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In this paper the problem of radiation from the open end of a semi-infinite circular metallic waveguide
with perfectly conducting walls and a thin internal low-conducting metal coating is considered.
Electromagnetic fields are generated by the ultrarelativistic point charge moving along the axis of the
waveguide. The far fields of radiation are obtained using the near-field to far-field recovery technique. The
technique is extended for the nonmonochromatic waves. It is shown that the radiation has a narrow-band
and narrow-directional character.
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I. INTRODUCTION

Recently, a new traveling wave structure has been
proposed [1]: an internally coated metallic pipe (ICMP),
which has only a single slowly propagating (phase velocity
is equal to the velocity of light) TM01 mode. Because of an
absence of the high slowly propagating modes, the above
structure could be effectively used for particle acceleration
or generation of monochromatic radiation [2–5]. The
experimental study of an ICMP type structure is currently
under development at AREAL test facility [6]. The exper-
imental study and exploitation of this radiation are sup-
posed to extract the radiation from the open end of the
ICMP structure. The knowledge about the spectral and
angular distribution of extracted radiation is important
for experimental verification, exploitation, and further
development of the ICMP based devices.
In this paper the spatiotemporal and angular character-

istics of the charged particle electromagnetic radiation from
the open end of ICMP structure are studied. As shown in
[1], the relativistic particle moving along the axis of the
ICMP structure under certain conditions excites only the
fundamental TM01 mode. The near-field to far-field recov-
ery technique [7] is used to obtain radiated in ICMP wake
fields transformation into the far zone from the open
end of the waveguide. The technique is expanded for the
non monochromatic waves [8]. The angular, space, and
frequency patterns of the radiation are obtained.

II. STATEMENT OF THE PROBLEM

A semi-infinite circular waveguide with perfectly con-
ducting walls internally covered by a thin metallic layer of

low conductivity σ1 is considered (Fig. 1). The inner radius
of the waveguide is a and the thickness of the inner
conductive layer is d (d ≪ a).
The electromagnetic properties of the internal layer

is characterized by the dielectric permeability of the
metal ε1 ¼ ε0 þ jσ1=ω, where ε0 is the vacuum dielectric
constant and ω is the frequency.
The electromagnetic wake fields are excited by the

ultrarelativistic (with velocity v ¼ c, c being the speed
of light) point charge q moving along the axis of the
waveguide. Time t ¼ 0 (Fig. 1) corresponds to the time
when the charge reaches the open end of the waveguide.
Because of the causality principle for an ultrarelativistic
charge, the excited fields are behind the charge and for time
t ≤ 0 (position 1 in Fig. 1) the excited wake field coincides
with the wake fields excited by charge in an infinitely long
tube. The infinitely long ICMT structure [1] with a thin
inner layer is characterized by the high frequency narrow
band longitudinal impedance with a single slow propagat-
ing TM01 mode at resonant frequency [1]. The frequency
dependent longitudinal component of the electric field is
given by [1]

EzðωÞ ¼ qZ0
jjðωÞ ¼

jqcZ0

2πa2ωd

�
ω1

ω − ω1

− ω2

ω − ω2

�
; ð1Þ

where Z0 ¼ 120πΩ is the impedance of free space, ω is the
frequency, and

ω1;2 ¼ −jA=2� ωd; ωd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 − ðA=2Þ2

q
;

ω0 ¼ c
ffiffiffiffiffiffiffiffiffiffiffi
2=ad

p
; A ¼ 2cffiffiffi

3
p

a
ðςþ ς−1Þ;

ς ¼ dσ1Z0=
ffiffiffi
3

p
: ð2Þ

Other nonzero components ErðωÞ and HϕðωÞ are
derived from the Maxwell equations
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ErðωÞ ¼ Z0HϕðωÞ ¼ jkrEzðωÞ=2; ð3Þ

where k ¼ ω=c is wave number.
The radiation begins to propagate in free space at the

moment t ¼ 0 when the particle reaches the aperture
section and continues throughout the infinite time interval
0 < t < ∞ (position 2 in Fig. 1). The goal is to obtain the
analytical expressions for the radiation field in the free
space in the far (relative to the size of the aperture of the
waveguide) zone and explore the far field properties.
The exact solution by the Wiener-Hopf method [9] or by

the factorization method [10] is not intended to be found
out. In this case, it suffices to apply a method similar to the
Kirchhoff approximation [7], generalizing it to the case
of a nonmonochromatic wave [8]. The above-mentioned
method gives qualitatively correct results in the main
direction (straight ahead), where it is expected to be the
essential part of the radiation.

III. NEAR FIELD-FAR FIELD
TRANSFORMATION ALGORITHM

The technique of restoring the far field from the known
distribution of its tangential electrical components on the
plane (near field – far field technique [7]) is used. The
algorithm [7] to the extent necessary for the set goals is
briefly described and is generalized for the case of non
monochromatic (quasimonochromatic) waves.
Let on the plane z ¼ 0, where the distribution

En
x;yðω; x; yÞ of monochromatic electric field components

of the radiation is emanating from a source close to
it (Fig. 2).
In Fig. 2, the space is described by the Cartesian

coordinate system, X; Y; Z, the center of which is aligned
with the center of the aperture of the waveguide and its z
axis is aligned with the symmetry axis of the waveguide.
The spherical system of coordinates R; θ;φ describing
the far field, and the cylindrical coordinate system r; ξ; z
describing the field in the plane z ¼ 0 and the field
propagating in the waveguide are introduced as well.
In the case of a monochromatic light source, the far field

at point ~RðR; θ;φÞ in a spherical coordinate system is

associated with the Cartesian components of the near field
as follows [7]:

~Efðω; ~RÞ ¼ k cos θ~Aðkx; kyÞ
eikR

R
; ð4Þ

where

Ax;yðkx;kyÞ¼
R∞−∞

R∞−∞En
x;yðω;x;yÞe−jkxx−jkyydxdy;

Azðkx;kyÞ¼− 1
kz
fkxAxðkx;kyÞþkyAyðkx;kyÞg; ð5Þ

with

kx ¼ k sin θ cosφ; ky ¼ k sin θ sinφ;

kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − k2x − k2y

q
¼ k cos θ:

ð6Þ

The corresponding components in a spherical coordinate
system are

ER ¼ 0; Eθ ¼ Ax cosφþ Ay sinφ;

Eφ ¼ cos θðAx sinφ − Ay cosφÞ:
ð7Þ

The above equations (4)–(7) illustrate a common
near-field—far-field transformation algorithm [7]. If the
distribution on the plane is axially symmetric (depends
only on the distance r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
from the center point

of the plane) and is nonzero only within the aperture,
the expressions (5) and (7) are simplified and can be
represented as follows:

Ax;yðkx; kyÞ ¼
Za

0

Z2π

0

En
x;yðω; r; ξÞe−jkr sin θ cosðφ−ξÞdrdξ;

ð8Þ

with

En
xðω; r; ξÞ ¼ En

r ðω; rÞ cos ξ;
En
yðω; r; ξÞ ¼ En

r ðr;ωÞ sin ξ:
ð9Þ

FIG. 1. Geometry of the problem.

FIG. 2. Near-field—far-field transformation.
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Integration in (8) with respect to ξ gives

Axðkx; kyÞ
Ayðkx; kyÞ

�
¼ −2πj

�
cosφ
sinφ

�
Iðω; θÞ; ð10Þ

with

Iðω; θÞ ¼
Za

0

En
r ðω; rÞJ1ðkr sin θÞrdr: ð11Þ

With regard to (5)–(11) the z component of vector ~Amay
be represented as

Azðkx; kyÞ ¼ −tgθðAxðkx; kyÞ cosφþ Ayðkx; kyÞ sinφÞ
¼ 2πjIðω; θÞtgθ: ð12Þ

Spherical coordinates of the vector ~A can be written as
follows:

AR ¼ Aφ ¼ 0;

Aθðkx; kyÞ ¼ sec θðAxðkx; kyÞ cosφþ Ayðkx; kyÞ sinφÞ
¼ −2πjIðω; θÞ sec θ: ð13Þ

Thus, the single angular spherical far field components
of (4) can be written as

Ef
θð~R;ωÞ¼Z0Hφð~R;ωÞ¼−2πjω

c
Iðω;θÞe

iωðR=c−tÞ
R

: ð14Þ

If the source emits a nonmonochromatic wave, the
result (14) must be integrated over all frequencies:

Ef
θð~RÞ ¼

Z∞

−∞
Ef
θð~R;ωÞdω: ð15Þ

The radial component of the electric field of the wave
incident on the external aperture of the waveguide, formed
by the wakefield radiation of the point ultrarelativistic
charged particle, moving along the axis of the described
two-layer waveguide, has a radial dependence proportional
to r (3). Thus, the integral (11) can be calculated explicitly:

I∞ðω; θÞ ¼
jcqZ0

4πωd

�
ω1

ω − ω1

− ω2

ω − ω2

�
J2ðka sin θÞ

k sin θ
;

ð16Þ

where J2ðxÞ is the Bessel function of the first kind and
second order [11], and the spectral-angular distribution of
the far field may be written as

Ef
θð~R;ωÞ ¼

qZ0

2ωd

�
ωω1

ω − ω1

− ωω2

ω − ω2

�

×
J2ðka sin θÞ

sin θ
ejωðR=c−tÞ

R
: ð17Þ

The total field in the far zone at a point ~R ðR; θ;φÞ in the
integral form of (15) can be written as follows:

Ef
θð~RÞ ¼

qZ0

2ωd

Z∞

−∞

�
ωω1

ω − ω1

− ωω2

ω − ω2

�

×
J2ðka sin θÞ

sin θ
ejω=cs

R
dω; ð18Þ

with s ¼ R − ct.
The integral in (18) is calculated using the analytic

continuation of the integrand to the complex plane of the
frequencies ω. The integrand in (18) has two poles
ω ¼ ω1;2 (2), located in the lower part of the complex
plane. During the calculation, the asymptotic form of the
Bessel function J2ðxÞ in (18), valid for large arguments
(see, for example, [11]) should be taken into account:

J2ðxÞ ¼ −
ffiffiffiffiffi
1

πx

r �
1 − j
2

eix þ 1þ j
2

e−ix
�
; jxj → ∞;

x ¼ ω

c
a sin θ; 0 < θ ≤

π

2
: ð19Þ

The exponential factors in the integrand in (18) in that
case take the form ej

ω
cða sin θþR−ctÞ and ej

ω
cð−a sin θþR−ctÞ for

the first and second terms in (19), respectively. In the
integration along the contour in the shape of a semicircle
with infinite radius, located in the lower half
ðImω < 0; jωj → ∞Þ, the first and second terms vanish
under the conditions ct > Rþ a sin θ and ct > R − a sin θ,
respectively. So, both of these terms are vanishing if
ct > Rþ a sin θ. Under this condition, the integration in
(18) is reduced to the summation of the residue formed by
the poles ω1;2 (2):

Ef
θð~RÞ ¼

πZ0

R
ðBðθ;ω1Þejω1ðR=c−tÞ þ Bðθ;ω2Þejω2ðR=c−tÞÞ;

ð20Þ
where

Bðθ;ωÞ ¼ j
ω2

ωd
J2

�
ω

c
a sin θ

�
= sin θ;

Bðθ;ω2Þ ¼ B�ðθ;ω1Þ; ct > Rþ a sin θ: ð21Þ

In the upper half ðImω > 0; jωj → ∞Þ, the first term
of the integrand in (18) tends to zero under condition
ct < Rþ a sin θ, while the second one vanishes when
ct < R − a sin θ. The integration along the semicircle in
the upper half is possible upon vanishing of both terms in
infinity, i.e., when ct < R − a sin θ. Under this condition,
due to the absence of poles in the upper half-plane, the
integral (18) vanishes:

Ef
θð~RÞ ¼ 0; ct < R − a sin θ: ð22Þ
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The value of the integral (18) in the space-time domain
Rþ a sin θ > ct > R − a sin θ stays uncertain. To deter-
mine the value of the integral (18) in this space-time
domain, we represent it in the form of a sum of two
integrals:

Ef
θð~RÞ ¼ I1ð~RÞ þ I2ð~RÞ; ð23Þ

where

I1;2ð~RÞ ¼
qZ0

2ωd

Z∞

−∞

�
ωω1

ω − ω1

− ωω2

ω − ω2

�

×
Q1;2ðka sin θÞ

sin θ
ejω=cs

R
dω; ð24Þ

with

Q1;2ðθ;ωÞ ¼
1

2

�
J2

�
ω

c
a sin θ

�
∓jH2

�
ω

c
a sin θ

�

� j
2ωa sin θ

3πc

�
; ð25Þ

where H2ðzÞ is the Struve function [11].

The asymptotic representations of functions Q1 and Q2,
which are valid for jω=ca sin θj → ∞, are given by

Q1;2ðθ;ωÞ ¼ − 1� j

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πω=ca sin θ

p e∓jω=ca sin θ: ð26Þ

Thus, in the integration along the contour in the shape of
a semicircle with infinite radius, located in the lower half
ðImω < 0; jωj → ∞Þ, the exponential term in integral I1
vanishes under the condition ct > R − a sin θ and in the
integration along the contour in the same shape, located
in the bottom half ðImω > 0; jωj → ∞Þ, the exponential
term in integral I2 vanishes under the conditions
ct < Rþ a sin θ. Thus, in the total space-time interval it
is possible to achieve the simultaneous integration of
integral I1 in the lower half-plane and of the integral I2
on the upper half-plane defined by the inequality
R − a sin θ < ct < Rþ a sin θ. In this interval the value
of integral I1 is determined by the poles, located in the
lower half-plane, and the integral I2, vanishes due to the
absence of poles in the upper half-plane. Thus, the far field
radiated by the open end of the waveguide in the entire
space-time interval −∞ < ct < ∞ has been determined:

Ef
θð~RÞ ¼

8>><
>>:

πZ0

R e
A
2
ðR=c−tÞfBðθ;ω1ÞejωdðR=c−tÞ þ c:c:g; ct > a sin θ þ R

πZ0

R e
A
2
ðR=c−tÞfB1ðθ;ω1ÞejωdðR=c−tÞ þ c:c:g; −a sin θ þ R < ct < a sin θ þ R

0; ct < −a sin θ þ R;

; ð27Þ

where c.c. denotes the complex conjugation, and B1ðθ;ω1Þ
is given by

B1ðθ;ωÞ ¼ j
ω2

ωd
Q1ðθ;ωÞ= sin θ;

B1ðθ;ω2Þ ¼ B1
�ðθ;ω1Þ: ð28Þ

Thus, according to (27), the field is formed by two
successive radiation pulses. The first impulse, that reaches
the observation point, is formed in a finite time interval
−a sin θ þ R < ct < a sin θ þ R. The second pulse com-
prehends the observation point in time moment t ¼
a sin θ þ R and lasts until t ¼ ∞. The duration of the first
pulse is conditioned by the size of radius of the waveguide
and by the value of the viewing angle and reduces with a

FIG. 3. Spatial-temporal distribution of the radiation field at fixed angles of observation; θ ¼ π=100 (left), θ ¼ π=10 (right); first pulse
(dotted line), second pulse (solid line); ς ¼ 1 (black line), ς ¼ 3 or ς ¼ 1=3 (red line).
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decrease of the angle of observation. Since the radiation is
narrowly targeted, the latter’s role in shaping the overall
flow of radiation should be small. Figure 3 shows the
comparison of the space-time distribution for small (left)
and relatively large (right) viewing angles.
Spatial-temporal frequency of the pulses is equal to ωd

(for d ≪ aωd ≈ ω0). The damping is determined by the
attenuation coefficient A. The minimum value of the
attenuation coefficient accounts for ς ¼ 1. Note, that
according to (2), the attenuation coefficient A does not

change with the transition from ς to ς−1, since the curves
for ς ¼ 3 and ς ¼ 1=3 are identical.

IV. INTERPRETATION BY THE HELP OF
DIFFRACTION PHENOMENON

The presence of two consecutive pulses can be explained
with the help of the diffraction phenomenon. Substituting
asymptotic expressions (19) into (21) and using the result
for the upper row of (27), one gets for the space-time
domain ct > a sin θ þ R:

Ef
θð~RÞ ¼ − πZ0

R sin θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

πka sin θ

r
e−A

2
t

�
j
ω2
1

ωd
ð1 − j

2
eðA2cþj

ωd
c Þsþ þ 1þ j

2
eðA2cþj

ωd
c Þs−Þe−jωdt þ c:c:

�
ð29Þ

with s� ¼ �a sin θ þ R. Similarly, using (25), (28), and
(27), one obtains an asymptotic expression for the first
pulse [the second line in (27)]:

Ef
θð~RÞ ¼ − πZ0

R sin θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

πka sin θ

r

× e−A
2
t

�
j
ω2
1

ωd

1þ j
2

eð
A
2cþj

ωd
c Þs−e−jωdt þ c:c:

�
:

ð30Þ

As it is seen from (29) and (30), these high-frequency
asymptotic representations of fields formed by diffraction
beams emanate from the edge of the waveguide opening.
These rays correspond to the partial quasimonochromatic
fields with a frequency of ωd and decreasing amplitude,
with a damping factor A. The field of the first pulse (30) is

formed by a single beam emanating from a point on the
edge of the waveguide cross section closest to the point of
observation (s− is the distance from this point to the
observation point). In the formation of the field of the
second (main) pulse, the ray from the edge of the most
distant point of the cross section of the waveguide (sþ is a
distance from this point to the observation point) is also
involved. One observation point and two diffraction points
are contained in the plane of the main longitudinal cross
section of the waveguide, which contains the axis of the
waveguide.
When considering the radiation of monochromatic

waves without a fixed initial time point of emission (steady
state process) and with the zero damping decrement
[10,12,13], the process of interference of the two diffracted
rays is fully described by the help of their geometric
eikonals (geometric distances s� between the diffraction

FIG. 4. Diffraction at the open end of the waveguide: steady-state regime (top left); dynamic regime: t < t1 (top right); t1 < t < t2
(bottom left); t > t2 (bottom right).

WAKEFIELD RADIATION FROM THE OPEN END OF AN … Phys. Rev. ST Accel. Beams 17, 074701 (2014)

074701-5



points and the point of observation). As an example of
diffraction rays of an axially symmetric mode on the open
end of a perfectly conducting round waveguide is presented
in Fig. 4 (top left) schematically.
In our case, the open end of the waveguide begins to

radiate when the particle reaches its cross section, i.e., at
time t ¼ 0. The ray from the near point reaches the point of
observation, during time t1 ¼ s−=c, and the ray from the
far point, respectively, during time t2 ¼ sþ=c. Thus, the
rays torn from the edge reach the observation point at time
t01 ¼ t − t1 and at t02 ¼ t − t2, respectively. If t < t1, then
t01 < 0; t02 < 0 and neither of the two rays cannot reach the
point of observation (Fig. 4, top right), which corresponds
to the zero field therein. Consequently, during the time
interval t1 < t < t2, one has t01 > 0; t02 < 0 (Fig. 4, bottom
left) and only the nearest beam can reach the observation
point. Later on (at t > t2, then t01 > 0; t02 > 0), the second
ray also has enough time to arise and comes to the
observation point. In this case the field is formed as a
result of the interference interaction of the two rays (Fig. 4,
bottom right).
As can be seen from Fig. 4, in the case of the dynamic

regime only, the beam crosses the time line t1 − t2 and
makes a contribution to the radiation, while in the steady-
state regime both rays touch this time line at the same time.
The concept of two successive pulses is consistent with the
principle of causality and is interpreted with the help of the
time lag phenomenon.
A dual-beam radiation pattern is formed gradually,

starting from the angles θ ¼ 0 up to θ ¼ π=2 in the time
interval R < ct < Rþ a. Thus, the total time of the
formation of a two-beam radiation is ct ¼ Rþ a. In the
time interval Rþ a < ct < ∞, where the radiation over
the entire range of angles has a continuous periodic
monotonically decreasing character and is described by
the first line of (29), and for A ≪ ω0 ¼ c

ffiffiffiffiffiffiffiffiffiffiffi
2=ad

p
(or

d ≪ a), its radiation pattern can be identified, independent
of the time (Fig. 5), as

FðxÞ ¼ J2ðxÞ
x

; x ¼ ω0

c
a sin θ: ð31Þ

The maximum of the diagram (Fig. 4) does not depend
on the value of the conductivity of the inner cover and can
be determined by the following formula:

θmax ¼ ArcSinð2.3
ffiffiffiffiffiffiffiffiffiffiffi
d=2a

p
Þ ≈ 2.3

ffiffiffiffiffiffiffiffiffiffiffi
d=2a

p
: ð32Þ

For d ¼ 1 μm: θmax ¼ 23 mrad for a ¼ 1 cm and
θmax ¼ 73 mrad for a ¼ 1 mm.
The radiation power of the main lobe is concentrated in

the range of angles 0 < θ < 2θmax. It constitutes ∼79% of
the total power radiated in the front half-space, regardless
of the values of the parameters a and d (provided
that d ≪ a).

V. ENERGY DENSITY ANGULAR DISTRIBUTION

The most obvious way to fix the emission and detection
of directional properties of the field is the exposure of film
(located at some distance from the aperture R ≫ a parallel
to the aperture), which captures the power that falls on it
during the entire time of radiation. In this case, it may be
difficult to select the components of radiation, which
corresponds to the first or the second pulse.
In order to evaluate the easily measurable integral

characteristics of the radiation and its directional properties,
it is necessary to determine the angular distribution of the
energy density of the field emitted during the entire time of
radiation. Since the emitted pulses are separated in time and
space, it is possible to perform a separate calculation of
energy density distribution for each of the pulses, and to
determine the percentage of each one of them. Thus, the
angular distributions of the energies density of the first
U1ðθÞ and secondU2ðθÞ pulses can be written with the help
of the expressions for the field emission in the following
way:

U1ðθÞ ¼
2π2q2Z0

cR2
jB1ðθ;ω1Þj2

Za sin θ

−a sin θ
e−A=csds

¼ 4π2q2Z0

R2
jB1ðθ;ω1Þj2

SinhðAa=c sin θÞ
A

;

U2ðθÞ ¼
2π2q2Z0

cR2
jBðθ;ω1Þj2

Z∞

a sin θ

e−A=csds

¼ 2π2q2Z0

R2
jBðθ;ω1Þj2

e−A=ca sin θ
A

; ð33Þ

whereas the total energy density is the sum of both
densities:

UðθÞ ¼ U1ðθÞ þU2ðθÞ: ð34Þ

The direction and the overall shape of the total density of
the angular distribution of the radiation energy is mainly
determined by the second (main) pulse of radiation (Fig. 6).

FIG. 5. The radiation pattern in power (at ct > Rþ a).
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However, as can be seen from Fig. 6, the relative con-
tribution of the first pulse in the radiation increases with
increasing deviation of the parameter ς from its optimal
value ς ¼ 1.
A decrease in the radius of the waveguide leads to a

general broadening of the energy diagram, and its main
lobe, in particular (in agreement with the general theory
of antennas [14]), to the simultaneous increase of the
contribution of the first pulse. The angle of orientation of
the main peak of the energy diagram is still due to the
first maximum of the function J2ðω0=ca sin θÞ= sin θ
(under condition A ≪ ω0, which is in the frame of our
consideration) and can be defined by the formula (32).
As shown in Fig. 7, the ratio of the contributions from the

first and second pulses depends strongly on the value of ς.
A quantitative assessment of the relative contribution of the
primary (formed) radiation relative to the total flux of the
radiation produced by calculating their ratio for different
values of ς is

η ¼ U2ðθÞ=½U1ðθÞ þU2ðθÞ�: ð35Þ

A graph of η versus ς is shown in Fig. 7.

The variation of the parameter ς from 0.25 to 5 reduces
the contribution of the main emission by 8%, which did not
significantly affect the qualitative nature of the radiation.
Selection of the optimum value of the parameter ς ¼ 1 is
important, however, because the deviation from it results in
attenuation of the radiation energy (Fig. 7) and its high
damping (Fig. 3). Selection of the optimal parameter value
ς is associated with the choice of the agreed value of the
lower layer thickness d and its conductivity σ1 (2). In
particular, when d ¼ 1 μm, the optimum value of the
conductivity is equal to 4.6 × 103 Ω−1m−1.

VI. CONCLUSION

The main outcome of the research, apparently, is the
demonstration of the possibility of generating a focused
and narrow-band radiation based on wakefield radiation
in the two-layer metallic waveguide. Most of the flux is
concentrated within a narrow conical surface with half-
angle θmax. The analytic formulas describing the radiation
field at various stages of its formation are obtained. The
process of the formation of radiation is considered in detail
and the space-time region of its formation is determined.
The theory of two successive pulses forming radiation is
developed with its further geometric justification.
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