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Three-dimensional simulation codes GENESIS and OPC are used to investigate the dependence of the
resonator stability of free-electron laser (FEL) oscillators on the stability parameter, laser wavelength,
outcoupling hole size and mirror tilt. We find that to have stable lasing over a wide range of wavelengths,
the FEL cavity configuration should be carefully chosen. Broadly, the concentric configuration gives near-
Gaussian modes and the best performance. At intermediate configurations the dominant mode often
switches to a higher-order mode, which kills lasing. For the same reason, the outcoupled power can also be
less. We have constructed a simple analytic model to study resonator stability which gives results that are in
excellent agreement with the simulations. This suggests that modes in FEL oscillators are determined more
by the cavity configuration and radiation propagation than by the details of the FEL interaction. We find (as
in experiments at the CLIO FEL) that tilting the mirror can, for some configurations, lead to more
outcoupled power than a perfectly aligned mirror because the mode is now a more compact higher-order
mode, which may have implications for the mode quality for user experiments. Finally, we show that the
higher-order mode obtained is usually a single Gauss-Laguerre mode, and therefore it should be possible to
filter out the mode using suitable intracavity elements, leading to better FEL performance.
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I. INTRODUCTION

Most infrared free-electron laser (FEL) facilities around
the world use thermionic electron sources with modest
currents (≈10–100 A) [1–5] and therefore operate the FEL
in the oscillator configuration, very often with on-axis hole
outcoupling. The optical resonator plays an important role
in determining the dominant mode within the cavity. The
mode itself determines the overlap between the electron
beam and the radiation, affecting the FEL gain and hence
lasing. In addition, the shape of the dominant mode on the
outcoupling mirror also determines the outcoupled power.
It is well known [6–8] that mode competition and mode

beating affect the stability of optical modes in FEL
oscillators and therefore constrain the operating parameters
of the FEL. This can be a concern for FEL facilities,
because one of the important advantages of FELs is the
ability to provide tunable coherent radiation over a large
wavelength range. For this to be possible, one has to ensure
that the mode is stable over the entire range. Another
important issue for an FEL facility is to ensure substantial
outcoupled power to the user. Maximum power will be
outcoupled when the mode profile on the outcoupling
mirror is Gaussian, and therefore maximum intensity
is intercepted by the hole. However, if the beam is

non-Gaussian with a minimum at the center, as may be
the case with some higher-order modes, then the out-
coupled power will be small, even if there is lasing.
Consequently, a detailed understanding of stability in
FEL oscillators involves a study of the resonator modes,
which in turn depend in a complicated way on a number of
essential parameters, such as the radiation wavelength,
resonator configuration, hole size, electron beam current,
mirror tilt etc. Therefore, it is typically necessary to take
recourse to three-dimensional FEL codes such as GINGER

[9] or GENESIS [10].
Here we present a detailed study of transverse optical

modes in FEL oscillators as a function of different cavity
and radiation parameters. We find that the nature of the
dominant mode can change quite dramatically as one or
more of these parameters are varied.
We also propose a simple matrix-based model for

studying the evolution of the mode. Our model includes
the FEL interaction as a thin lens located at the center of the
undulator. While this model certainly does not include the
details of the FEL interaction, we show that it goes a long
way in explaining the modes in the FEL oscillator, and
agrees well with the three-dimensional simulations. This
shows that the modes in the FEL oscillator are determined
more by the cavity configuration and radiation propagation
than by the details of the FEL interaction.
Modes in cavities can always be expanded in terms of a

complete set of Gauss-Laguerre (GL) or Gauss-Hermite
(GH) modes [11–13]; for an axisymmetric resonator the
former are a more natural choice. We show that most of the
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non-Gaussian modes obtained are single higher-order GL
modes. This identification suggests that the use of intra-
cavity elements for suppressing the higher-order modes can
lead to better operation of the FEL, in terms of greater
outcoupled power and operation over a wider range of
wavelengths.

II. MATRIX MODEL

In terms of a complex parameter q, a two-dimensional
Gaussian beam can be written as [11]

Gðx; y; zÞ ¼ 1

qðzÞ e
−ik r2

2qðzÞ; ð1Þ

where

1

qðzÞ ¼
1

RðzÞ − i
λ

πw2ðzÞ : ð2Þ

Here k is the wave vector, λ is the wavelength, RðzÞ is the
radius of curvature of the wave front and wðzÞ is the beam
spot size. We have assumed that the beam is circularly
symmetric, so that qx ¼ qy ¼ q and x2 þ y2 ¼ r2. This
beam can be propagated through an optical system given its
transfer matrix using the equation

�
q2
1

�
¼

�
A B
D C

��
q1
1

�
;

where A, B, C, D are determined by the transfer operation
performed on the beam. A generalized operation of such a
ray matrix on the given 2D beam leads to the trans-
formation of the q parameter as follows:

q2 ¼
Aq1 þ B
Cq1 þD

: ð3Þ

This, in combination with a knowledge of the Guoy phase
shift for the beam, allows us to analytically study the
evolution of the transverse mode of the beam as it
propagates inside a resonator. For a cold, closed cavity,
the transformations are just (two) drifts and (two) reflec-
tions, for which the matrix elements are well known [11].
Using these matrices, a simple analytic model has been
implemented in MATLAB [14]. We use this model to study
the evolution of the transverse mode profile; we have not
considered the longitudinal dimension, since our focus here
is on transverse modes.
Once the FEL interaction is introduced in the resonator

the stability diagram will be modified. The degree of
modification will depend on the strength of the interaction,
and therefore on the electron beam current. As the current
increases, the strength of the interaction increases, resulting
in well-known phenomena such as gain guiding and
refractive guiding [15]. Therefore, it is natural to expect

that, to first order, the FEL interaction acts as a lens, to
focus the optical beam.
In our analytic model, therefore, we chose to model the

FEL interaction as a thin lens located at the center of the
resonator. The matrix for a thin lens is also well known
[11]. For the focal length of the lens, we used the data from
the simulations, and calculated an effective focal length by
taking the actual size of the optical beam at the downstream
mirror, and using the standard formula for the focal length
assuming a Gaussian optical beam [11],

f ¼ πwðzÞw0

λ
; ð4Þ

where w0 is the waist size. Note that this value of the focal
length is a function of current. As the current increases, the
spot size on the downstream mirror decreases, and so does
the focal length. However, this calculated value of the
focal length is always much greater than the length of the
resonator.

III. CLOSED CAVITY (NO OUTCOUPLING HOLE)

We start with a study of a closed cavity. In the first
subsection we review the case for a cold closed cavity, i.e.
when there is no FEL interaction, for which analytic results
are well known. While this is of course unrealistic, it does
substantially simplify the cavity dynamics, and serves as a
benchmark for our simple model. We then consider the case
when there is an FEL interaction.

A. Cold-cavity case

Consider an empty optical resonator consisting of two
concave mirrors (with no holes), of radii of curvature R1

and R2, placed a distance L apart. In terms of the stability
parameters, g1;2 ¼ ð1 − L=R1;2Þ, one can show from a
simple matrix analysis, using geometrical optics, that the
stability criterion is 0 ≤ g1g2 ≤ 1. Further, if we consider a
symmetrical resonator, so that R1 ¼ R2, then g1 ¼ g2 (¼ g,
say), and the stability criterion reduces to −1 ≤ g ≤ 1.
As a test case, we decided to study this simple system

using full-blown FEL simulations, as well as with our
analytic model. We allowed for finite reflectivity of the
mirrors. Note that the cavity mode will be the lowest order
Gaussian (TEM00) only when there is no significant power
loss in the cavity.
For the simulations we used the FEL code GENESIS, and

for propagating the radiation from the exit of the undulator,
through the optical cavity, back to the entrance of the
undulator, optical propagation code (OPC) was used [16].
We modeled the empty resonator by making the current
zero in the FEL simulations. For the matrix analysis as well
as the GENESIS+OPC simulations, we kept the radius of
curvature of the mirrors fixed, R1 ¼ R2 ¼ 6.15 m, varied
their separation in order to vary the stability parameter g,
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and looked at the nature of the dominant mode. The
simulation parameters are shown in Table I.
For a mirror reflectivity of unity, i.e. when there is no

loss, we always find the dominant mode to be Gaussian, in
the range −1 ≤ g ≤ 0, as expected. For a mirror reflectivity
of 0.99 too, we find that the mode is Gaussian, even though
there is loss. This is because there is no radial dependence
to the loss, and therefore there can be no change in the
mode; the mode can change only if there is a radial
dependence to the reflectivity, such as due to loss at the
edges of the mirror. These results are shown for the
simulations as well as our analytic model in Fig. 1. Note
that here, and everywhere else in the paper, modes are
shown when the optical beam falls on the outcoupling
mirror. These results serve to benchmark our model.

B. FEL interaction

Next, we introduce the FEL interaction in the simula-
tions and in our model. In the confocal configuration, at
wavelengths of 10, 25, and 50 μm, the optical beam is
focused to a tighter spot as the current is increased, with no
major change in the mode. This effect is seen for the
simulations in Fig. 2, which shows a lineout of the laser
pulse profile for different currents. It can be seen that as the
current increases the pulse becomes sharper. In the con-
centric configuration, at the same wavelengths, we found
very little focusing of the mode, for the same range of beam
currents. For both configurations our analytic model gives
the same results.
Figure 3 shows a plot of the spot size as a function of

current, at a wavelength of 10 μm for both concentric as

TABLE I. Parameters used in the simulations.

Parameter Value

Initial power 1 MW
Wavelength 10–60 μm
Radius of curvature of mirrors 6.15 m
Mirror size 23 mm
Reflectivity of the mirrors 0.99
Cavity length 6.15–12.4 m
Hole radius 1–4 mm
Outcoupled mirror tilt 0–5 mrad
Undulator type Helical
Undulator length 2 m
Undulator period 0.05 m
Undulator parameter 0.637

FIG. 1. For a cold, closed cavity in the confocal configuration,
cross section of the transverse mode at the downstream mirror
using (a) GENESIS+OPC, and (b) our analytic model.

FIG. 2. For a closed cavity in the confocal configuration and a
wavelength of 10 μm, with an FEL interaction, cross section of
the transverse mode as a function of electron current, obtained
from the simulations.

FIG. 3. FWHM of the transverse modes obtained in the
simulations, at a wavelength of 10 μm, as a function of electron
current for the confocal (g ¼ 0) and concentric (g ¼ −1) con-
figurations. Plots of the modes at 5 and 55 A, for the confocal and
concentric configurations, are also shown. For each plot the
window size is 50 mm by 50 mm.
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well as confocal configurations, from the simulations,
which shows these features very clearly. Also shown
are the mode profiles from the simulations, at a few
currents. The focusing of the spot for the confocal
configuration, and the lack of focusing for the concentric,
are clearly seen. Figure 4 shows the modes from our
analytic model, for the concentric and confocal configu-
rations, each at two different currents. The same features
are clearly seen from these plots too.

IV. CAVITY WITH HOLE OUTCOUPLING

The more realistic case is, of course, when there is a hole
in one of the mirrors, so that radiation can be outcoupled.
However, with the introduction of an on-axis hole, there is
clearly going to be a substantial perturbation to the
equilibrium mode and hence the FEL performance
[12,17,18]. Here we introduce an outcoupling hole on
the downstream mirror and study the situation systemati-
cally, as a function of cavity length (i.e. stability param-
eter), wavelength and hole size. Parameters used in the
simulations are shown in Table I.

A. Dependence on cavity length

To study how the dominant or equilibrium mode varies
with the stability parameter gð¼ 1 − L=RÞ, we varied the
length L of the resonator while keeping the radius of
curvature R of the mirrors fixed. Earlier we have studied
this for a closed cavity, with no outcoupling hole. Here we
study the stability for a resonator with an outcoupling hole,
using GENESIS+OPC simulations for different cavity lengths,
at three different FEL wavelengths and for four different
sizes of the outcoupling hole.

Here we also looked at the transverse modes at the points
where the outcoupled power decreases and also where there
is no lasing. In our simulations, the optical radiation is
initialized at the entrance to the undulator, the undulator is
symmetric within the resonator and the Rayleigh length of
the optical beam is around half of the undulator length. The
radiation will subsequently propagate self-consistently, and
its shape will evolve. In particular, when it evolves into a
higher-order mode, naturally the peak intensity will be
away from the center, where the electron beam is, and
therefore there will be a reduction in the overlap and hence
the filling factor. This is precisely why lasing can be killed.
Figure 5 shows the outcoupled power as a function of the

stability parameter (g), at three different wavelengths, and
two different hole sizes. Figure 5(a) shows that for a hole
size of 1 mm lasing is seen for all configurations between
the confocal (g ¼ 0) and the concentric (g ¼ −1). At the
longest wavelength of 50 μm there is little change in the
outcoupled power with g. However, at 10 μm there is an
intermediate range of cavity lengths, corresponding to
−0.8 ≤ g ≤ −0.2, where there is a large fluctuation in
the power, suggesting instability in the mode. The situation
is worse with a 4 mm hole, Fig. 5(b). At a wavelength of
10 μm, there is no lasing for −0.95 ≤ g ≤ −0.80, and again
for −0.65 ≤ g ≤ −0.20. Even at a longer wavelength of
25 μm, there is no lasing for −0.65 ≤ g ≤ −0.30. Only the
longest wavelength of 50 μm shows lasing over the
entire range.

FIG. 4. Mode profiles obtained from our analytic model, at a
wavelength of 10 μm, in the confocal configuration with an
electron beam current of (a) I ¼ 5 A and (b) I ¼ 55 A, and in the
concentric configuration with (c) I ¼ 5 A and (d) I ¼ 55 A. For
each plot the window size is 50 mm by 50 mm.

FIG. 5. Variation of outcoupled power as a function of the
stability parameter (g), for different wavelengths, with a hole size
of (a) 1 mm and (b) 4 mm.
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The lack of stability observed in Fig. 5(a) can be seen
more clearly in a plot of the outcoupled power as a function
of pass number, Fig. 6. At a wavelength of 50 μm, with a
1 mm hole, one can see that the power rises and saturates
smoothly. At 25 μm, the power initially fluctuates a little,
but finally saturates. But, at a wavelength of 10 μm the
pass-to-pass fluctuations in the outcoupled power are large,
and keep increasing with time, indicative of mode insta-
bility, as a consequence of which there is no lasing. For the
larger hole size of 4 mm, no lasing was observed at the
shorter wavelengths (10 and 25 μm), but at 50 μm there is
lasing and the power saturates smoothly, indicating that
there is no mode beating.
Figure 7 shows the mode profiles for the confocal,

concentric and an intermediate (g ¼ −0.6) configuration,
for a wavelength of 25 μm and a 1 mm hole. It can be seen
that for the confocal configuration the mode is substantially
non-Gaussian, with a dip at the center, while for the
concentric configuration the mode, though slightly larger,
is more Gaussian-like, with a maximum at the center. For
the intermediate configuration the mode is an excellent
Gaussian. This explains why, for the wavelength of 25 μm

and hole size of 1 mm, the power is maximum for
g ¼ −0.6, and is less for the confocal and concentric
configurations.

B. Wavelength dependence

From the experimental point of view, since the resonator
geometry cannot be changed, it is more relevant to fix the
cavity length, i.e. value of g, and look at the outcoupled
power as a function of wavelength, for different hole sizes.
Figure 8 shows the outcoupled power as a function of

wavelength for three different resonator configurations:
confocal (g ¼ 0), concentric (g ¼ −1), and an intermediate
configuration with g ¼ −0.6. Figure 8(a) shows that with a
smaller, 1 mm, hole essentially all wavelengths lase, though
g ¼ −0.6 gives the best performance, in terms of maximum
outcoupled power. The concentric and confocal resonators
behave similarly, and the outcoupled power decreases with
increasing wavelength, because of the greater diffraction.
For a 4 mm hole, Fig. 8(b) shows that the concentric and
confocal configurations lase at all wavelengths, with out-
coupled power decreasing with increasing wavelength, as
was the case with a 1 mm hole. For g ¼ −0.6 lasing
commences only after around 30 μm. Thus, for the con-
centric and confocal configurations the overall behavior is
similar for both hole sizes, except for the fact that with a
larger hole one can couple out more power. However, the
g ¼ −0.6 configuration is more sensitive to the hole size.

FIG. 6. Outcoupled power as a function of pass number, for
three different wavelengths, with a hole size 1 mm, and
g ¼ −0.6.

FIG. 7. Mode profiles from the simulations at a wavelength of
25 μm and a hole size of 1 mm, for the (a) confocal (g ¼ 0),
(b) concentric (g ¼ −1) and (c) intermediate (g ¼ −0.6) con-
figurations. For each plot the window size is 50 mm by 50 mm.

FIG. 8. Variation of outcoupled power as a function of wave-
length for the confocal (g ¼ 0), concentric (g ¼ −1), and inter-
mediate (g ¼ −0.6) configurations. For a hole size of (a) 1 mm
and (b) 4 mm.
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These are important observations. They suggest that the
FEL cavity configuration should be chosen carefully, in
order to have stable lasing over a wide range of wave-
lengths, and concentric or confocal configurations may be
preferable. For FELs with an intermediate value of g, such
as the CLIO FEL in France [19], there is a danger that it
may not be possible to lase at shorter wavelengths,
especially if the hole size is large.
In order to better understand the observed behavior, we

looked at the modes on the outcoupling mirror, correspond-
ing to some of the points in Fig. 8. For a hole size of 4 mm
and wavelengths of 10, 25, and 50 μm, we looked at the
modes for g ¼ −1 and g ¼ −0.6, shown in Fig. 9. It can be
seen from Figs. 9(a)–9(c) that at g ¼ −0.6 and for wave-
lengths of 10 and 25 μm the dominant mode is a higher-
order mode with no intensity at the center, and therefore
there is no lasing. At 50 μm the mode is Gaussian, and
therefore there is lasing and a fair amount of outcoupled
power. For the concentric configuration, Figs. 9(d)–9(f)
show that the modes are essentially Gaussian, and this
explains the large outcoupled power in Fig. 8(b). The mode
is more compact at shorter wavelengths, which explains
why there is more outcoupled power.
For the six cases shown in Fig. 9, we ran our simple

analytic model with a hole in the outcoupling mirror. Of
course, with the FEL interaction present, this simple model,
which has no gain in it, is not expected to give dependable
values for the outcoupled power. However, we performed
these studies to look at the nature of the transverse mode.
These results are shown in Fig. 10. Comparing Figs. 9
and 10 one can see that the agreement is remarkable; our
model does an excellent job of reproducing the modes, even
though the FEL model is overly simplified. This is because
the equilibrium mode in the cavity is determined primarily
by the resonator dynamics, to which the FEL interaction
acts only as a perturbation.

This is an important observation. As we have argued
above, and seen in the GENESIS+OPC simulations, for a
given resonator configuration the mode can be very dif-
ferent for different wavelengths. In particular, some
wavelengths may simply not lase because the mode is
non-Gaussian. Therefore, it is important to understand the
details of the resonator modes, and these results suggest
that it is possible to do this study with our simple analytic
model, and without the need for detailed three-dimensional
FEL simulations. These resonator studies can then serve as
inputs for the detailed FEL design, in order to ensure lasing
over the full range of wavelengths for which the FEL
facility is being designed.

C. Dependence on hole size

We also looked at the hole-size dependence of the
outcoupled power, for three different wavelengths, for
the confocal (g ¼ 0) concentric (g ¼ −1) and intermediate
(g ¼ −0.6) configurations.
Figures 11(a) and 11(b) show that for the confocal and

concentric configurations, the outcoupled power increases
with increasing hole size. This shows that increasing the
hole size does not substantially alter the mode profile, and
only allows for more power to be coupled out. For the
intermediate case, however, the situation is different.
Figure 11(c) shows that at the shortest wavelength,
10 μm, there is no lasing after a hole size of 2 mm. At
25 μm, the outcoupled power initially increases with hole
size, but then starts falling. At 50 μm, there is a monotonic
rise in the outcoupled power, but the increase is slower after
a hole size of 3 mm. All these features can be attributed to a
change in the transverse mode profile.
For the confocal configuration (g ¼ 0), Fig. 11(a), for a

wavelength of 10 μm, we find that the modes are non-
Gaussian, with a dip at the center, for all four hole sizes; the
mode profile for the 1 mm hole is shown in Fig. 12(a). As a

FIG. 9. Mode profiles from the simulations with an outcoupling
hole size of 4 mm, for the intermediate configuration (g ¼ −0.6)
at wavelengths of (a) 10 μm, (b) 25 μm and (c) 50 μm, and for
the concentric configuration (g ¼ −1) at wavelengths of
(d) 10 μm, (e) 25 μm and (f) 50 μm. For each plot the window
size is 50 mm by 50 mm.

FIG. 10. Mode profiles from our analytic model with an
outcoupling hole size of 4 mm, for the intermediate configuration
(g ¼ −0.6) at wavelengths of (a) 10 μm, (b) 25 μm and
(c) 50 μm, and for the concentric configuration (g ¼ −1) at
wavelengths of (d) 10 μm, (e) 25 μm and (f) 50 μm. For each plot
the window size is 50 mm by 50 mm.
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consequence, for smaller hole sizes less power is coupled
out. As the hole size increases, it intercepts the maximum of
the mode, and therefore the outcoupled power increases
substantially, as shown in Fig. 11(a). At 25 μm too, the
mode has a dip at the center [the mode profile for a 1 mm
hole is shown in Fig. 7(a)], and therefore the same
dependence on hole size is seen. At 50 μm the modes
are Gaussian at all hole sizes, and so the power increases
only very gradually with increasing hole size.
For the concentric configuration (g ¼ −1), Fig. 11(b),

at all wavelengths and all hole sizes, the mode is Gaussian
or close to Gaussian (only a small dip at the center).
Therefore, for a given wavelength the outcoupled power
increases with hole size, as more and more of the beam is
intercepted, and as the wavelength increases the outcoupled
power drops, because of the greater diffraction. The modes
for the 4 mm hole size, for wavelengths of 10, 25, and

50 μm, are shown in Figs. 9(d)–9(f). The mode profile for a
wavelength of 10 μm and 1 mm hole size is shown in
Fig. 12(b). They are all seen to be Gaussian or close to
Gaussian.
For the intermediate configuration (g ¼ −0.6), Fig. 11(c),

the situation is more interesting. At a wavelength of 10 μm,
substantial power is coupled out only for a hole size of
1 mm; at all other hole sizes there is no lasing. This is
because for the 1 mm hole size, the mode is near Gaussian,
with a maximum at the center, Fig. 12(c). For all other hole
sizes, the dominant mode is a higher-order mode with no
field at the center, and therefore there is no lasing. For the
4 mm hole, the mode is shown in Fig. 9(a), where it can been
seen that the mode is completely distorted from Gaussian. At
a wavelength of 25 μm, the modes at the first three hole sizes
are roughly Gaussian, and therefore there is lasing with
substantial outcoupled power. For a 4 mm hole, however, the
mode is a higher-order mode with a minimum at the center,
as shown in Fig. 9(b), and therefore there is no lasing.
Finally, at a wavelength of 50 μm, the mode is Gaussian at
all hole sizes, and therefore the outcoupled power simply
increases with hole size; the mode for a 4 mm hole is shown
in Fig. 9(c), where the Gaussian nature is evident.
The results of this section show that the intermediate

configuration is very sensitive to the hole size, while the
confocal and concentric are much less sensitive. This can
be explained as a consequence of a change of the dominant
mode with hole size in the former case, which does not
happen in the latter two cases.

V. ROLE OF MIRROR TILT

In FEL simulations, the two mirrors of the resonator are
assumed to be parallel to each other. Of course, in reality
this can never be exactly true. It is therefore important to
ask how much tilt can be tolerated, without changing the
optical mode in the resonator. In order to study this effect,
we took advantage of the features available in the OPC code,
which allows such tilts in the mirror. We investigated the
behavior of the mode for all three resonator configurations
and all three wavelengths that we have studied above, for a
hole size of 4 mm. For simplicity the tilt was introduced

FIG. 11. Outcoupled power as a function of hole size at three
different wavelengths for the (a) confocal (g ¼ 0), (b) concentric
(g ¼ −1) and (c) intermediate (g ¼ −0.6) configurations.

FIG. 12. Mode profiles from the simulations at a wavelength of
10 μm, for a hole size of 1 mm, for the (a) confocal (g ¼ 0),
(b) concentric (g ¼ −1) and (c) intermediate (g ¼ −0.6) con-
figurations. For each plot the window size is 50 mm by 50 mm.
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uniformly in both x and y directions. We could not
incorporate this feature in our analytic model.
Figure 13 shows the output power as a function of

tilt on the outcoupling mirror for all three resonator

configurations. For the confocal configuration, Fig. 13(a),
the situation is complicated. Here we find an optimal value
of the mirror tilt at which the output power is greater than
when there is no tilt. For a wavelength of 10 μm the intensity
is maximum at a tilt of 0.42 mrad, for 25 μm at 0.4 mrad,
and for 50 μm at 0.5 mrad. This may seem surprising,
suggesting that a poorly aligned mirror is better than a well
aligned one in terms of outcoupled power. However,
Figs. 14(a)–14(c) show that this is because with tilt the
mode is completely distorted. The mode has become non-
Gaussian, but is also more compact. As a result, more power
couples out of the hole, but this is at the cost of poor mode
quality.
For the concentric configuration, Fig. 13(b), the power

decreases monotonically and rapidly with increasing tilt for
all wavelengths. This effect is stronger at lower wave-
lengths and can be explained on the basis of the modes
shown in Figs. 14(d)–14(f). One can see that as the mirror
tilt increases, the mode shifts off axis, while remaining
approximately Gaussian. Therefore, with increasing tilt the
outcoupled power just decreases, until a limit is reached
beyond which there is no lasing because the reflected
radiation is substantially off axis and therefore the overlap
with the electron beam is poor. The mode shift is greater at
shorter wavelengths, resulting in lesser outcoupled power.
For g ¼ −0.6, Figs. 14(g)–14(i) show the mode profiles

for a wavelength of 25 μm, for mirror tilts of zero, 0.1 and
0.3 mrad respectively. Without any tilt the mode is clearly a
higher-order mode, and only a modest amount of power is
coupled out of the hole. With a tilt of 0.1 mrad, however,

FIG. 13. Variation of outcoupled power as function of mirror
tilt, for a hole size of 4 mm, at three different wavelengths for the
(a) confocal (g ¼ 0), (b) concentric (g ¼ −1), and (c) intermediate
(g ¼ −0.6) configurations.

FIG. 14. Mode profiles from the simulations with a tilted mirror
at a wavelength of 25 μm and a hole size of 4 mm, for the
confocal configuration (g ¼ 0) with tilts of (a) zero, (b) 0.3 mrad,
and (c) 0.5 mrad; for the concentric configuration (g ¼ −1) with
tilts of (d) zero, (e) 0.1 mrad, and (f) 0.3 mrad; for the
intermediate configuration (g ¼ −0.6) with tilts of (g) zero,
(h) 0.1 mrad, and (i) 0.3 mrad. For each plot the window size
is 50 mm by 50 mm.
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the mode completely changes. There is now a single intense
spot, though it is somewhat displaced from the center.
Therefore, there is now actually more power outcoupled
through the hole. For a tilt of 0.3 mrad, the mode is again of
high order, with maxima away from the hole, and hence the
outcoupled power is low.
It is interesting to compare these results with experi-

ments and simulations from the CLIO FEL [20]. CLIO has
mirrors with a radius of curvature of 3 m, and a cavity
length of 4.8 m, corresponding to g ¼ −0.6, and a 2 mm
hole in the outcoupling mirror. They find that, for this
configuration, there is more outcoupled power with a
mirror tilt of 0.4 mrad, compared to a perfectly aligned
mirror. In their case too, they find that this is because of a
change in the mode profile as a consequence of tilting the
mirror.
Our simulations show that confocal configurations are

more robust to mirror tilts compared to concentric con-
figurations. In the latter, there is no lasing beyond a tilt of
0.2 mrad. This is because the longer length of the con-
centric resonator leads to a larger spatial displacement of
the beam for a given tilt. The reflected beam therefore very
quickly goes off axis, resulting in poor overlap with the
electron beam which kills lasing. For the confocal and
intermediate configurations, with greater values of the
mirror tilt, it is possible to get more outcoupled power,
but this is only because the mode is now a more compact
higher-order mode. However, for the concentric configu-
ration the mode always remains approximately Gaussian,
while for the other two configurations the mode for a tilted
mirror is generally substantially non-Gaussian.

VI. MODE DETERMINATION

In many cases the observed mode is clearly non-
Gaussian. In principle, any cavity mode can be expanded
in a basis of either Gauss-Hermite (GH) modes or Gauss-
Laguerre (GL) modes, since each of them forms a complete
basis set [11]. However, keeping in mind the cylindrical
symmetry of the cavity, and the fact that we have a helical
undulator, one may expect the GL to be a better basis set for
the expansion, in the sense that the observed mode profile
may correspond to a single higher-order GL mode. The
same mode profile could, of course, be expanded in GH
modes, but may require a larger number of terms in the
expansion to get reasonable agreement with the observed
mode.
The electric field of the laser can be expanded in the GH

basis as

Emnð~rÞ ¼
Amn

wðzÞHm

� ffiffiffi
2

p
x

wðzÞ
�
Hn

� ffiffiffi
2

p
y

wðzÞ
�

× exp

�
−
x2 þ y2

w2ðzÞ
�
exp ½−iα�; ð5Þ

whereHn andHm are Hermite polynomials and the phase α
is given by

α ¼ K
x2 þ y2

2RðzÞ − kz − ϕnmðzÞ; ð6Þ

where

ϕnm ¼ ðmþ nþ 1Þ × tan−1
�

λðzÞ
πw2ðzÞ

�
: ð7Þ

Similarly, expansion in the GL basis is given by

Elmðr;ϕ; zÞ ¼
Clm

wðzÞ e
½ −r2
w2ðzÞ� × e−iαð−1Þmin ðl;mÞ

×

�
r

ffiffiffi
2

p

wðzÞ
�l−m

Ll−m
min ðl;mÞ

�
2r2

w2ðzÞ
�
; ð8Þ

where Ll
p is the generalized Laguerre polynomial and the

phase α is given by

α ¼ K
r2

2RðzÞ þ ðlþmþ 1Þψ þ ðl −mÞϕ; ð9Þ

where

ψ ¼ tan−1
�
z
zR

�
: ð10Þ

In order to systematically characterize these modes we
wrote a MATHEMATICA [21] program that gives the GLij
and GHij modes for given values of i and j. The code also
calculates any linear combination of GL and GH modes,
which can be compared with the modes observed in the
simulation to get the best agreement. Some of the modes
analyzed are shown in Fig. 15, and details of the best fit GL
and GH expansions are shown in Table II.
Figure 15(a) shows the mode from Fig. 9(a), where we

had observed that there is no lasing. It is clear from the
expansion (Table II, first row) that this is just a fourth-order
GL mode. Note that the expansion in terms of GH modes
requires four higher-order GH modes, and even then the
agreement is not very good. Figure 15(b) shows another
example corresponding to one of the points in Fig. 5(a),
where lasing is observed. The mode looks complicated,
showing many rings of different intensity, but our analysis
shows that it is just a first-order GL mode (Table II, second
row). Similarly, Fig. 15(c) shows a third example corre-
sponding to another point from Fig. 5(a) where there is
lasing, and again the mode is a first-order GL mode
(Table II, third row). In the latter two cases the GH
expansion also gives a reasonable fit, but it requires a
larger combination of GH modes.
Table II, fourth row, shows the modal analysis for the

mode shown in Fig. 9(b); the mode is complicated looking,
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but turns out to be a second order GL mode. Similarly, the
last row in Table II shows that the mode for the g ¼ −0.6
configuration, at a wavelength of 10 μm and a hole size of
1 mm (for which the mode profile is not shown in this
paper) is also a second order GL mode. In every case, the
GL is clearly the more natural basis set for describing the
modes. This is not surprising because of the axisymmetry.
However, for a linear undulator things may be different.
This analysis shows that even when the dominant

mode is a higher-order mode, it is generally a single GL
mode, and it should therefore be possible to suppress the
mode using intracavity elements, and force the dominant
mode back towards the Gaussian, thus enhancing the
performance of the FEL. This can be done, for example,
by the use of a graded-reflectivity mirror with an intracavity
phase element [22], or the inverted relief technique [23].

Note that this is different from saying that any mode can be
formally expanded in a GL basis; in that case there will be
many GL modes, and it will not be experimentally feasible
to suppress all of them. The alternate expansion, in GH
modes, emphasizes this point.

VII. CONCLUSION

We have performed a systematic simulation study of
resonator stability in FEL oscillators using the codes
GENESIS and OPC, varying the stability parameter (g) of
the cavity (through the cavity length), the wavelength of the
laser, and the size of the outcoupling hole. The dependence
of resonator stability on these parameters is complicated,
but certain general points emerge. In order to have stable
lasing over a wide range of wavelengths, the FEL cavity
configuration should be carefully chosen. Broadly, the
concentric configuration gives the best mode stability.
The modes typically remain close to Gaussian. However,
for the confocal configuration, and especially for the
g ¼ −0.6 intermediate configuration that we have inves-
tigated, the mode is sensitive to the wavelength and
typically higher-order modes become dominant, so that
the mode is no longer Gaussian and it may not be possible
to lase at shorter wavelengths. This is an important
observation and suggests that for FELs where wavelength
tuning is an important feature, it is better to operate the
resonator in the concentric configuration.
We also find that for the concentric and confocal

configurations, with a larger hole size one can outcouple
more power. However, intermediate configurations are
extremely sensitive to the hole size, and at larger hole
sizes the dominant mode can switch to a higher-order mode
with an on-axis minimum, reducing the outcoupled power,
and perhaps even terminating lasing.
We have also constructed a very simple matrix model of

the FEL interaction and mode propagation in the cavity. It
is significant to observe that for all these simulations our
simple analytic model, that does not have a detailed
representation of the FEL interaction, agrees extremely
well with the simulations, giving the same modes. This
shows that modes in FEL oscillators are determined more
by the cavity configuration and radiation propagation than
by the details of the FEL interaction. Therefore, our model
can be used for preliminary resonator configuration studies
that can serve as inputs for detailed FEL simulations.
We have also looked at the effect of mirror tilt and shown

that tilting the mirror displaces the mode from the center,
but can also induce higher-order modes. This can have the
interesting side effect of allowing more power to be
outcoupled compared to a perfectly aligned mirror, though
this is at the cost of having a complicated mode structure.
These simulations are in good agreement with experiments
and simulations performed at the CLIO FEL.
Finally, we have also analyzed the various higher-order

modes that are typically obtained, in terms of expansions in

FIG. 15. Mode profiles obtained from the simulations (first
row), from a Gauss-Laguerre expansion (second row), and from a
Gauss-Hermite expansion (third row); (a) intermediate configu-
ration (g ¼ −0.6), 10 μm wavelength, 4 mm hole size, (b) inter-
mediate configuration (g ¼ −0.9), 25 μm wavelength, 1 mm
hole, and (c) confocal configuration (g ¼ 0), 50 μm wavelength,
1 mm hole. Details of the mode expansions are given in Table II.
For each plot the window size is 50 mm by 50 mm.

TABLE II. Mode profiles characterized in terms of GH and GL
expansions.

λ (μm) g
Hole
(mm)

GL
expansion GH expansion

10 −0.6 4 GL04 GH01þGH32þGH21þGH10

25 −0.9 1 GL�
01 GH13þ2GH00þGH20þGH20

50 0 1 GL10 GH02þGH20

25 −0.6 4 GL02 GH12þ2GH0þGH32þGH20

10 −0.6 1 GL20 GH02þGH20þGH04þGH22
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Gauss-Laguerre and Gauss-Hermite modes. We find that in
most cases the GL is a better basis set for the expansion,
and the observed dominant mode is typically a single
higher-order GL mode. This is an important observation,
because it suggests that it should be possible to get greater
outcoupled power in such situations by the use of intra-
cavity elements to filter out the relevant higher-order mode,
leading to better FEL performance.
Our results and conclusions should be of interest and use

in the design and operation of infrared FEL user facilities,
where lasing over a wide wavelength range and with high
outcoupled power is important.
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