11, a = 65 mm, a, = 70 mm, g = 20 mm.

Roots of Eq. (32) m=1 8.41,... GHz
m=72 9.28,... GHz

Cutoff frequencies 1.76, 4.05, 6.36, 8.66, 10.96,... GHz
for Z;

Roots of Eq. (33) m=1 8.42,... GHz

m=2 9.28,... GHz

Cutoff frequencies 2.81, 5.14, 7.47, 9.79, 12.1,... GHz

for Z;

outer surface of the ceramic, and the fields can propagate
away both inside and outside of the chamber. Since the
directions of fields are opposite at the inner and outer
surfaces, the fields are trapped and resonate in the ceramic.
Consequently, the impedance has sharp peaks at their
frequencies.

By intentionally changing the maximum order m of
correction terms, we can identify which order of coaxial
mode is excited in the impedances. In the ceramic break
with the values of a=65mm, a, =70 mm and
g = 10 mm, only the m = 1 coaxial mode is excited below
12 GHz, and the inclusion of up to m =1 order in
calculations is sufficient for accurate estimates of imped-
ance. On the other hand, the higher order terms (more than
m = 2) should be included for accurate estimates of the
impedances for long or thick ceramic breaks.

An example of long ceramic break (g =20 mm) is
shown in Figs. 12, 13 and Table III. In these figures, the
m = 2 as well as m = 1 coaxial modes greatly enhance the
impedance, compared with the results of the short ceramic
break in Figs. 4 and 5.

coaxial-mode resonances

cut-off frequencies

break,L][ ]

Re[Z

f[GHz]

In a thick ceramic with the values of a = 65 mm, a, =
75 mm and g = 10 mm (Fig. 14 and Table IV), we can see
three sharp coaxial modes (two m = 1's and one m = 2's)
in the longitudinal impedance. Because of the near-by
resonance, the small peak at the cutoff frequency at
6.36 GHz is hidden in Fig. 14. The transverse impedance
for this thick ceramic case is not shown here, because ABCI
calculation was not possible due to the memory size
restriction of the author’s computer.

Before finishing this section, let us see how the CST
results converge as a function of the total mesh size.
Figure 15 shows the CST results of impedance for the
ceramic break with ¢ = 65 mm, a, = 70 mm, g =10 mm
and ¢ = 11 (the same dimension as in Figs. 4 and 5).
The left and the center/right parts correspond to the
longitudinal and the transverse impedances, respectively.
The black, the blue and the red lines represent the CST
results for the total number of mesh sizes to be
approximately equal to 2.5 x 107, 5 x 107 and 7 x 107,
respectively. The solid and the dashed lines are for the
real and the imaginary parts of the impedances. As we
can see, the blue and the red lines are nearly identical.
In all CST calculations, we checked the convergence of
the results in this way.

IV. IMPEDANCES OF A CERAMIC BREAK
COATED WITH TiN

In this section, we theoretically analyze the imped-
ances of a ceramic break, where the inner surface of the
ceramic is coated with resistive material (TiN) with the
conductivity orn(= 5.88 x 10° S/m)) and the thickness
t. Numerical simulations are not suitable for calculation
of this kind of impedance, because extremely small mesh

20 T T T T T

15t cut-off frequencies
10 | X 1

5t AN 4

Im [Zbreak,L] [Q]
o

-20 . . .
0 2 4 6 8 10 12

f[GHz]

FIG. 14. Longitudinal impedances of the thick ceramic gap (¢ = 65 mm, a, = 75 mm, g = 10 mm and ¢ = 11) calculated by the
theory (red), the simulation codes ABCI (black) and CST Studio (blue).
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TABLE IV. Resonances and cutoff frequencies for the ceramic
break of ¢ = 11, a = 65 mm, a, = 75 mm, g = 10 mm.

Roots of Eq. (32) m=1 6.09, 9.92,... GHz
m=2 9.92,... GHz
Cutoff frequencies 1.76, 4.05, 6.36, 8.66, 10.96,... GHz

for Z;

sizes are necessary (smaller than the thin TiN coating).
In reality, typical coating size of TiN is a few ten nm in
the ceramic break.

In the following subsection, let us investigate the
characteristic of the impedance with thin TiN coating.

A. The TiN-thickness dependence of the impedances
For a thin TiN coating [krna > 1, krnt < 1 and
(ay —a)/a < 1], the transfer coefficients Aéo), Céo),l(()o)

and K(()O) are approximately given by (refer to
Appendix C 1)
AY = cosh it + jkpaZoorntlog 22, (35)
a

¥ = jkpaz, log%, (36)

0 jﬂé‘/k(d% — 02) cosh KTiNt AKTiN sinh KTiNt

1 , 37
0 2a,7, arjkpZ, ( )

K232 (a2 — a®)t
_ERPlay = d)t L @ et (38)

KO _
0 2(12 a,

c

fs=

2’

170,

KTiN = V/ JkPZyoiN. (39)

Substituting Egs. (35)-(38) into Eq. (9), the longitudinal
impedance Z N of the thin ceramic break (compared
with the radius of the chamber) coated with the thin TiN is
approximated as

4“21%(/_“") (sin kw)2

7 ?k*all(ka) \ kw
cerTiNL ™ Gkpa, [(J(2)) + (¥ (2))] __ Jmaykrin tanh kpint + joe'nay(a—a)
Zy wkpZ cZyw
(40)

The first term in the denominator is the admittance of the
gap, or radiation effects. The second term represents the
resistive wall admittance due to the TiN coating. The third
term in the denominator is the admittance of the ceramic
break. The longitudinal impedance of the ceramic break
is approximately obtained by adding the impedances in
parallel (the impedance of resistive wall due to the TiN
coating, that of the radiation and that of the capacitor made
by the ceramic).

More rigorous calculations can be numerically done
by using Egs. (C21)—~(C24) in Appendix C 1 as transfer
coefficients. The longitudinal impedance is obtained by
solving Egs. (A20)-(A23) in Appendix A1 with the
transfer functions and by substituting the solutions
(V, and V{™) into Eq. (7).

With the help of the discussion of the previous study
[11], let us categorize the impedances of the ceramic break
with the TiN coating for various TiN thickness. The
frequency parameter f is introduced as

(the frequency at which the skin depth is equal to the TiN thickness), (41)

0.04

break,T[ kQ/m]

z
o

0.03 |

0.02 |

[kQ/m]

0.01

break,T

z
o

=

-0.01 |

0 2 4 6 8 10 12 Yo o2
f[GHz]

FIG. 15.

f[GHz]

-0.02

06 08 1

f[GHz]

The results of CST Studio for different total number of meshes are shown by the black (~2.5 x 107), the blue (~5 x 107) and

the red (~7 x 107) lines. The left part shows the longitudinal impedance. The center (0—1 GHz) and right (1-12 GHz) parts show the
transverse impedances. The solid and the dashed lines show the real and the imaginary parts of the impedances.

091001-13



SHOBUDA, CHIN, AND TAKATA

Phys. Rev. ST Accel. Beams 17, 091001 (2014)

and the thickness parameter t,;, is as

4 i
in = <g> (~typically of the order of a few ten nm in the short ceramic break). (42)

273 3
n-Zyo,

The left part of Fig. 16 shows the TiN thickness
dependence of the longitudinal impedance. In all the cases,
the TiN coating is sufficiently thin so that its thickness is
less than the skin depth within the frequency frame of the
figures (f < 10 GHz) except the = 10 um case where the
skin depth starts to fall short of the TiN thickness above
fs (~1 GHz). When the TiN coating is thick enough
(t > tin), but less than the skin depth, the entire image
current runs on the TiN coating, and the impedance
becomes proportional to 1/¢. Since the TiN coating almost
perfectly shields the electromagnetic fields inside the beam
chamber from leaking out to the ceramic, the appearance of
resonances inside the ceramic is greatly suppressed. When
the TiN coating is much thinner than 7;, (e.g., < 1 nm),
the electromagnetic fields starts to leak out through the
TiN coating, and the existence of the ceramic and their
resonance structures starts to form the impedance.

Similarly to the longitudinal case, the transverse imped-
ance is proportional to 1/¢ for sufficiently thick TiN coating
(t > tin), but thinner than the skin depth below fs. When
the TiN coating is extremely thin (¢ < f,;,), the shielding
effect of the TiN coating starts to diminish, and resonance
structures start to appear.

Similarly to the longitudinal impedance, let us try to obtain
a simple expression of the transverse impedance of the
ceramic break with the thin TiN coating. When xrna > 1,

krint<<1 and (a,—a)/a<1, the coefficients A(]o)’ C(lo), I(lo>

and K 50) are approximated as (refer to Appendix C 2)

1
000 Om, 10pm

1oo,i'.§\\4 ]

100pm NI
10} s

1

0.1

Re[Z 1[Q]

0.01+ 1

1
0.001"" .
|

0.0001 \ P
0.01 0.1 1 10

f[GHz]

A\ = cosh kpint, (43)

c\” =o, (44)

0) _ K1iN
JkBZ,

Jjkpe'(a; — a) 1
+ 2 1 - R coshkrnt,  (45)

K EO) = cosh kpin2. (46)

sinh kNt

In the lowest order approximation, the transverse imped-
ance of the ceramic break Z.., 7 coated with TiN, is
expressed as

a211 (kr,,) sin kw 2
Zcenain,T = YIRS ’ (47)
ryayli(ka)Vs,, kw
where
~ jﬂasziN tanh KTiNt
Vip=—
WkﬁZO
. Y Y,
JkBas[(¥(2) = i) = (Vs (2) = gy
Zy
njpe'k(a, — a)a, 1
1- . 48
+ wZ, a’k*p*e (48)
100 :
Om
10 F?]Opm
| ! /l()()/ml
‘T 01k i .
E n
g
= 0.01
E:—
o 0.001
0.0001
0.00001
0.000001 . .
0.01 0.1 1 10
f[GHz]

FIG. 16. The thickness dependence on the impedances of the ceramic break (¢/ = 11, @ = 65 mm, a, = 70 mm and g = 10 mm) with
the TiN coating. The impedances for the different TiN thicknesses are shown by the red solid (f = 10 ym), the blue solid (r = 1 ym),
the black solid (# = 100 nm), the black dashed (¢t = 10 nm), the black dot (t = 1 nm), the green solid (+ = 100 pm), the blue dashed

(t =10 pm) and the red dashed (r = 0 m) lines.
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The first, the second and the third terms represent the
admittances of the resistive wall due to the TiN coating,
the radiation effect and the ceramic break, respectively. The
admittance made by the ceramic break (the third term) is
modulated at low frequency. Roughly, the transverse imped-
ance can be interpreted as the summation of three compo-
nents in parallel (the resistive wall due to the TiN coating, the
radiation and the capacitor made by ceramic), again.

Specifically for a vacuum gap made of two infinitesimal
thickness chambers, Eq. (47) reproduces the gap imped-
ance Zg,p |,

JZoI, (kry)
kBryali(Ea)[Ys(zo) — ¥a(zo) — BeTa]
(49)

Zgap.J_ ==

in Ref. [10], where z; is a matching point (—w < zo < w).

B. Ceramic length dependence of the impedance

Let us study how the impedance of the ceramic break
with the TiN coating will be changed when the length of the
ceramic is changed. Figure 17 shows such an example,
where the inner radius of the ceramic ¢ = 65 mm, the outer
radius a, = 70 mm and the TiN thickness ¢ = 15 nm. The
red, the blue and the black lines show the longitudinal
impedance per unit length for ¢ = 10 mm, 100 mm and
1 m, respectively. The solid and the dashed lines show the
real and the imaginary parts of the impedances, respec-
tively. One can find that the longitudinal impedance per

real part

30

25

20
— green:g=10 revious th.
E 151 green: mm(previous th.) |
3 red :g=10mm
S blue :g=100mm
;—' 10 - black:g= 1m 1

1

SEo

i '
i '
! '
!
O bercansbszszsi:

sF

0 02 04 06 Tos 1
f[GHz]

imaginary part

FIG. 17. The longitudinal impedances per unit length of the
ceramic break (¢ = 65 mm, a, = 70 mm and ¢’ = 11) with the
TiN coating (15 nm) are shown by the red (¢ = 10 mm), the blue
(9 = 100 mm) and the black (¢ =1 m) lines. The green line
shows the results (g = 10 mm) given by the previous short insert
theory [11]. The solid and the dashed lines show the real and the
imaginary parts of the impedances.

unit length hardly varies as long as the ceramic length is
less than or comparable to the beam pipe radius (compare
the nearly identical results for the g = 10 mm and the
g = 100 mm cases). No resonance structure is visible. This
is because the entire image current still runs on the TiN
coating, making it as a perfect rf shield to block the
wakefield inside the beam chamber from reaching the
ceramic. However, once the ceramic becomes much longer
than the chamber dimension (for example, the g =1 m
case), only a partial image current runs on the TiN coating,
and the shielding effect is weakened. As a result, the
resonance structure starts to appear.

The green lines show the result for the g = 10 mm case
calculated using the previous short insert theory [11], where
only a short thin resistive insert is sandwiched by two thin
metals. While the agreement between the present and
previous theories for the real parts of the impedance is
good, the imaginary parts of the impedance reveal discrep-
ancy at high frequency. This is because the previous theory
assumes a thin short insert to make an approximation of the
parallel (to the longitudinal direction) electric fields inside
the gap. This approximation is no longer too good for the
present 5 mm thick ceramic. One can get a good agreement
between the present and the previous theories when the
ceramic thickness is reduced to 1 mm (see Fig. 18). On the
other hand, the present theory makes no such assumption
or approximation, and is applicable to any size of the
ceramic break.

C. The dependence of the longitudinal impedance
on the boundary conditions

It seems that some of the present results look contra-
dictory to some previous studies related to the ceramic

30 T T T T
25| red:g=10mm |
(present th.)
20 L blue:g=1.0mm |
(previous th.)
E 151 real part .
G imaginary part
2 10t ]
N
5| 1
0 . SO A
-5 . .

FIG. 18. The longitudinal impedances per unit length of the
ceramic break (¢ =65 mm, a, =66 mm, g= 10 mm and
¢ = 11) with the TiN coating (15 nm). The red and the blue
lines show the results given by the present theory and the previous
short insert theory [11]. The solid and the dashed lines show the
real and the imaginary parts of the impedances.
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chambers [4,15—-19] where the real part of the longitudinal
impedance goes to zero at zero frequency [refer to
Eq. (56)]. However, in their studies, the (finite) element
(or ceramic chamber) is surrounded by perfectly conductive

|

oV 0 Vi jkp
= A _—
0 5ot Co << @) + 5,7
(m) y,(m) (m) jkﬂ
= A —_—
0 o Vi +C <<<0‘(Z)>>m + 217,

(m)

For infinitely long chambers, V| and V" are solved as

v ZC(()O),BCII (ko) sin kw (52)
1= - ) 5

0) | jCJ\(kBa)y 7 7 k

(A(g ) )22107(/((/35;))>”0'k010(ka)
Jm _ kBel, (ko) C") [(=1)me 7k — gikw]
1 = ) )

-7 7 m Pyl (ka 2_mz

]ﬂakalo(ka)(A( )+%ka())) (k" =)
using Eq. (B1) in Appendix B. (53)

Substituting Eq. (53) into Eq. (7), we obtain the
expression of longitudinal impedance for an infinitely long
ceramic break as

dwl? (ko) Cy(ay, a)

Zbreak,L = _ - o — (54)
no*kal}(ka)Ao(as, a) + %}
where
i 2 — meJka _ (_l)me—jka _ cos 2w — 1 . 22
pa - 4 5
m=1 %)2 k k2
(55)

is used and the coefficients Ag(a,,a) and Cy(a,,a) are
given by Egs. (E12) and (E13), respectively. Equation (54)
is identical to Eq. (E19) of the Appendix E, where the
infinitely long chamber with the TiN coating is assumed
from the beginning. Specifically, at low frequency for a thin
TiN coating, we can approximately reproduce the formula
[17] from Eq. (54) as

Z
Z, = Woo (56)

mpa(Zotorin — W—{)W)

This result indicates that it is the perfectly conductive
boundary condition that makes the impedance zero at zero
frequency.

(J(2))

Vi{J(2))

walls, which is equivalent to that V, and V§m> are identical

to zero in this report. To simulate this case, the boundary
conditions given by Egs. (A20)—(A23) in Appendix A 1 are
modified as

kb (m) ; 7(m)
Famwzg 2o 1@ ). (50)

9 S ouion.) -

=1

Another recent study [20] shows that the impedances of
an infinitely long, axisymmetrical beam pipe (made by
multilayered materials) diminishes at zero frequency. In
this axisymmetrical beam pipe, it is assumed implicitly that
the entire system is uniformly surrounded by a perfectly
conductive wall in the far distance. Therefore, for the same
reason as in above, the longitudinal impedance diminishes
at zero frequency.

From these considerations, we can conclude that the
different behaviors of the longitudinal impedances near
the zero frequency come from the different assumptions of
the system configuration under consideration.

D. The dependence on the TiN thickness when the
ceramic break is covered by a perfectly conductive wall

In this section, let us consider how the impedance
depends on the TiN-thickness 7, when the ceramic break
is covered by the perfectly conductive wall on its outer
surface. Figure 19 shows the real parts of the impedances at
f = 1.2 MHz, normalized by the gap length g. The red
solid and the blue dashed lines in the left part correspond to
the g = 10 mm and g = 1 m, respectively. Their agreement
shows that the impedance is simply proportional to the gap
length.

All results in the right part correspond to those for g =
10 mm case. The red solid, the blue solid and the black
dashed lines in the right part show the results obtained by
solving Eqs. (50) and (51), by Eq. (E19) of the Appendix E,
and by the approximate result Eq. (56), respectively. For
reference, the green (¢ = 10 mm) and the brown dashed
(9 = 1 m) lines show the cases where the ceramic is not
surrounded by the walls. When the TiN thickness is
sufficiently larger than the skin depth, the impedance is
determined by the skin depth, and has no TiN thickness
dependence (shown by the flat red and blue lines at large ¢
region). In the thin TiN coating region, the rigorous
solution for the infinitely long ceramic (the blue line)
agrees well with its approximate solution (the black dashed
line). However, they start to deviate at the thick TiN region
(because the approximation is only valid when the skin
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FIG. 19. The TiN thickness ¢ dependence of impedances per unit length at 1.2 MHz, where the ceramic chamber (¢ = 65 mm,
a, =70 mm and ¢ = 11) is coated with the TiN. The left part shows the impedances for ¢ = 10 mm (red solid) and for g = 1 m (blue
dashed). The right part shows the impedances (¢ = 10 mm) obtained by solving Eqgs. (50) and (51) (red solid), by Eq. (E19) (blue solid)
and by Eq. (56) (black dashed). The red, blue and black lines correspond to the case when the ceramic is surrounded by perfectly
conductive walls. The green (g = 10 mm) and the brown dashed (¢ = 1 m) lines that correspond to the case where the ceramic is not

surrounded by the walls are also shown as references.

depth is larger than the thickness 7). On the other hand, the
complete solution (the red line) shows larger impedance
values in the range where the TiN coating is smaller than
10 pum, since it includes the contributions of the fields
trapped inside the ceramic sandwiched by the perfectly
conductive chambers on both sides. In this case, it is
observed that the longitudinal impedance is maximum at a
given TiN thickness (several ym in the present example).
The theory predicts a thinner TiN coating is preferable from
the impedance point of view, as long as it is below that
several pm.

0.3 . T T

0.25

0.01 0.1 1 10
f[GHz]

V. THE LORENTZ-y FACTOR DEPENDENCE
OF IMPEDANCES

Finally, let us investigate the Lorentz-y factor depend-
ence of the impedances of the ceramic break with and
without TiN coating. The present theory is applicable to
nonrelativistic beams, because it makes no approximation
on the energy of the beam. Figures 21 and 20 demonstrate
the Lorentz-y factor dependence with and without TiN
coating, respectively. The red, the black and the blue lines
show the result for y = 100, y = 10 and y = 1.2, respec-
tively. The left and the right parts show the longitudinal and

0.8 . T T

Z_[kQ/m]

0.01 0.1 1 10
f[GHz]

FIG. 20. The impedances of the ceramic break (¢ = 65 mm, @, = 70 mm and ¢’ = 11) with the TiN coating (15 nm) for different
Lorentz-y are shown by the red (y = 100), the black (y = 10) and the blue (y = 1.2) lines. The solid and the dashed lines show the real

and the imaginary parts of the impedances, respectively.
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The impedances of the ceramic break (¢ = 65 mm, a, = 70 mm and ¢’ = 11) without the TiN coating for different Lorentz-y

factors are shown by the red (y = 100), the black (y = 10) and the blue (y = 1.2) lines.

the transverse impedances, respectively. The solid and the
dashed lines show the real and the imaginary parts of the
impedances, respectively.

Generally speaking, the impedance for a nonrelativistic
beam (for example, the blue lines for y = 1.2) is smaller
than that for a relativistic beam at high frequency (in the
longitudinal case) or at any frequency (in the transverse
case). The physical reason for this behavior is as follows.
The nonrelativistic (slower) beam receives more fluctuating
kicks from the wakefields while going through them. These
kicks tend to cancel each other in net, resulting in the
diminishing impedance. However, longitudinal wakes are
excited by the beam like cosine function [5] and they are
nearly constant at low frequency during the beam passage.
Therefore, the longitudinal impedance has little depend-
ence on the Lorentz-y factor at low frequency (the trans-
verse impedance is roughly proportional to Lorentz-f
factor).

VI. SUMMARY

A new theory is developed to describe longitudinal and
transverse impedances of ceramic breaks both with and
without the TiN coating. The theoretical and numerical
simulation results calculated by ABCI and CST Studio are
all in good agreement for the ceramic break without the TiN
coating. Particularly, the agreements between the theoreti-
cal and ABCI’s results are excellent, while CST Studio
tends to provide higher impedances, notably at resonance
frequencies, than the others.

The impedance of the ceramic break has resonance
structures, because the difference of the dielectric constants
between ceramic and the vacuum introduces the reflection
of waves at their boundary, and this reflection of electro-
magnetic fields at the lower and the upper boundaries of the
ceramic creates trapped modes inside. The resonances can

be categorized into the cavity-mode resonances and the
coaxial-mode resonances.

Despite the existence of the resonances, the loss factor of
the ceramic is a few times smaller than that of a vacuum
gap, due to the wavelength contraction effect inside the
ceramic. In other words, the filling of the gap by the
ceramic helps to reduce the radiation loss of a beam in most
cases, in particular, for a long bunch.

Generally speaking, the impedance becomes smaller as
the velocity of a nonrelativistic beam decreases, since a
slower beam receives more fluctuating kicks from wake-
fields while passing through them. In fact, we find that the
transverse impedance is roughly proportional to the
Lorentz-f factor at any frequency. On the other hand,
the longitudinal impedance depends on the Lorentz-y factor
only weakly at low frequency, since slowly oscillating
wakefields provide similar kicks to a beam regardless of its
velocity.

The theory can be applied to the calculation of the
impedance of a ceramic break whose inner surface is coated
with thin TiN (the outer surface is just exposed to vacuum).
When the TiN coating is thick (larger than 7.;,), the entire
image current runs in the TiN coating, which shields
wakefields inside the chamber from reaching out to the
ceramic. In this case, the existence of ceramic has no effect
on the impedance. Consequently, the impedance becomes
higher as the TiN becomes thinner.

When a conductive wall is added to the outer surface, the
behavior of the impedance is quite changed. In this case,
the perfectly conductive wall makes the impedance go to
zero at zero frequency. Moreover, the longitudinal imped-
ance takes the maximum at a certain thickness. Typically,
for the case studied here, this worst thickness is of the order
of several ym, which may be too thick to realize in many
machines. Below this thickness, thinner coating is prefer-
able from the impedance point of view.
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In a real machine, the image current may find a different
path from the one between the gap or in a thin TiN coating,
if it provides a smaller impedance and less energy loss to
a beam. Several bench measurements have been done for
the evaluation of impedance of isolated gaps equipped with
one or more bypass units [21]. It would be interesting that
our theory for the ceramic break with the TiN coating is
benchmarked with those measurements.
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APPENDIX A: DERIVATION OF FORMULAS OF
IMPEDANCES OF CERAMIC BREAKS

1. Longitudinal impedances

When a beam has a cylindrically uniform density with
radius ¢ and its total charge is 1 C/m, its current density is
given by Eq. (1) in the text.

The formal solutions of the fields inside the chamber at
the angular frequency @ are given by

_]kCZO 1 010(7() (kG) e—jkz
v’ no? 2 k

_inzJo(Ap)
Jo(Aa)’

E

Z

+ /_ dhAy(h)e (A1)

o= K (ko)1 (Rp)e s

Jkﬁ
7

0 J—o0

J1(Ap)

—jhz 1N
 dhAy(h)e VAR

(A2)

for p < 0, and

icZ - - .
- = L2201 (ko) Ko (Rp) e

noy
—jhz JO(AP)
Jo(Aa)’

E

+/_: dhAy(h)e

Hy =" 1y (koK (Rp) e

Jkﬂ
7

0 J—-o0

Ji(Ap)

a’h,élo(h)e‘/hZ m, (A4)

for p > o, where cylindrical coordinates (p, 0, z) are used,

= /k*B* — h?, ¢ is the velocity of light, f = v/c, v is
the velocity of the beam, k = w/cf, Zy(= 1207 Q) is
the impedance of free space, J,(z) is the Bessel function,
I,(z) and K, (z) are the modified Bessel functions [13], y is
Lorentz-y, k = k/y and Ay(h) is an expansion coefficient.
The time dependence of the fields is assumed to be

harmonic and it is expressed as the complex exponen-
tial e/,

Since E, on the inner surface of the perfectly conductive
chambers that sandwich the ceramic break should be zero
(refer to Fig. 1), the expansion coefficient .Ay(h) should
satisfy the following relation:

JjeZy

1, (ko)K(ka)e=/* + /Oo dhAy(h)e=Ih=

oy _

{ Z: 1 V (m) COSmn( +n)

o for —w<z<w

(AS)
0 otherwise,

where V, is the voltage on the inner surface of the ceramic

break at p=a, and V\" are expansion coefficients.
Consequently, the original expansion coefficient Ay(h)
is rewritten by using the new expansion coefficients V| and

Vi as

JjcZy

I, (ko)Ky(ka)s(h — k) + Ay(h)

noy

. ) (m) m ,jh —jhw
V, sin hw ZVI [(=1)me/m — e=I"] ]

T 27 hw 2

, (A6
2aw(h* — mv”z) (46)

m=1

where g = 2w is the gap size and 6(z) is the & function.
Substituting Eq. (A6) into Egs. (Al)-(A4), we obtain
Egs. (2)—(5) in the text.

For the fields outside the ceramic break, Silver and
Saunders’s theory [22] gives their descriptions as

(Ap) sin hw

z 2” —00 (Aa2> hW
- i v / dheihz Jhl(=1)"e/™ — em/M]
m=1 2 -0 Zﬂ.w(hz _ %)
)
H, (AP)
XD (A7)
0 (Aa,)
) .
H ﬁk Vz/ H\”(Ap) sinhw itz
60— Z0 2 AH(()2>(Aa2) o
- Z vy ” " dhe7"
Z()W
_1\mpihw _ ,—jhw 1(2)
D" = e Hy” (Ap) (A8)

22(h? =2%)  AHP (Aay)

for p > a, (the outer size of the ceramic break), where

Ef ) (z) is the Hankel functions [13] of the second kind, the

prime means the differential by its argument z, and V/, is the
voltage on the outer surface of the ceramic break at p = a,,

and ng) are the expansion coefficients. Here we should
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notice that Eq. (A7) satisfies the condition that £, should be
zero on the outer surface of the chamber except on the
ceramic break.

Before the fields on the inner and the outer surface of the
ceramic break are associated, let us expand the fields on the
|

respective surfaces by sinusoidal functions. Because the
ceramic is sandwiched by the perfectly conductive cham-
bers, the fields in the ceramic (—w < z < w) on p = a and
p = a, may be expressed as

ng) mza(z+w)

— 2w
E(a) =5+ - : (A9)
ik B 2 (m
Hy(a) :a(z)+zjﬂ—§ovll(z)+%z vim gm
m=1
Jkp S
= (ol oz Vi 27sz021
RS m(z+w) Jkp KB <o o)y 4 }
+WH;COS o [<< (@b + 5,7 V1(7 @) +2anOZV1 (I @ N m |- (A10)
and
V, | Vém) cos —<22'W+W>
E (a2) =5 " , (A11)
kv © o k
Holar) = =15 5270 = > v Sy
m=1
kV o k
e CIED AP T IO)
m=1
1 0 mz(z +w) PV, kB~ ) (n) }
b eos P | B ) = D V) (a12)
[
respectively, where Y<’”)(Z) _ / i h[(=1)"e th2_2 eI H:)(22)( Aay)
(0= L) e NE - (7 =58 AH (Aa)
A= rokaly(ka) ¢ (A13) (A17)

o . Ji(Aa) sinhw
— —jhz 1
I(2) /_Ooe AJo(Aa) hw dh

2 2
ra(2 — ¢ N EP=E ) _ N RF )y

s=1 w(k*p?a® = j5 ) ’
(A14)

o . Ji(Aa) [(=1)"e/™ — e ™R

Jm(z) = / Y ; dh,
o Mp(Aa) (2 -
(A15)
H(z)(Aaz) sinhw _,

Y(z) = - L e "dh,  (A16)

~oo AH (Aay) AW

The brackets in Eqs. (A10) and (A12) are defined as

(A18)

(A19)

The concrete expressions for (@), (J), (JU™), {a),.. (J),,»
(Vs (YD (Y0), (), and (¥(),, are given in
Appendix B

The solutions of Maxwell equations in the ceramic
transfer the fields on p = a to those on p = a, (refer to

Appendix C). The expansion coefficients V;, V<1m>, V, and

ng) are determined by the connection conditions of £, and
Hy on p = a,. Consequently, we obtain the relations
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Vo g0 Vi -0 Viikb
So=Ay 5o+ Gy << (Z)>+2nZo< 2WzZv ) (A20)

0= 1 324 & (ta(@) + 3 S U@ + 5 S V()

0 2 277.' ZO 271'WZO =1
g V@) + DV S ) (a2)
vy = A v+ (<<a<z>>>m VU@ + 2,,'ifzo ) v§”><<J<"><z>>>m) , (A22)
=1
i @ =S VD),
=1V 4 K (e + VeI + 5 S V@ ). (A23)

where A", ) 1O k0 Alm ™ 18" and K{™ with positive integer m, which are determined by the solutions of
Maxwell equations, are the coefficients that transfer the fields on the inner surface (p = a) to the outer surface (p = a,)
of the ceramic break. Concrete expressions of the transfer coefficients are calculated in Appendix C 1. All expansion

coefficients V, V(lm), V, and ng) are obtained by solving Eqs. (A20)-(A23) up to any order of m.
The average value of E, [expressed by Eq. (A1)] over p gives the longitudinal impedance Z; . Finally, it can be expressed
as Eq. (6) in the text.

2. Transverse impedance

In order to calculate the transverse impedance, let us consider a beam with the charge distribution of the azimuthal
dependence as j, = gfcd(p —r,) cos@e /¥ /nr,. When the beam is traveling in the chamber, the fields inside the
chamber are

E. —i B" CIZEO (Kl (kr) — K, (Fa) " 11(('; a))>11 (Rp) _;kz+ /_ : dhe=i" A, (h) j igﬁz ﬂ cos 0, (A24)
for p < r, and
E.=i B’; Cfo (ko) (kry) e;ikz + /_ : dh A, (h)e " m] cos 6, (A25)
Hy=1i, [cﬁ%[l(o(l_cp) +1<2(7<p)}11(7<r,,)e;2kz— /_ _dne ~jhe 2 e (% kﬂAAl( h) Jléﬁgm cosf,  (A26)
H, =i /_ : dhB, (h)e‘jhz%sin 0, (A27)
E,— i, [C_ZOKI(/EP)II(‘@) e;ikz
4 /_ : dhe‘fhzjkf—zzo <31 (WA j 1 Eﬁg ; + Zoi ) j | Eﬁzm in o, (A28)

for p > r,, where i; = gr,, A;(h) and B,(h) are expansion coefficients. Since E, and E, on the inner surface of the
chamber should be zero except on the ceramic, the expansion coefficients A, (h) and B, (h) should satisfy the following
relations:
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jkcZy - - ek oo _ih ”Vz—l-z )COS% for —w <z <
—2—K1<ka)11(krb) + dhA](h)e I — m= 1 or w < w (A29)
v Tp — 0 otherwise,

cZy - - ek o . JkBZ, J|(Aa) h

K, (ka)I,(k dhe= " ==20 ( By ()AL A (h

k) S+ [ ane B (B (AT + )

7[1} QII’IM
_{ o for —w<z<w (A30)
0 otherwise,

where V), is the voltage on the inner surface of the ceramic at p = a, an ) and V are the expansion coefficients.
here V, is the voltage on th rface of th tp d V"™ and V" are the exp fficient

Consequently, the expansion coefficients A, (k) and B, (h) are rewritten by using f)ﬁm), f/(zm) and V, as

jkeZy - - 6(h—k) = SInhW N ) A[(=1)" e — eIV
——K 1 = A31
2 Ki(ka)i(kry) ===+ Ay (h) = V2 =0 +m;v2 o) (A31)
CZ() 5(1’1—]() ]kﬂZO J/l (Aa) h © ) e]hw _ —jhw}
1 A . (A32
Ta (ka) (krb) r + A2 Bl<h) Jl(Aa)+Zokﬂ mz::] A (h2 nf 2) ( 3 )

Substituting Eqs. (A31) and (A32) into Eqs. (A24)—-(A28), we obtain Eqs. (12)—(16) in the text.
The fields outside the chamber are given by

oo . in(h ) ) ihl(—1)™ Jjhw _ —jhw H(2) A
E.—i {vz / dhein:SnUM) H sz / dhe=w D) —— ] (;)( P )} cos6, (A33)
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k hw) H (A 1 hw) h2H (A
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21 Payp (h? =Y N H P (Aay)
© o0 ( m,jhw _ —‘hw
— i] Z ng) mizﬂ/ dhe—jhz (Ap)[( - 12) e// / ] cos 9, (A34)
= AkBw Zop J- A(h2 w2y H P (Aa,)

. 2
H. = —i,V, / g S0W) _ BHY (Ap)
‘ —00 hw kﬂZOCleHll(z) (Aaz)

) W2 (=1)meitw — o=ihw H(2) A
+ 1 Z V / dhe=Ih= ( )2e i <] }(2)( ) sin @
2kﬁZOa2w (I’l — ez ) AHl (Aaz)

4w?

_1\m jhw_ —jhw <2>
HZV’" e e I g (A35)
4kpwZ, (h? =22\ H| (Aaz)

Ep— —iyVs / ™ dhe-it=SmU) JH T (Ap) §in0 + iV / ™ dhe-itzSnU) jhHY? (A”) sin@
-0 hw 02A2Hl >(Aa2) —o0 hw pAzH (Aaz)

’(2) A —1)m Jjhw _ ,—jhw )
+nZV"’ / ah /(12)( P e esin, (A36)
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where V), is the voltage on the outer surface of the ceramic at p = a,, and V(lm> and ng) are the expansion coefficients.
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On the inner surface of the ceramic (p = a,0, —w < z < w), Egs. (13)—(16) in the text are expanded by sinusoidal

functions as

Y mu(z+w) N
E.(a) = E.(a)cos 0 = (z, e + i ZCOSTQWHng) cos 0, (A37)
Hy(a) = Hy(a) cos
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Y0 (o) = / ® ghe-ine M=) — e T (Aa) (O Ay TS o) P 6 ¢80 PO O ¢80 PR SRS 4]
- 2M(? ~55)01(Aa) epa), (VLY RERy,, (i, (o),
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2w/ ) AJy(Aa) (v\"ys, and (¥\2)s are given in Appendix D.
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Similarly, the fields on the outer surface of the ceramic H.(a,) = f]z(az) sin @, (A52)
(p = a,,0,—w < z <w), which are calculated by using
Egs. (A33)—(A36), are expanded as Ep(ay) = E9(612) sin 6, (AS53)
E,(a)) = E,(a,) cos 6, (A50) m(zw)
v v T V m
: E(a)=i"2 zlzcos 2wV, (AS4)
Hg(az) = Hg(az) COS 6, (ASI)
n) )
> Jjkp Yo(2) \ . kp Ys @)\ . ,m nz n)y - )
H =- Ys(z) — V, — - Yii v
6'(“2) ZO< 5() kzﬁga% L1V ;WZO 7 () kzﬂzaz 1¥2 ;2k/3w220a2< 9 >ll 1
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- —\\Y - V
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< nx n) ) _JKkB << Ys(2) >> :
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(A60) (A65)
3 n ,jhw —'hw (2)
ey [ (=)™ — e ] (Aay)
Yyi(z) = /_ - dhe™7 2K - n ) A3 H1 ( Aay) The transfer coefficients for dipole mode A(,O) , CEO), I(lo),
0 m m m m m m m m m
(A61) K§ ),A$ )’ BE )’ C(l )’ Dg )’ E§ >’ F(l )’ G(l )’ H$ )’ I<1 )’
Ak L MmN 0 and P with positive
n i _ gl (2) integer m are explicitly expressed in Appendix C 2. Using
Y<9">(z) _ / * dhe—ihz hl(=1)"e ¢ ] (Aay) the coefficients, the fields on p = a are transferred to those
—0 2A(R* - %) ( Aaz) on p = a,. The connection conditions between the fields
E..H. Ey, Hyon p = a, enable us to obtain the followin
(A62) z =0 0 P g

equations:
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A(lo)ﬂi)z+ c© cpl,(kry) sinkw _c Jkp <Y2(Z) Y5(z) >~2
w

U rymal(ka) kw 'z Kpd?
S s 0 - SR (o Y
e N D A (B 1 VL pL SV
Zy k°p “—wZ kpra * 2kpwZya,
102, - k0 L) S0 2 (0 - 28 ) )
+ KO °° W g e Vi @) i vy fﬁo <Y§">< ) ,f;f‘;(ﬁ > (A67)

n=1

(m) <) (n)
(m) _y5(m) B, (n) s Ty(n) (m) kp << (n) Y, (Z) >> (1)
AP =D gz, @V =D G - R

> B (s P N2 clm) 7 /() (m)_33(m)
By s — (Y - ' ———(ly D!
+ - 1 2]kﬂZOW2 << -2 >>mV] ; 1 2W2kﬂaZO << 4 >>mV 71']}2 + V

(m) JCPKI, (kry) [ — (=1)me=Iv] D,
1

(m) m) JkpP Y3(z) -
rbﬂ'(ll (ka)(m 2 k2) + akﬂZOBl <<Y ( )>>m + C ZO <<Y2( ) —>>mV2, (A68)

k2ﬂ2(12
7 1}<m>_§:£«y<n>< s f,(n)_i xm Kb <<Y(”)( )_Yi")(Z) >> ) +§: J Ty g
AL n:ljwakﬁzo o Z))mVa pa 1 WZO 1 \Z k2ﬂ2a2 m 2 — 1 ZJkﬂZ()Wz —2//m"1
w (n)
(m) )y ) << Yy ()>> (n) mx (n)y 1)
K Y 128 Yy (z) — V
; ! 2w2kﬂaZO (s +Z wZy W7 1pRa3 I m”2 +2kﬂw220a2< g
v,

= gz @) - Kﬁmﬂ'cﬁkh(%rb)[f'kw—<—1>’" g 48 <<Yz<z>——y‘(z> >> 2
Cl 0 m

rpmal (ka) (%5 — k*) ' zy
ik
o220

(A69)
0 (m) ©
(m) _,(m) F (n) s 7o) (m) nr (M) s vy(n) (m) _~(m)
E — — (Y, F,— (Y H
"V =D gz, 0 EIRV DR (YR 4 HY Y,
N SHIC9) PN} 4 AT 6a) P [Jcﬂkl <krb>[efkw—< 1)meih]
4 S e N EER 12 22 m () G
; jkpZoaw 2 ; 2kpw?Z, rymal, (ka) (5 — k2)
Jjkp Y3(2) \ & x= kP << (n) Y (z) >> S e nﬂVln 1(n)
— =2 (Ya(2) — -y —\\y - -y 1y
ZO << 2(Z> kzﬁzaz»mVZ ;WZO 1 (Z) k2ﬂ2a2 mV2 ;2w2kﬁazo << 4 >>m
f}2 (m) s _ <<Y10(Z) >m
akﬂZO 1 <<Y—1(Z)>>m kﬂZoaz VZ’ (A70)
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&) (m) =) (n)
(m)_(m) Ny 1) s ) (m) kP << (n) Y, (2) >> ~(n)
My =3y W -3 om =2 \\y - %
A - iwakBZ, { 0 (@M 2 2 1 WwZq 1 (z) k2ﬂ2a2 m 2
o~ (m) T (s D) N~ Hlm) T )y D), plm)_sm) (m)
+ n§:1:N1 2kBZow? (Yo - ;:l 0, 2w2kpaZ, (Y, ),V + Py aVy =V
Vs m () JCBKI () [ — (1) kB << Ys(2) >> -
— N (Y_(2)), -0 - + oMy, (2) = 222 ) v, ATl
aipzs Vi (Y_i(2)) i ryral (k) (25— ) " 2(2) 2 (A71)

The expansion coefficients VY"), Vs, ng), f/gm), V, and f}g’") are obtained by solving Egs. (A66)—(A71) for any order of m.

By substituting the solutions into Eq. (12) in the text
and using the Panofsky-Wenzel theorem [5,14], we finally
obtain the expression for the transverse impedance as in
Eq. (17) in the text.

APPENDIX B: CONCRETE EXPRESSIONS OF

(@) (s T)s (@Dms (D (T Vs (V) (Y),
(Y) AND (Y),

where j ,, HY (z) and HY (z) are the sth zeros of J(z), the
Hankel function of the first and the second kind, respectively.
The integration of the Bessel functions can be carried out by
simply picking up residues in the complex plane /. The path
of integration is chosen to be below the poles for # < 0 and
above the poles for 4 > 0.

Finally, we obtain the following expressions:

Pl (ko) sinkw

The brackets (---) and ((---)),, are previously defined (a) = Falo(ia) Jov (B3)
as in Egs. (A18) and (A19) in Appendix A 1, respectively. mokalo\ka
The functions a(z),J(z),J"(z),Y(z), Y™ (z) are given - it it
by Egs. (A13)~(A17) in Appendix A 1, respectively. Hence, (a), = —Pehtke) K(=1)"e™™ —e]
by substituting the functions into Egs. (A18) and (A19), we nokaly(ka) Jk* = o)
obtain the formal expressions of (a), (J), (J"), {a),.
(P Dms (T s (Vs (Y), (YD, and (Y©),,. After ® 2ra  Sma(e e — 1)
these expressions are integrated over z, h-integrations remain (J(2)) =- Z Wbl Z 2b3 ) (B5)
in all cases. The h-integration can be performed by using the s=1 77 s=l WIS
expansion formulas [10,23] for Bessel functions, .
o . 1o —i2A Ry
PYRSE R (G G A
old) _y~_2 1) @ = —— — . (B6)
2o(z) 22—, =1 wa (kP — 2 — 2 ) K27 —
2 )
1 H oo 2 ) o
Rl (\/E):/ ds — — © gl 4 (<1)m|(1 = ¢ PV EPE
VEHP (VZ) o TR+ H (VDR (VD) gm) = - - . (B7)
(82) =wa IR =R+
/ K or [ 12 27"(2)_4%
2”[1+(_1)n+m] k2ﬂ2_](2)_;' |:1_(_1>nei"2 kKb a2 ]
;.0:1 Z . 7 s for n ?é m,
AR =) ()
(n) - : oy b,
<<J (Z)»m Zoo . kz/jz—jf—js[l—(—l)’"e 27 [ K252 5 | (BS)
s=1 2 5 5
a(k2ﬁ2_"(‘)_é5_%)2
+y, A 7 for n = m,
a(Z5 - f 42
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(¥Y(z)) = -

@k»m=—lw%

WWu»:Ama o
wra,

(Y @),

Jood
+ [ dg

e 2
/ % 232 (1) E (2), =
0 Wﬁaﬂ_,’(k/} ) 0 ( 2\/Z)HO (efz\/z)
—j2w /k2ﬁ2+5
* -1
- / de e N (BY)
0 J'Wzimzé“(kzﬂzJra%)7 N(AVDH (e7VT)
. —J a%+kzﬁ2w
A+ D)0 -e Ve (B10)
wraxl [ 5+ P (G + K26 = E ) H (9 VO HE (VD)
-j2 /a%+k2ﬁ2w
1+ (=D"(1-e ’ ) B1)
R -8, [+ IRPHY (VD HG (9 V2)
-2 %+k2/;2w
21H(=1)"] SR 1= (=1)"e V2 ]
2
fO ]m g: kzﬂz_%)(;_yz"‘kzﬂz_”i_fzz)fl(()l)(E%j\/Z)Héz)(e%j\/Z)’ for n ?5 m,
I
4\/::];’;[ ( )me a% ] (B12)
ﬂazC +l<2ﬁ2 m27r2 zHl e2’\/_H2 ezj\/z)
/4w .
”azg(nfwﬂz ERPIIUIE N VEIE N for n = m,

where m,n are positive integers, b? = k*f?a® — j3
—f2, and b approaches —jps for jo, > kpa. Though it
looks like ¢ = m%z%a3/4w?* — k*a3 is a singular point in
some integrands, it disappears after simplifying the rel-
evant terms.

APPENDIX C: TRANSFER COEFFICIENTS THAT
TRANSFORM THE FIELDS ON p = a TO THOSE
ONp =a,

In this Appendix, let us derive the coefficients that
transfer the fields on the inner surface (p = a) to those on
the outer surface (p = a,) of the ceramic break. First, let us
consider the ceramic break made of a single material with
conductivity o, relative dielectric constant ¢’ and relative
permeability y'. Next, we derive the expressions for the
ceramic break made of a ceramic with relative dielectric
constant ¢’ whose inner surface is coated with thin TiN with
conductivity oTin-

1. Monopole mode

Because the ceramic (with conductivity o, relative
dielectric constant ¢’ and relative permeability p') break
is sandwiched by the perfectly conductive chambers on the

both sides, the fields for monopole mode in the ceramic are
expanded by using sinusoidal functions as

1 20 1 ma(z +w) = (m)
E, :ﬂEz —l—; 2 cos— E. ", (C1)
I z0 1 = (m
Hy=— é)—i—— cosmﬂ(Z+W)H,<9 | (C2)
2w — 2w
Substituting them into Maxwell equations
OB OH
tE=——=—yyuy—=—jkpu'ZoH, (C3
ro 5 = WHo - = —JkBu'ZoH,  (C3)
oD 6.2y Jkp
tH=0.FE+—= —E= E,
ro o.L+ o <jkﬂ +€ ) 2 €jwe
(C4)
the solutions are given as
< ) ~
E. " =Tolo(ump) + ToKo(pmp). (C5)
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alm kP

[Coly(mp) + ToKy(up)l.  (C6)

0Mm

where 7,(z) and K, (z) are the modified Bessel functions,
I'y and Iy are arbitrary coefficients and

2.2
m=mw ~
S S e

4p? (C7)

Hm =

Using the solutions, the fields on p = a are transferred to
those on p = a, as

new coefficients A(()m), Cg)m), I(()m) and Kém> for monopole

mode are introduced, which are given by

Ag)m) = ﬂma[l(/)(ﬂma)KO(ﬂmQZ) - IO(/"m“Z)Ké)(Mmaﬂ’
(C10)

cm _ _ JZopmallo(Hmar) Ko (@) = Lo (@) Ko (@]
0 - kﬁé b

(C11)

](m) — jkﬁaé[16(ﬂma)K6(ﬂnza2) — I6(ﬂina2)K6(ﬂma>}

= (m) = (m)
E; (a) E; (a) ,
( :z(m) > - Mo(az, (l) ( Zz(m) ’ <C8) ’ ZO
Hy '(ay) o (a) (C12)
where ()
Ky = umally (Hmaz) Ko(pma) — Io(pna) Ko (4maz)],
Almclm (C13)
My(ay,a) = ) o |’ (C9)
Iy Ky especially when m = 0, they are rewritten as
|
A(O) _ ”Kcera[Yl (Kcera)JO(KceraZ) - Jl (Kcera) YO(KceraQ)] (C14)
0o s
2
2
(0) -”KceraZO[_YO (Kcera)JO (Kcera2) + JO (Kcera)YO (KceraZ)]
= 1
Co"=J 2pék ’ (C15)
I(()O) _ _jﬂékﬂa[yl (Kcera>J1 (KcerQZ) —-Ji (Kcera)Yl (KceraZ)] ) (C16)
27,
K(O) _ ”Kcera[_YO(Kcera)Jl (KceraZ) + JO(Kcera)Yl (KceraQH (C17)
0 =

by using Bessel functions J,(z) and Y,(z), where

Keer =/ kzﬂzéﬂ/'

In general, a ceramic break may be made of different
materials. When it has a multilayered structure in the radial
direction, the transfer coefficients for the ceramic break are
derived by taking the dot product on the different matrices
M, (that correspond to the different materials) along the
radial direction.

As a special case, let us consider the case where the
ceramic break is made of a ceramic with relative dielectric
constant €/, whose inner surface is coated with thin TiN
with thickness ¢ and conductivity oy Let us approximate
the solution in the thin TiN coating by neglecting the higher

(C18)

2 ’

order mode (m > 0). Accordingly, the parameter y,, in the
solution is replaced by Eq. (39). Further, the modified
Bessel functions are approximated as [13]

KTiNG Krin(a+t)
e e
I(kyinG) ~ —o———, I, [kyin(a@ + 1)] ~ ——,
v(KriNa) rerd [krin(a + 1)] T
(C19)
T
K, (ktina) ~  / ZKT'NQE_KT‘N”,
K, [krin(a + 1)] ~ | | ——emla+) (C20)
v[*TiN ZK’I‘iNa ’

for krna > 1 and kpin(a +¢) > 1.
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Finally, we obtain the transfer coefficients for the ceramic with the thin TiN coating as

AG" = sl () Ko (piyn) = To () Ky ()] cosh ki
_JZo(u5n)*acrin Lo (Hia2) Ko (@) = Lo (u5a) Ko (5 a2)] sinh kpint
kpe'rerin
_ ﬁmaﬂ[‘ll (ﬁma) YO(/}maZ) B JO(ﬁ)naZ)Yl (ﬁma)]
2
_ JZofimactinmJo (@) Yo (fim@) = Jo(fin@) Yo (fimas)]
2kﬁ€,KTiN

cosh kpin?

sinh KTiNt’

C(m) . ﬂfna[l6(ﬂfna)K0(ﬂfnaz) - Io(ﬂfnaz)K/o(ﬂfna)]KTiN sinh kpin?
o =

OTiN
_ JZo(usn)*allo (ks az) Ko(pua) = Lo(uia) Ko (p5,a2)] cosh kit
kpe
_fmanlJ (j,@)Y o (fln@r) = Jo(fn@2) Y (fi,@)]xin sinh kpint
a 201in
_JZofimanlJo(fnaz)Yo(fina) = Jo(fina) Yo (finas)] cosh krint
2Upe :

70 JkBae'[Iy(uyma) Ko (i az) — Iy (u3a2) Ko (u5a)] cosh kpint
0 Z
Hmaorin [ (uar) Ko(ma) — To(uya) Ko (p5,a,)] sinh kpigt
KTiN
_ Jkpae'nlJ (@)Y (ft,ar) — J1 (i @)Y (fi,@)] cosh kpint
27,
+ ﬁmaO-TiN”[Jl (ﬁmQZ) YO (ﬁma) - ‘]0 (ﬁma>Y1 (/1ma2>] sinh KTiNt
2KTiN

+

’

K ~ Jkpae' (I (pina) K (5, a2) — 1 (5 @2) Koy (13 @) [ in sinh epint
otinZo
+ pmally(umar) Ko(uma) — Io(u5a) Ko (45, az)] cosh kpint
_jkpae'zlJ, (1, @)Y (Har) = J (j,a2) Y (i, @) i sinh kepigt
B 201inZo

L fiman[Jy (i, ar) Yo (fima) = Jo(fna) Y (i,as)]
2

cosh KTiNt7

where j,, is given by Eq. (34) and

(C21)

(C22)

(C23)

(C24)

i 2. Dipole mode

Hm = ar Kpe, (C25) Following the procedure in the monopole case, let us,
first consider the ceramic break made of a single material

and kv 1S given by Eq. (39) in the text.

with conductivity o, relative dielectric constant ¢’ and

Specially for the m = 0 case, Eqs. (C21)—(C24) become  relative permeability u'. The fields in the ceramic break for

Eqgs. (35)—(38) by assuming kpjn? < 1 and (a, —a)/a < 1. dipole mode are expressed as
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Eém sin 6.

E sm

(C29)

(C26) By solving Maxwell equations, the fields for m = 0 on
| = ) = p = a, and those on p = a are related as
Hy = —I:Ig)) +_Z 0 ma(z 4w I:I(gm) cos 6,
2w W= 2w 2 (0) 0 ~0) [0
EZ (02) Al Cl Ez (Cl)
(C27) » = - . (C30)
= (0) /0 o || z0
1 & (24 w) Zm) o (a2) I I o (a)
H, :—251 H, siné (C28)
w i~ w
m where
|
0 ﬂKcera[Jl (KceraZ)Y (Kcera> J (Kcera>Y1(Kcera2)]
Al = 5 L : (C31)
C(O) o _jzoﬂkﬂﬂ/a[Jl (Kcera2)Y1 (Kcera> - Jl (Kcera)Yl (KcerQZ)] (C32)
| s
2
I(O) _ _] ”akﬁe[ (KceraZ) /I(Kcera) - J/l (Kcera) Y/1 (Kceraz)] (C33)
! 27, ’
K(O) rakp V €ﬂ Kcera KceraZ) J/l (Kceraz) Y, (Kcera)] (C34)
1 2 ’
and those for m > 0 are done by
: m m m m m = <nl>
E. (a) A g otm pm N EY (a)
I:I ) ((12) B Egm) Fgm) G(lm) Hgm) Ijlim)(a) (C35)
FI m) (az) Igm) Jsm) Kgm) Lgm) i[(gm)(a)
= (m) (m) (m) (m) (m) = (m
Ey (as) My NyT Oy Py (9 >(a)
where
|
A(lm) = ﬂn‘la[lll <iuma)K1 (ﬂmQZ) - Il (MmGZ)KII (.uma)]? E(1m> = jﬂm[ll (MmGZ)Kl (uma) — Il (ﬂma)Kl (MmGZ)}
! 9
(C40)
B(m) _ _j”mZO []l (ﬂma2)K1 (/'lma) - Il (ﬂma)Kl (ﬂmaZ)] (m)
! gkﬁé ’ F1 = ﬂma[lll (:uma)Kl (/’lmaZ) - Il (/’LmaZ)K/l (,lea)],
(C37) (C41)
C(m) _ _jZOnga[Il (,umaZ)Kl (/’lma) - Il (/"ma)Kl (/’lmQZ)] G(lm) = 0, (C42)
! kpe ’
(C38) H(m) _ j/’l%na[ll (/’lma2)K1 (/’lma) - Il (/"ma)Kl (.quZH
: kZopy’ ’
p\"™ =o, (C39) (C43)
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I(m) —_ ]kﬂaé[lll (ﬂma)K/l (/’lmGZ) B Il] (Iuma2>K,l (Iuma)]

: z
0
_Jm 1 (i @2) Ky (@) = 11 (@) K (1n02)]
ar G kBZop' i, ’

(C44)

_amall| (na)Ki (@) = 11 (4n@2) K (@)
ar9M1m

_am[l (@)K (@) = 11 (U @2) K1 (@)
GHm ’

Jm =

(C45)

K§m> = :uma[l/l (ﬂmaZ)Kl (/’tma> - 11 (ﬂma)K/l (ﬂma2)]’
(C46)

L(m) o _jﬂma[ll (ﬂma2)K1 (ﬂma) - Il (/’tma)Kl (ﬂma2)]
1 - P

a,gkPZou’

(C47)

_ amally (unaz) Ky (una@) = 11 (un@) K1 (0 @2)]
GHma2
_rm 11 (um@) K’ (maz) = 1 (Hmaz) Ky (4 a)]
GHm ’

M\

(C48)

N = JZokpBu' all (12 ) K (@) = I (@) K (02)]
_JZom [ (@) Ky (@) = 11 (in@2) K | (1,@0))

arg ke, ’
(C49)
0(m) _ jﬂmZOa[ll (/’tma2>K1 (,uma) - Il (/’lma)Kl (/’tmaZ)]
! agkpe ’
(C50)

P<1m> = ﬂma[lll (ﬂma2>K1 (ﬂma) - Il(/"ma)Kll (ﬂma2>]‘
(Cs1)

If the ceramic break is made of a ceramic with ¢ where
the inner surface is coated with thin TiN with the thickness ¢
and the conductivity oy, the transfer coefficients for
m = 0 are calculated as

—~ ﬂngra[Jl (ngraZ)Y/l (ngra) - J/l (ngra)Yl (ngraZ)] cosh KTin?

Al

+ |:ng1‘ [Jl (ngraZ)Yll (ngra) - Jll (ngra)Yl (ngrGZ)]

2

- jacZOk/}a [‘]1 (ngra2)Y1 (ngra) - ‘]1 (ngra) Yl (ngr[12>]:|

cl? =

T sinh KTiNt
S — C52
2KTiN ( )

ngraKTiN [‘]1 (ngraZ)Yll (ngra) - J/l (ngra)Yl (ngraZ)]

O

2

+ jZOkﬂ[Jl (ngr‘JZ)Yl (ngra) - Jl (ngra)Yl (ngraZ)]:| 7 sinh KTiNt

2K1iN

_ jZoﬂkﬁa [Jl (ngrQZ)Yl (ngra) - Jl (ngra)Yl (ngrQZ)] cosh KTiNt

10

5 , (C53)

_j ﬂakﬁel [J,l (ngraZ)Yll (ngra) — J/l (ngra)Y/l (ngra2)} cosh KTin{

1

27,
€ [J/l (ngra2) Yll (ngra) - Jll (ngra)Yll (ngraZ)]

+ |-

27,

=+ Gca\/g[‘ll (ngra)Y/l (ngra2) - ‘]/1 (ngrQZ)Yl (ngra)}

ﬂkﬂ sinh KTiNt (C54)
2KTiN ’
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K(O) —_ ﬂdkﬂ\/é?[.]l (ngra) Y/I (ngra2> B J,I (ngrQZ) Yl (Kgcra)] cosh KTiN{
1
2

+ —j ae/KTiN [J/l (ngraZ) Yll (ngra) B J/l (ngra) Y/l (ngra2)]

Z()Gc

_ \/g[‘ll (ngra)yll (ngraZ) - J/l (ngraZ)Yl (ngra)] ﬂkﬁ sinh KtiNnt
ZKTiN 2

, (C55)

h m m m m m m m
where 0(1 ):C§ M )+K§ Jo! )+05 'pm, (C71)

€ __ 2132
o = AR (C36) ) N 4 L0 4 PR (cT

and kv 1s described in Eq. (39) in the text.
For m > 0, the transfer coefficients A(lm) e P(lm) for the
dipole mode are described as

where A", ..., P! are given by replacing 4, ¢ and

u' in Egs. (C36)—(C51) by u¢, [defined in Eq. (C25)], €
(dielectric constant of ceramic) and y' = 1, respectively.

L (m) (m) :
Agm) _ Agm)ASm) n Bgm)EEm) n Cgm)lgm)’ (C57) The coefficients A; , ..., P; ' are approximated as
(m) sinh kNt
A; = coshkpnt +———, C73
B = A B + BUE™ 4 My, (C58) ’ TN ki (€73)
C(lm) _ Agm)cgm) + Cgm)KEm), (ng) B(m) _ m sinh kNt (C74)
t g6, Krind
(m) (m) yy(m) (m) y (m)
D" =BH," + CVL™ C60 m N
! ! ! (C60) clm — 5N Ginh kg, (C75)
B = APE 4 BRI (co) "
D;"” =0, (C76)

(m) __ p(m) p(m) (m) p(m) (m) p7(m)
Fy7 =B/ "Ee’ +F:'F ' +H: N, 7, (C62) E(m)_ jmm sinh kgt -
' _ngoﬂ KTiNd ’

G\" =c"E™ + O™, (C63)
(m) sinh KTiNt

m m m m m F :COShKi 4+ ——- C78
HI — pO gy g plm), (C64) ‘ LR v (C78)
1" = A I 4 1m k™ LM, G" =o. (C79)

(C65) -
H§m> = .]];;ﬁ; sinh KTiNt7 (C80)

2 .2 :
C66 (m) _ °m sinh kNt

| ) e <66 - 0292k2ﬂ26cz(2)> KTiN (C81)

K" =i 4 kMEM LMo, (ce) - i
Jt = TCOSI’I KTiNtv (C82)

L™ = g g g pmpm e 9ikpZooca
1 t € € t € t
(m) sinh KTin{
K" = coshkpnt ———, C83
M(}m) :Agm)Mgm) +E£m)N£m) +I£m)02m) +M§m)P£m)’ t COsh KiN 2krd (C83)
(C69) (m) _ jﬂ'm sinh KTiNn{ (C84)
t - _49
() _ plm) g glm) | golm) (), m) (m) . s(m) plm) agkpZokrin

N =B"M" + F"'N" + 7" 0" + N P, . .

(C70) M, = WCOSh KTin{, (C85)

091001-32



IMPEDANCE OF A CERAMIC BREAK AND ITS ...

Phys. Rev. ST Accel. Beams 17, 091001 (2014)

2 : (n)
m jr*m sinh kit Appendix A, respectively. Since the functions Y.)(z),
N = < JZokPp' + = ) - (C86) () (y )0y il
g*kpoiZya’ KtiN Y_1(2), Yy (2), ¥{"(2). Ya(2), Y3(2), Y4 (2), V'3 (2) are
- m sinh Ky provided by Eqgs. (A41)-(A48) <1r)1 Append1x A2 (rf)spec—
0, = —m7 (C87) tively, formal expressions of (< 2 s (Y1) (Yo 05
. (g M (V6" e (M =Y 2R, (1) =Y
m iNT n n
P = coshrqt — o INE o ogg) k222, (V) (YY), (Vs = Vo /KRB (Y, = Ys )
2N Rpa),.  (Vs=Ye/RBa).,  (¥s=Yo/Rpa),.
respectively. <Y§n)_Yz<;n)/k2ﬁza%>’ (¥ gn)< )— vy (Z)/k2ﬂ2 D <Y(9”)>’
(7, (1) (1L a0 (25, e obtsine by

substituting them into Egs. (A18), (A19) and (A49). The z

APPENDIX D: CONCRETE EXPRESSIONS OF integrations are simply done. The remained /4 integrations

(F)S, (V_1)S,, (X8)S,, (Y8 s, (xiys, can be performed by using the expansion formulas [10] for
(Y§"> _ Y‘(‘")/kzﬁzaz), <<Y§") _ Y‘(‘")/kzﬂzaz)) , <Y’f‘")>, Bessel functions

(VS Do (V2= Vs R2B@2), (¥ = Yo/ R2a), FE 1 e 2
(Ys — Yo/K?p2a%), (Ys Yﬁ/k2ﬁ2a2>>m, h R D (D1)
Y ), (V) - Y @) I
B33 (F5 s (F10(@) ) (V1) AND (155, b e
The brack ) d () I,Z _ - 1 ].l,k ’ D2
defined g;c et];qs.< (EA18§<, (>/>x19)anand<< (A>4>l9) " 2J(2) gzz—h.szl(h,k') (02
|
LH’IQ)(\/E) _ _l_/oo i 2 (D3)
VEED (V7)) Tl TR+ B (8 VOHD (T
1 HP (V) 2HP () = 2
= — d , D4
VaH P (2) <z—ha%o>H1‘2><ha,o>+A “RUC T DH SVOHP D >4

where j, , are the sth zeros of J,,(z), j} , are the sth zeros of Jl’(z) h} o = 0.501184 4 j0.643545 is the O th zero of H/(2>( )

(the differential of the Hankel function of the second kind), H (z) is the Hankel function of the first kind and the prime
denotes the differential by its argument z. As in Appendix B, the integration of the Bessel functions can be again done by
simply picking up residues in the complex plane /. The path of integration should be chosen to be below the poles for 4 < 0
and above the poles for i > 0.

Finally, we obtain the following expressions:

~i24 /kzﬁz_f'l».rlzW
(=D [1=(=1)"e <

) J1 (s
mx )(kZﬂZ J1 A 42w22) g

J(]“,)), for n # m,

o0
s=1

wad k2ﬁ2 fLs’szzﬁz Jis"?
[/,2 \ [12

. aw? (m2 x> =4k*w)J, (i ')

<<Y(—n2) (Z)»;n = ZSzl maJl”(jl_s’)(m27r2—4w2k2ﬂ2+4w2#)

_j2a [ K2p2= JLs 2,‘
(o] jm”z[l_(_Ume ]]l r/ Jy (]lv)

s=1 i 2 J1 (i)’
301252 Jls T m2a2\2 2 157 T Vs
wa <k ﬁ a2 4u2 ) \/k ﬂ a2

2003 ] l_e /kZ/))Z ls

s=1 2y a(k2ﬁ2 ] kZﬂZ

(Ds)

+ for n = m,
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where by = m - _j\/m’
m. It is particularly notable that there are

no singular points except { =0 in the integrands of {
integrations. In some of the above equations, it looks as if
there are singular points in the integrands between { = 0
and infinity. However, the integrands were shown to be
regular at seemingly singular points by simplifying the
relevant terms and taking a limit.

APPENDIX E: LONGITUDINAL IMPEDANCES
OF THE CERAMIC CHAMBERS WITH THE
THIN TiN COATING, COVERED WITH
PERFECTLY CONDUCTIVE WALLS

In this section, let us derive the formula of longitudinal
impedances of the ceramic chambers with translation
symmetry, where the inner surface is coated with thin
TiN and the outer surface is surrounded by a perfectly
conductive wall. Following Refs. [12] and [19], field
matching technique is applied in the derivation.

When a beam with the current density j, =
pell —O(p — 6)]e /%2 /(no?) passes through the chamber,
E., Hy in vacuum are expressed as

fﬁ%} Mﬂ@é“ﬁ)n@mm@»@n

z

Ho =2 Ky Ry Bp) + 2L 2001 R, (E2)

Ho =2 1o K ) + 2L 20011 Rp). - (B4)

for 6 < p < a, where Ay(k) is an expansion coefficient, &
is the radius of the beam and ©(x) is the step function.

Inside the thin TiN (for a < p < a + f) with conductivity
oTin, the fields are described as

E, = Boly(kring) + CoKo(kTing). (ES)

KTiN [Bo!, (ktinp) — CoK i (krinp)].  (E6)

0= kpZ,

where kry is given by Eq. (39) in the text. Here B, and C,
are expansion coefficients.

Finally, inside the ceramic (for a +t < p < a,) with
relative dielectric constant ¢’, they are expanded as

E. = Dolo(4*p) + EoKo(u'p), (E7)
kpe' - -
Hyp=—-— (Dol (4 p) — EoK 1 (1*p)], (E8)
JHZy

by using the expansion coefficients D, and E,, where

/lk — /K2 _k2ﬁ2€/.

For the thin TiN, the fields on p = @ and those on p = a,
are related to as

(E9)

E (ay) = Ao(ay, a)E (a) + Co(ay, a)Hy(a),  (E10)
for p < o0, and
iez Hy(ay) = ly(ay. a)E (a) + Ko(az, a)Hy(a),  (E11)
E. = =21, (ko)Ko(kp) + Ag(k)Io(kp),  (E3) . :
oy where the transfer coefficients are approximated as
|
Ag(ay, a) = ptally(uka)Ko(u*ay) — Iy (it ay) Ky (¥ a)] cosh kit
_ JZo(W*)*aorix[To(u az) Ko (it a) — Io(u*a) Ko (4" ay)] sinh krint (E12)
kpe'krin ’
_ prally(uha)Ko(u*ay) = Iy (u*ay) Ky (' @)]ierin sinh kepint
Co(ay, a) =
OTiN
_JZo(W)?allo(utar)Ko (W a) = Io(u*a) Ko (4" ay)] cosh krint (E13)
kpe ’
jkﬂae’[l{)(ﬂka)K()(ukaz) - Ié)(ﬂkaz)Ké (4*a)] cosh krint
Iy(ay, a) =
Zy
n praomin [16(Hka2)Ko(ﬂka) - Io(ﬂka)K6 (4 ay)] sinh krint (E14)

KTiN
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Ko(az,a

) ~ jkpBae'[Iy(u'a) Ky (4 ar) — I (1'ar) Koy (' a)|omin sinh oyt

where the prime in /,(z) and J,(z) means the differential
by their argument z. It is noticeable that Egs. (E12)-(E15)
are identical to Egs. (C21)—~(C24) in Appendix C 1, when
we replace p5, in Egs. (C21)~(C24) with p*.

The coefficient Ay(k) is obtained by combining
Egs. (E3), (E4) and (E10) with the condition E,(a,) =0,
and solving the equations. In order to subtract the con-
tribution due to space charge impedance from the final
expression of the impedance of the ceramic chamber, the
coefficient AP (k), which is obtained by using the
assumption that the perfectly conductive walls exist on
p = a, is calculated in advance, and it is given by

JjcZy

AP (k) = — I,(ko)Ky(ka).  (E16)

moyly(ka)

Finally, a rigorous expression of the longitudinal imped-
ance is obtained as

Z, = ZL,sp =+ ZL,ceramiw (E17)
where
iZ _ _  2P(ko)K,(k
Zp =20 1 - 21, (ko)K, (ko) — 21k Ko(ka))
’ prko Iy(ka)
(E18)
7 ZECO(az, a)]% (7(0)
L .ceramic — - - Byl (ka)°
no’k*al}(ka)[Ag(ay, a) + Colay, a) %}
(E19)

Z; sp 18 space charge impedance, Z; ccramic 1S the impedance
of ceramic chamber with the TiN coating and £ is length of
the chamber.
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