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One of the important issues of the in-vacuum undulator design is the coupling impedance of the
vacuum chamber, which includes tapered transitions with variable gap size. To get complete and reliable
information on the impedance, analytical estimate, numerical simulations and beam-based measurements
have been performed at Diamond Light Source, a forthcoming upgrade of which includes introducing
additional insertion device (ID) straights. The impedance of an already existing ID vessel geometrically
similar to the new one has been measured using the orbit bump method. The measurement results in
comparison with analytical estimations and numerical simulations are discussed in this paper.
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I. INTRODUCTION

In-vacuum undulators with a small vertical gap are the
major contributors to the total coupling impedance of
modern synchrotron light sources. So, one of the important
design issues of the vacuum chambers for in-vacuum
insertion devices (IDs) is the minimization of their imped-
ance. In the framework of the forthcoming Diamond Light
Source upgrade, additional IDs will be installed to increase
the capacity of the facility. It is proposed to convert some of
the double-bend achromat (DBA) lattice cells into a
double-DBA, with a new ID straight between the two
achromats [1]. The new lattice allows the introduction of a
2-m long in-vacuum ID with a 5 mm full gap without
impacting the limiting aperture of the existing ring and
with negligible impact on emittance and energy spread.
A standard U21 in-vacuum undulator is assumed for the
new beam line, although a cryogenic permanent magnet
undulator is also under consideration.
A series of analytical estimations, numerical simulations

and beam-based measurements have been performed to get
complete and reliable information on the ID coupling

impedance and to study the possibility of decreasing the
length of tapered transitions. For a variable-gap in-vacuum
ID, this is the first-time comparison of measured impedance
with analytical estimations and numerical simulations. The
vacuum chamber of the ID section has a complex geometry
including tapers, foils, transition between elliptic and flat
cross sections, etc., see Fig. 1. It is therefore impossible to
derive accurate analytical formulas for the impedance of the
whole chamber. Full 3D computer simulation of such a big
and complicated structure is quite difficult too because
huge memory and processor time are required, especially if
we need to know the wakefields induced by rather short
(few mm) bunches. Nevertheless, analytical formulas for
the geometric and resistive-wall impedances of a simplified
flat taper model are available, so we can estimate the
impedance as a function of gap to compare with the
measurement results. For the same flat rectangular tapered
structure, wakefield simulations have been carried out
using finite-difference simulation codes GDFIDL [2] and
CST PARTICLE STUDIO [3].

II. COMPUTER SIMULATIONS AND
ANALYTICAL FORMULAS

A. Model for calculation of geometric impedance

Here we present the simulation results, which are
compared with analytical estimates. Total impedance of
a vacuum chamber can be considered as a sum of the
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geometric and the resistive-wall components. The geo-
metric impedance is completely determined by the
chamber shape. The vacuum chamber of the ID includes
flat tapered transitions with a variable vertical aperture from
2b ¼ 5 mm (ID closed) up to 2b ¼ 30 mm (ID open). The
entrance and exit vertical aperture of the ID vacuum
chamber is 2d ¼ 18.4 mm, the length of the tapered
transition is l ¼ 108.5 mm, and the width of parallel copper
plates forming the transition is w ¼ 84 mm.
Figure 2 shows the model used for the wakefield

simulation, the structure is a rectangular tapered collimator
if b < d, whereas it is considered as a rectangular tapered

cavity if b > d. The taper length l and the entrance and exit
vertical half-aperture d are fixed and are unchangeable
during all the simulations performed. The half-gap b is
varied in the range from 2.5 mm up to 15 mm. The
separation length lID ¼ 500 mm between two tapers was
chosen long enough to be certain that the simulation results
are independent of lID. Although the actual length of the
undulator is 2480 mm, this simplification is possible
because the contribution of the flat part to the geometric
broadband impedance is negligible, as it was checked by
the wakefield simulations performed with varied length of
the central part.

B. Longitudinal impedance

A set of formulas for calculation of low-frequency
geometric impedance of tapered transitions can be found
in [4]. These formulas have been derived using perturbation
theory applied to the field equations; the applicability
condition is b≪w≪ l. Note that the requirement w ≪ l
is not strictly satisfied in our case, because w ¼ 84 mm and
l ¼ 108.5 mm. The longitudinal impedance is assumed to
be inductive at low frequencies, the frequency ω is
considered as a small parameter.
If the beam pipes connected to the transition are identical

at both ends, the perturbation theory gives the formula of
normalized impedance Z∥=n:
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FIG. 2. Simplified model for wakefield simulation: rectangular tapered collimator (upper) and rectangular tapered cavity (lower).

FIG. 1. Layout of the ID tapered transition without vacuum
enclosure.
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where g0 ¼ dg=dz, gðzÞ is the vertical gap profile along the
z axis, w is the full width, Z0 ≃ 377Ω is the free space
impedance, n ¼ ω=ω0, ω0 is the cyclic revolution fre-
quency (ω0 ¼ 2π · 533.8 kHz for Diamond). The function
FðgwÞ is defined as

FðxÞ ¼
X∞
m¼0

1

2mþ 1
sech2ϕm tanhϕm; ð2Þ

and the argument of hyperbolic functions in (2) is
ϕm ¼ ð2mþ 1Þ πx

2
. For these calculations, the infinite

sum in (2) has been truncated at 100 because there is no
further dependence on the number of terms in our case.
Figure 3 shows the normalized impedance Z∥=n of one

ID section (two tapered transitions) as a function of the gap
height 2b. There is the impedance (1) in comparison with
the results of computer simulation performed using the 3D
codes CST PARTICLE STUDIO and GDFIDL.
As one can see, the impedance calculated by CST

PARTICLE STUDIO is underestimated in comparison with
the GDFIDL data, if b < d (collimator mode). The problem
is CST PS contains two indirect integration methods. The
older and well established “indirect testbeams” can only
be used for cavitylike structures where none of the
structure intrudes closer to the beam than the entrance
and exit beam pipes. The newer method “indirect inter-
faces” is intended to address this and allow collimatorlike
structures as well. However, testing shows that this
method does not always produce good results, if meshing
is not fine enough. The indirect interfaces method requires
higher mesh density than the indirect testbeams for the
same accuracy of simulation. In our case, the integration
step size was 50 μm for the GDFIDL simulation, and the
minimum possible step size for the CST simulation was
40 μm (limited by the computer capabilities). So a
possible reason of the discrepancy between CST and
GDFIDL could be the insufficiently fine mesh for the CST
simulation.
The normalized impedance Z∥=n as a function of the

taper width w is presented in Fig. 4, both the analytical

estimation (1) and computer simulation are shown. There
are data calculated for b ¼ 15 mm (upper plot) and for
b ¼ 2.5 mm (lower plot). The other parameters are
d ¼ 9.2 mm, l ¼ 108.5 mm. As one can see, if the taper
width exceeds a certain value, the impedance becomes
independent on the width. For our case, the full width w of
ID taper (dashed vertical line in Fig. 4) is above this
threshold. For the collimatorlike structure (closed ID),
the CST and GDFIDL data diverge by the reason described
above.

C. Transverse impedance and kick factor

For a chamber with mirror symmetry relative to the
x ¼ 0 and y ¼ 0 planes, the horizontal Zx and vertical Zy
impedances can be approximated by a sum of dipole Zx;yD
and quadrupole Zx;yQ components:

Zxðω; x1; x2Þ≃ x1ZxDðωÞ þ x2ZxQðωÞ;
Zyðω; y1; y2Þ≃ y1ZyDðωÞ þ y2ZyQðωÞ; ð3Þ

where x1; y1 are the transverse coordinates of a driving
particle acting on a following particle with x2; y2 transverse
coordinates. Placing the following particle on axis (y2 ¼ 0)
we can express the dipole vertical impedance by calculation
of the wakefields using the simulation codes GDFIDL and
CST PARTICLE STUDIO. Placing the driving and following
particles off axis (y1 ¼ y2 > 0), we can express total
geometric impedance Zy, which can be compared with
the measured data.
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To compare the results of measurements and simulations,
we use the kick factor

k⊥ ¼ 1

2π

Z
∞

−∞
Z⊥ðωÞhðωÞdω; ð4Þ

where k⊥; Z⊥ are horizontal kx; Zx or vertical ky; Zy;
hðωÞ ¼ λðωÞλ�ðωÞ is the bunch power spectrum, λðωÞ is
the Fourier transform of beam linear density λðtÞ. For a
Gaussian beam and frequency-independent impedance
corresponding to the inductive regime,

k⊥ ¼ ImZ⊥c
2

ffiffiffi
π

p
σs

; ð5Þ

where σs is the rms bunch length.
In case of a wide taper (b ≪ w ≪ l) and a long bunch

σs ≫ b (inductive regime), perturbation theory applied to
the field equations [4] gives the vertical dipole ZyD and
quadrupole ZyQ impedance:

ZyD ¼ −i
π

4
Z0w

Z
∞

−∞

ðg0Þ2
g3

G1

�
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w
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dz; ð6Þ

ZyQ ¼ −ZxQ ¼ −i
π
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−∞

ðg0Þ2
g2

G2

�
g
w

�
dz; ð7Þ

where

G1ðxÞ ¼ x3
X∞
m¼0

ð2mþ 1Þcsch2ϕm cothϕm; ð8Þ

G2ðxÞ ¼ x2
X∞
m¼0

ð2mþ 1Þsech2ϕm tanhϕm; ð9Þ

gðzÞ is the vertical gap profile along the z axis, and the
argument of hyperbolic functions in (8) and (9)
is ϕm ¼ ð2mþ 1Þ πx

2
.

In Fig. 5, we plot the quadrupole kick factor as computed
by the GDFIDL code with 25 μm step size (squares) and
50 μm step size (circles) vs the kick factor calculated using
formulas (5) and (7). The bunch length was σs ¼ 7 mm. As
one can see, the GDFIDL data converge well to the
analytical results by reducing the step size for the tapered
collimator structure. A good agreement was also found
between the results for the tapered cavity structure even
with coarse step size.
Figure 6 shows the quadrupole kick factor calculated

by GDFIDL as a function of the taper full width w. The
wakefield simulations were carried out with 25 and 50 μm
step size, σs ¼ 7 mm, fixed b ¼ 2.5 mm, d ¼ 9.2 mm,
l ¼ 108.5 mm, lID ¼ 500 mm and variable w. As can be
seen the quadrupole kick factor has a maximum knob
before saturation at full width w≃ 10 mm, both for the
formula and GDFIDL simulation. Figure 6 also shows that

the GDFIDL simulation results tend to the formula, when the
step size decreases.
Figure 7 shows the dipole kick factor calculated by

GDFIDL as a function of the taper full width w for
b ¼ 15 mm (upper plot) and for b ¼ 2.5 mm (lower plot).
The wakefield simulation was carried out with 50 μm
step size, σs ¼ 7 mm, d ¼ 9.2 mm, l ¼ 108.5mm,
lID ¼ 500 mm. As can be seen the dipole kick factor
grows almost linearly first and after that reaches saturation.
The kick factor has a maximum knob at full width
w≃ 80 mm. Some research was done on flat tapered
transitions [5] with geometric parameters, which are
differed from the current geometry. The kick factor has
a knob with some maximum value in all considered cases
before it becomes independent on width. For small widthw,
the dipole kick factor from GDFIDL agrees with the solid
line in Fig. 7, representing the kick factor (5) calculated
with ZyD from formula (6).
Since the actual taper width w ¼ 84 mm is close to the

saturation threshold and the vertical impedance cannot be
approximated by (6), another model has been chosen to
estimate the vertical kick factor for comparison with the
measurement results. Formulas published in [6] have been
derived using the boundary perturbation method assuming
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a taper of infinite width, w → ∞. The frequency-dependent
vertical impedance is

ZyðkÞ ¼ −i
Z0

2πb0

×
Z

∞

−∞

ξ2

sinh2ξ

X∞
n¼0

δn
Hðkn; kÞ þHðkn;−kÞ

2iknb0
dξ;

ð10Þ

where k ¼ ω=c is the wave number, 2b0 ¼ bþ d, δn ¼ 1 if
n ¼ 0 and δn ¼ 2 if n > 0,

knb0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkb0Þ2 − ξ2 − ðπnÞ2

q
; ð11Þ

Hðp; kÞ ¼
Z

∞

−∞

Z
z1

−∞
S0ðz1ÞS0ðz2ÞeiðpþkÞðz1−z2Þdz1dz2;

ð12Þ

S0 ¼ dS=dz, SðzÞ ¼ gðzÞ−b0
b0

, gðzÞ is the vertical gap profile
along the z axis.
For a range of the ID gaps, the vertical kick factor has

been calculated by formula (4) using the impedance (10)
and the bunch power spectrum hðωÞ ¼ expð−ω2σ2s=c2Þ.
The analytically calculated kick factor kyD as a function of
gap height 2b is presented in Fig. 8 (solid line) in
comparison with the results of CST PARTICLE STUDIO
simulation (green triangles) and GDFIDL simulations per-
formed with the 25 μm step (blue squares) and 50 μm step
(magenta circles).

D. Resistive wall impedance and kick factor

In spite of the copper foil covering the magnets, resistive-
wall impedance of the long (2 m) undulator with a narrow
gap (5 mm if closed) makes considerable contribution into
the kick factor, comparable with the geometric one.
Formulas to calculate the resistive-wall impedance have
been derived analytically for the round and flat vacuum
chambers [7]. For a vertically displaced beam in a round
chamber, the transverse impedance per unit length is

Zrnd
y ðωÞ ¼ signωþ i

πb3

ffiffiffiffiffiffiffiffiffiffiffiffi
cμrZ0

2ωσc

s
1þ 3ðy=bÞ2
½1 − ðy=bÞ2�3 ; ð13Þ

where y is the beam offset, b is the inner chamber radius; μr
and σc are the relative permeability and conductivity of
the chamber material, respectively; Z0 is the free space
impedance.
For a vertically displaced beam in a flat chamber formed

by two infinitely wide plates with the distance 2b between
them, the impedance per unit length is

Zflat
y ðωÞ ¼ π

signωþ i
8b3

ffiffiffiffiffiffiffiffiffiffiffiffi
cμrZ0

2ωσc

s
1þ πy

2b tan
πy
2b

cos2 πy
2b

: ð14Þ

For a beam placed in the center of vacuum chamber,

Zflat⊥ ðωÞ ¼ π2

8
Zrnd⊥ ðωÞ: ð15Þ

The resistive-wall kick factors (4) of the flat and round
copper vacuum chambers calculated for a Gaussian bunch
with 7-mm length using the formulas (13) and (14) are
shown in Fig. 9 as functions of the chamber aperture 2b.
The resistive-wall kick factor contributed by two tapered
transitions is less than 10 V=ðpCmÞ at worst (closed ID).
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III. BEAM-BASED MEASUREMENT

To estimate the contribution of the new ID section into
the total broadband impedance of the ring, the kick factor of
the existing ID16 geometrically similar to the new one has
been measured using the orbit bump method. The meas-
urement technique has been developed and realized first at
Budker Institute of Nuclear Physics [8]. Later, similar
techniques were used at APS [9], ELETTRA [10], and
ESRF [11]. The method is based on the fact that an off-axis
beam passing through the vacuum chamber section with a
nonzero transverse impedance is deflected by the wake-
fields. If a bunched beam is displaced from the equilibrium
orbit at the location of the transverse impedance, the beam-
impedance interaction results in a kick of the beam trans-
verse momentum Δy0 proportional to the beam position y0
at the impedance location:

Δy0 ¼ q
E=e

k⊥y0; ð16Þ

where q is the bunch charge, E is its energy, and k⊥ is the
kick factor (4).
If two closed orbits are measured with different beam

intensity, the orbit deviation caused by the beam-impedance
interaction is

ΔyðsÞ ¼ Δq
E=e

k⊥y0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βðsÞβðs0Þ

p
2 sin πν

cos½jμðsÞ − μðs0Þj − πν�;
ð17Þ

where s0 is the transverse impedance location, Δq is the
bunch charge variation, ν is the betatron tune, β is the beta
function, and μ is the betatron phase advance. This wavelike
orbit deviation can be measured using beam position
monitors (BPMs), and the wave amplitude is proportional
to the kick factor at the bump location.
To reduce the systematic error caused by intensity-

dependent behavior of the BPM electronics, this error is
also measured and then subtracted. First of all, after the
initial correction of the orbit to zero, two reference orbits y01
and y02 are measured at the high and low values of beam
current. Then, after creating the orbit bump, again two orbits
y1 and y2 are measured at the same beam current values. In
the four-orbit combination Δy ¼ ðy2 − y1Þ − ðy02 − y01Þ,
the systematic error is eliminated, as well as the bump itself.
Figures 10 and 11 show the orbit deviation (17)

measured with the same gap height of 5 mm (ID closed),
but the first measurement has been done with the bunch
charge difference Δq ¼ 1.3 nC and the bump height
y0 ¼ 1 mm, whereas for the second measurement
Δq ¼ 2.1 nC and y0 ¼ 1.5 mm. In these graphs, the red
dots represent average values of ten consecutive measure-
ments of beam position and the error bars—standard
deviations. The solid line is the model orbit deviation
calculated using formula (17) and the Twiss functions from
the linear model of the magnet optics. As one can see, the
amplitude of orbit wave increases with the product y0Δq of
the bump height and bunch charge difference, in agreement
with (17).
Accuracy δy of the orbit measurement depends on the

resolution δyBPM of a single BPM as δy ¼ δyBPM=
ffiffiffiffi
N

p
,

where N ≫ 1 is the number of BPMs. In spite of the small
magnitude (few μm) of orbit deviation to be observed, the
resolution of Diamond BPMs turns out to be sufficient for
this measurement. In our case, the pure BPM noise
resulting in uncorrelated beam position uncertainty is not
expected to be that large. So we can suspect that there were
real orbit fluctuations (correlated motion due to a single or
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FIG. 10. Orbit deviation: Δq ¼ 1.3 nC, y0 ¼ 1 mm.
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several unstable correctors), which might have some
impact on the error estimate. As a result, the error bars
in Figs. 10 and 11 represent the integral error of the orbit
measurement including both BPM noise and beam position
fluctuations.
Note that formula (17) was derived for a short bump,

with the beta function βðs0Þ and betatron phase advance
μðs0Þ assumed constant through the bump length. As for
the real measurements, the bump length is a couple of
meters, and the beta function and betatron phase has been
taken averaged over the bump length. Besides the vari-
able-gap tapers, the section covered by the bump includes
few more considerable contributors to the vertical kick
factor: two step transitions from the 72 × 20 racetrack
chamber to the 82 × 38 octagonal chamber (all cross
sections in mm) and two electrostatic beam position
monitors with bellows. Thus the measured orbit deviation
represents effects of all impedances located within
the bump.

IV. DISCUSSION OF RESULTS

The vertical kick factor of ID16 has been measured for
seven values of the ID gap height. Note that a single-bunch
effect was measured and the orbit deviation (17) is propor-
tional to the single bunch charge variation. But due to the
limitation of a single-bunch current in the Diamond storage
ring, the measurements were carried out with a special
beam filling pattern: five equally spaced bunches with
1–2 mA single-bunch current. This was done to improve
the signal-to-noise ratio, because the BPM sensitivity is
proportional to the average beam current. We assume that
the bunch-to-bunch distance (about 375 ns) was large
enough to let the short-range wakefields disappear, and
there was no bunch-to-bunch interaction. The rms bunch
length at the 1–2 mA range of bunch current is 6.5–8 mm
[12]. The bunch lengthening introduced by closing the ID is
negligible.
The measurement and simulation results are summarized

in Fig. 12 representing the vertical kick factor ky as a
function of the ID gap 2b. The geometric kick factor ky is a
sum of the dipole kyD and quadrupole kyQ ones. For the
long (2 m) in-vacuum ID with the small (5 mm) gap, the

resistive-wall contribution to the kick factor cannot be
neglected, so it has been estimated separately and added to
the analytical and simulation results for comparison with
the measured data. The total measured kick factor is shown
in red dots with error bars. The simulated results by CST
PARTICLE STUDIO and the GDFIDL code are green triangles
and blue squares, respectively. The solid line is the
analytical calculation performed using formulas (10)
and (7).
Since the analytical calculations and the wakefield

simulations have been carried out for the simplified model
shown in Fig. 2, the contribution of other components of
the ID vessel were not taken into account. Nevertheless,
there is a significant gap-independent part of the kick
factor introduced by the above-mentioned step transitions
and beam position monitors. In Fig. 12, the constant
kick factor estimated as 180 V=ðpCmÞ has been added
to the analytical and simulation data for better fit of the
measured kick factor. Using the well-known formula
of low-frequency impedance of a step transition

Z⊥ ¼ i Z0ðd−bÞ
πb2

d2−b2
d2þb2, we can roughly estimate the kick factor

contributed by two transitions from the racetrack chamber
(b ¼ 10 mm) to the octagonal chamber (d ¼ 19 mm):
ky ≃ 150 V=ðpCmÞ. The rest of the constant kick factor
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can be contributed by the electrostatic BPMs, bellows and
resistive walls.
As one can see in Fig. 12, the formulas (10)–(12) and the

simulation performed using CST PARTICLE STUDIO and
GDFIDL represent the gap-dependent behavior of the kick
factor quite consistently with the measured data. Also we
can conclude that the vertical kick factor does not depend
on the taper width, if it exceeds a certain threshold. This is
illustrated by a quite good agreement between the mea-
surements, numerical simulations performed for the taper
width of 84 mm and the formulas derived for the infinitely
wide taper.
The total vertical kick factor of the Diamond storage ring

has been estimated using the broadband impedance model,
the parameters of which were obtained from the beam-
based measurements. Taking into account the geometric
and resistive-wall impedance, we can assume that for the
bunch length of 7 mm the total vertical kick factor is about
7 kV=ðpCmÞ if all in-vacuum IDs are open, and it is about
11 kV=ðpCmÞ if the IDs are closed. Thus, according to
the measurement, computer simulation and analytical
computation described in this paper, the contribution of
one in-vacuum ID section into the total vertical kick factor
is about 3.5% for the open ID and about 4.5% for the
closed ID.
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