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Beam lifetime in storage rings and colliders is affected by, among other effects, lattice nonlinearities.
Their control is of great benefit to the dynamic aperture of an accelerator, whose enlargement leads in
general to more efficient injection and longer lifetime. This article describes a procedure to evaluate and
correct unwanted nonlinearities by using turn-by-turn beam position monitor data, which is an evolution of
previous works on the resonance driving terms (RDTs). Effective normal and skew sextupole magnetic
errors at the ESRF electron storage ring are evaluated and corrected (when possible) by using this
technique. For the first time, also octupolar RDTs could be measured and used to define an octupolar model
for the main quadrupoles. Most of the deviations from the model observed in the sextupolar RDTs of the
ESRF storage ring turned out to be generated by focusing errors rather than by sextupole errors. These
results could be achieved thanks to new analytical formulas describing the harmonic content of the
nonlinear betatron motion to the second order. For the first time, linear combinations of RDTs have been
also used for beam-based calibration of individual sextupole magnets. They also proved to be a powerful
tool in predicting faulty magnets and in validating magnetic models. This technique also provides a figure
of merit for a self-assessment of the reliability of the data analysis.
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I. INTRODUCTION AND MOTIVATION

Many factors make the implementation of a magnetic
optics in a circular accelerator different from the nominal
one, among which are: deviations from the magnet cali-
bration curves and from the ideal magnetic lengths, dis-
placements from the reference position and axis, and
unknown multipole components. This generally results
in machine performances below expectations: low beam
lifetime and dynamic aperture, poor injection efficiency,
large emittances (in lepton machines), and limited
luminosity (in colliders).
While an artillery of different methods and algorithms

has been developed and successfully implemented in
routine operation for the evaluation and correction of
focusing errors (linear optics) and betatron coupling, their
extension to the nonlinear modeling and correction remains
difficult because they are either time-consuming or require
diagnostic tools unavailable a decade ago. In most cases,
such as at the ESRF storage ring, the correction of the
nonlinear optics is done by trial and error seeking heuris-
tically longer lifetime. Nevertheless, the installation of
beam position monitors (BPMs) with turn-by-turn (TbT)

acquisition system in many circular accelerators and the
parallel development of a theoretical formalism for the
description of the harmonic content of the acquired data
paved the way for more rapid and deterministic measure-
ment and correction of the nonlinear optics. This paper
proposes a new method aiming at such characteristics.
Several approaches for the evaluation of the nonlinear

lattice model exist and any attempt to offer a coverage of
the pertinent literature would be incomplete. However, in
the context of this paper a few works may be recalled, either
for their proximity or because they represented milestones
for this work. A pioneering work on the exploitation of TbT
BPM data dates back to the early 1990s [1]. The application
of the normal form approach [2,3] to single-particle
tracking data of Ref. [4] introduced for the first time an
explicit correspondence between spectral lines of TbT data
and resonance driving terms (RDTs). A breakthrough was
represented by the experience at the CERN Super Proton
Synchrotron, where sextupolar RDTs along the entire ring
were measured and used to detect faulty sextupole magnets
[5] and to extract strength and polarity of some sextupoles
[6,7]. More recently independent component analysis
(ICA) was applied to TbT BPM data for the extraction
of lattice linear and nonlinear properties [8]. Of interest are
also the experimental results of Ref. [9], where the non-
linear model was fit to the spectral content of TbT data,
even though not via the RDTs. In Refs. [10,11] simulta-
neous measurements of two RDTs, one sextupolar and one
octupolar, are reported.
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The paper is structured as follows. After highlighting
and anticipating both advantages and limitations of the
proposed method in Sec. I, the technique is introduced and
discussed in its main results in Sec. III. The experimental
results of the new method in evaluating the nonlinear
model, calibrating sextupole magnets, and computing a
corrector setting are presented in Sec. IV. The analysis of
octupolar terms is described in Sec. V. Mathematical
derivations are summarized in separate appendices
(complete proofs may be found in Ref. [12]).

II. HIGHLIGHTS AND LIMITATIONS OF THE
PROPOSED METHOD

The main highlights of the proposed scheme may be
listed as follows: (i) The harmonic analysis is performed on
the pure position data x (y), rather than on the complex
signal x − ipx (y − ipy) of Refs. [4,5], hence with no
concern about errors in the evaluation of the momentum px
(py) and about BPM synchronization; (ii) The possibility of
measuring at the same time linear combinations of all
sextupolar (normal and skew) and most of octupolar RDTs
offers a complete and simultaneous picture of all reso-
nances at a given working point, rather than having to shift
the tunes close to a single resonant condition to excite a
specific mode, as in Ref. [8]; (iii) The nonlinear problem of
inferring sextupole and octupole strengths from the beta-
tron beam motion is translated into a linear system to be
inverted (with due preliminary precautions) when RDTs are
used as observables, hence rendering the model fit and
correction straightforward; (iv) Last but not least, the
quality of the analysis of sextupolar RDTs may be self-
assessed, so as to optimize the experimental conditions as
well as the initial lattice model.
Of course, this approach suffers from some practical

limitations too.
First, the quality of the analysis is limited by the spectral

resolution, here defined as the ratio between the amplitudes
of the harmonics and the background noise. The resolution
scales with the number of turns of acquired data exploitable
for a fast Fourier transform (FFT). Ideally, the greater the
number of turns with exploitable data, the higher the
spectral resolution and hence the quality of the RDT
measurement. Data filtering and interpolation [13,14]
may provide excellent resolution already with tens of
turns, though the presence of noise [15] and the need of
detecting spectral lines whose amplitudes are orders
of magnitude lower than the tune line necessitate several
hundreds of exploitable oscillation turns. Chromaticity and
decoherence (induced by nonzero amplitude dependent
detuning) modulate and damp the TbT signal [16]. This
multiparticle effect is not contemplated here, the baseline
model being of a beam moving rigidly as a single particle.
Most of the operational settings optimized for beam life-
time and stability result in nonzero chromaticity and
amplitude dependent detuning. In the case of the ESRF

storage ring, the exploitable number of turns ranges from
about 30 to 60 turns, depending on the optics put in
operation, insufficient to detect sextupolar harmonics
whose amplitude is typically 2 or 3 orders of magnitude
lower than the tune line. Therefore, a special optics was
designed to provide almost zero linear chromaticity and
detuning. For hadron machines this may be sufficient to
obtain thousands of exploitable TbT data, as in Ref. [8]. In
lepton machines radiation damping depresses naturally the
TbT signal. At the ESRF storage ring, the damping time
being of about 2500 turns, the signal is sufficiently
depressed to compromise the whole measurement already
after 1024 turns (see Fig. 1) resulting in larger spectral
background noise, as displayed in Fig. 2. Usually either
256 or 512 turns are used for the FFT, as radiation damping
would enhance the background spectral noise.
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FIG. 1. Example of horizontal turn-by-turn beam oscillation
after the pulse of an horizontal kicker magnet measured at the
ESRF electron storage ring. A special sextupole setting was used
to minimize amplitude dependent detuning and chromaticity. The
decreasing amplitude is believed to be the result of radiation
damping (black curve, damping time of 7 ms, corresponding to
about 2500 turns).
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FIG. 2. Example of horizontal turn-by-turn spectra measured at
the ESRF electron storage ring. The two plots are the FFT of the
real signal ~xðNÞ ¼ xðNÞ= ffiffiffiffiffi

βx
p

computed over 1024 and 512
turns, respectively. Despite the longer signal, the spectrum with
1024 turns shows higher background noise, which is attributed to
radiation damping. In both cases, the region [0.5,1] is the
mirrored copy (i.e., complex conjugate) of the region [0,0.5].
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Second in the list of limitations is the BPM electronic
resolution and noise. The commercial Libera Brilliance
[17] BPMs installed in the ESRF storage ring are equipped
with a standard electronic filter that covers several turns,
resulting in TbT data corrupted from the neighbor turns.
Even though a convolution may be carried out to extract
clean TbT data, the spectral resolution remained insuffi-
cient for a detailed nonlinear analysis. A great improvement
was achieved when implementing a moving-average filter
(MAF) [18]. All results presented here are based on
acquisitions carried out with this filter.
A last limitation is linked to the linear system to be

pseudoinverted to extract the nonlinear model. The singular
value decomposition (SVD) has been used for this purpose.
The resulting model shall be then considered as effective and
the inferred sextupole errors depend clearly on the numerical
parameters (such as number of eigenvectors, choice of
weights among different possible sources of errors).

III. COMBINED RESONANCE DRIVING TERMS
FROM (DUAL-PLANE) BPM DATA

A. Theoretical results

In this section the correlation between the harmonic
content of an ideal TbT oscillation in the two transverse
planes, x and y, and the RDTs is discussed. For ideal it is
meant here a free oscillation of an instantaneously dis-
placed particle beam without any damping (for instance
from radiation, chromaticity, amplitude dependent

detuning) and with perfectly calibrated BPMs. Forced
oscillations induced by resonant devices, such as AC
dipoles, require a different description [19,20].
In Table I the spectral lines of the signals ~xðNÞ ¼

xðNÞ= ffiffiffiffiffi
βx

p
and ~yðNÞ ¼ yðNÞ= ffiffiffiffiffi

βy
p

, where β denotes the
Courant-Snyder (C-S) parameter, are listed together with
the corresponding RDTs. Higher-order octupolar lines are
analyzed in Sec. V. For the evaluation of the RDTs the
complete phase space curve ðx; pxÞ and ðy; pyÞ generated
by the TbT oscillation is necessary, which in turn requires
the combination of signals from 2 synchronized BPMs. By
analyzing its projection on the x and y axis, i.e., by using
single-BPM TbT data, RDTs are no longer measurable.
However, their linear combinations, the combined RDTs
(CRDTs) Fxy, Fyx, FNS, and FSS are still observables.
CRDTs are defined in the fourth column of Table I and are
derived in Appendix C. In Table II formulas to infer their
amplitudes and phases from the spectral lines are reported,
whereas analytic formulas for the computation of first-order
RDTs, and hence of the CRDTs, from the lattice model are
listed in Table III.
Before entering in the perilous terrain of higher orders, it

is worthwhile to define what actually order means. As
opposed to Ref. [2], the distance from the origin, i.e., the
invariant, is not used here as a perturbative parameter
defining the order of the analysis. In Appendix A it is
shown how the nonlinear betatron motion may be described
in terms of truncated Lie series: the degree of precision (and
difficulty) of the description is related to the order at which

TABLE I. List of lines in the spectra of ~xðNÞ and ~yðNÞ with corresponding measurable combined RDTs (CRDTs) F ¼ jFjeiqF and
excited resonances. A horizontal (vertical) spectral line Hðnx; nyÞ [Vðnx; nyÞ] is located at the frequency nxQx þ nyQy. For each line,
expressions for its amplitude and phase are given. The choice was made here to make use of the lines in the region [0,0.5] in tune units,
and both tunes are assumed to lay in that interval. First-order RDTs (defined in Table III) are sufficient for coupling and normal
sextupoles, while the analysis of skew sextupole terms requires a second-order analysis, through the observable RDTs (ORDTs) gjklm of
Table XIV (The justification for such a choice is given in Appendix B). Quadrupole errors are to be included in the model when
computing the Courant-Snyder (C-S) parameters used to evaluate ~xðNÞ, ~yðNÞ and the RDTs fð1Þjklm of Table III.

Spectral line Amplitude Phase ϕ Combined RDT Resonances Magnetic term

Hð1; 0Þ 1
2
ð2IxÞ1=2 ψx0 Normal quadrupole

Vð0; 1Þ 1
2
ð2IyÞ1=2 ψy0 Normal quadrupole

Hð0; 1Þ ð2IyÞ1=2jFxyj qFxy
þ 3

2
π þ ψy0 Fxy ¼ fð1Þ1001 − fð1Þ�1010 ð1; 1Þ; ð1;−1Þ Skew quadrupole

Vð1; 0Þ ð2IxÞ1=2jFyxj qFyx
þ 3

2
π þ ψx0 Fyx ¼ fð1Þ�1001 − fð1Þ�1010 ð1; 1Þ; ð1;−1Þ Skew quadrupole

Hð−2; 0Þ ð2IxÞjFNS3j qFNS3
þ 3

2
π − 2ψx0 FNS3 ¼ 3fð1Þ3000 − fð1Þ�1200 (1,0),(3,0) Normal sextupole

Hð0;−2Þ ð2IyÞjFNS2j qFNS2
þ 3

2
π − 2ψy0 FNS2 ¼ fð1Þ1020 − fð1Þ0120 ð1;−2Þ; ð1; 2Þ Normal sextupole

Vð−1;−1Þ ð2Ix2IyÞ1=2jFNS1j qFNS1
þ 3

2
π − ψx0 − ψy0 FNS1 ¼ 2fð1Þ1020 − fð1Þ�0111 ð1; 2Þ; ð1; 0Þ Normal sextupole

Vð1;−1Þ ð2Ix2IyÞ1=2jFNS0j qFNS0
þ 3

2
π þ ψx0 − ψy0 FNS0 ¼ 2fð1Þ0120 − fð1Þ0111 ð1;−2Þ; ð1; 0Þ Normal sextupole

Vð0;−2Þ ð2IyÞjFSS3j qFSS3
þ 3

2
π − 2ψy0 FSS3 ¼ 3g0030 − g�0012 (0,1),(0,3) Skew sextupole

Vð−2; 0Þ ð2IxÞjFSS2j qFSS2
þ 3

2
π − 2ψx0 FSS2 ¼ g2010;V − g�0210 ð2;−1Þ; ð2; 1Þ Skew sextupole

Hð−1;−1Þ ð2Ix2IyÞ1=2jFSS1j qFSS1
þ 3

2
π − ψx0 − ψy0 FSS1 ¼ 2g2010;H − g�1101 ð2;−1Þ; ð0; 1Þ Skew sextupole

Hð1;−1Þ ð2Ix2IyÞ1=2jFSS0j qFSS0
þ 3

2
π þ ψx0 − ψy0 FSS0 ¼ g1110 − 2g�2001 ð2;−1Þ; ð0; 1Þ Skew sextupole
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these series are truncated. RDTs depend on the strengths of
the corresponding magnets ~K ¼ ðδK1; J1; K2; J2; K3;…Þ
where δK1 is the quadrupole error field not included in the
computationof theC-Sparameters,J1 is the skewquadrupole
field,K2 and J2 are the normal and skew sextupole fields,K3

refers to the octupole and so on. First-order RDTs fð1Þ result
fromLie series truncated to the first term, are generated by the
specific corresponding magnet, as in Table III, and scale
linearly with their strengths. Schematically they may be
represented by the following chart

focusing errors fð1Þ⟵δK1

betatron coupling fð1Þ⟵J1

normal sextupole fð1Þ⟵K2

skew sextupole fð1Þ⟵J2

normal octupole fð1Þ⟵K3: ð1Þ
When the Lie series are truncated to the second order, cross-
products between themagnet strengths appear and the picture
becomes more complicated for the second-order RDTs fð2Þ

focusing errors fð2Þ⟵J1 ⊗ J1

betatron coupling fð2Þ⟵J1 ⊗ δK1

normal sextupole fð2Þ⟵K2 ⊗ δK1; J1 ⊗ J2

skew sextupole fð2Þ⟵J2 ⊗ δK1; J1 ⊗ K2

normal octupole fð2Þ⟵K3 ⊗ δK1; K2 ⊗ K2… ð2Þ
The above scheme simplifies considerably under three

reasonable assumptions. First, if the C-S parameters (β
and ϕ) used in Table III are evaluated from the lattice model
including focusing errors, δK1 ≡ 0. Second, no strong
skew sextupole is installed or powered in the machine
and J2 is generated by slightly tilted normal sextupoles,
K2 ≫ J2 and J1 ⊗ J2 ≃ 0, betatron coupling being also
weak. Third, coupling is assumed to be weak so that
J1 ⊗ J1 ≃ 0. The above RDTs then reduce to

TABLE II. Formulas to evaluate combined RDTs (CRDTs) from the secondary lines in the spectra of ~xðNÞ and ~yðNÞ assuming
properly calibrated BPMs, turn-by-turn oscillations without decoherence and quadrupole errors included in the C-S parameters.

Combined RDT Amplitude Phase qF

Fxy ¼ jFxyjeiqFxy jFxyj ¼ jHð0; 1Þj=½2jVð0; 1Þj� qFxy
¼ ϕHð0;1Þ − ϕVð0;1Þ − 3

2
π

Fyx ¼ jFyxjeiqFyx jFyxj ¼ jVð1; 0Þj=½2jHð1; 0Þj� qFyx
¼ ϕVð1;0Þ − ϕHð1;0Þ − 3

2
π

FNS3 ¼ jFNS3jeiqFNS3 jFNS3j ¼ jHð−2; 0Þj=½4jHð1; 0Þj2� qFNS3
¼ ϕHð−2;0Þ þ 2ϕHð1;0Þ − 3

2
π

FNS2 ¼ jFNS2jeiqFNS2 jFNS2j ¼ jHð0;−2Þj=½4jVð0; 1Þj2� qFNS2
¼ ϕHð0;−2Þ þ 2ϕVð0;1Þ − 3

2
π

FNS1 ¼ jFNS1jeiqFNS1 jFNS1j ¼ jVð−1;−1Þj=½4jHð1; 0ÞjjVð0; 1Þj� qFNS1
¼ ϕVð−1;−1Þ þ ϕHð1;0Þ þ ϕVð0;1Þ − 3

2
π

FNS0 ¼ jFNS0jeiqFNS0 jFNS0j ¼ jVð1;−1Þj=½4jHð1; 0ÞjjVð0; 1Þj� qFNS0
¼ ϕVð1;−1Þ − ϕHð1;0Þ þ ϕVð0;1Þ − 3

2
π

FSS3 ¼ jFSS3jeiqFSS3 jFSS3j ¼ jVð0;−2Þj=½4jVð0; 1Þj2� qFSS3
¼ ϕVð0;−2Þ þ 2ϕVð0;1Þ − 3

2
π

FSS2 ¼ jFSS2jeiqFSS2 jFSS2j ¼ jVð−2; 0Þj=½4jHð1; 0Þj2� qFSS2
¼ ϕVð−2;0Þ þ 2ϕHð1;0Þ − 3

2
π

FSS1 ¼ jFSS1jeiqFSS1 jFSS1j ¼ jHð−1;−1Þj=½4jHð1; 0ÞjjVð0; 1Þj� qFSS1
¼ ϕHð−1;−1Þ þ ϕHð1;0Þ þ ϕVð0;1Þ − 3

2
π

FSS0 ¼ jFSS0jeiqFSS0 jFSS0j ¼ jHð1;−1Þj=½4jHð1; 0ÞjjVð0; 1Þj� qFSS0
¼ ϕHð1;−1Þ − ϕHð1;0Þ þ ϕVð0;1Þ − 3

2
π

TABLE III. Formulas to calculate first-order RDTs from the
lattice model. The magnet integrated strengths (MADX defini-
tion) are J1 (m−1), K2, and J2 (m−2) for skew quadrupoles,
normal, and skew sextupoles, respectively. The C-S parameters β
and ϕ are evaluated from the linear lattice model with quadrupole
errors (i.e., beta-beating) included. Δϕw is the phase advance
between the magnet w and the location where the RDTs are
computed (BPM). Qx;y, denote the linear betatron tunes, or
eigentunes if coupling may not be neglected [21].

RDT
Resonance and
magnetic term

fð1Þ1001 ¼
P

wJw;1
ffiffiffiffiffiffiffiffiffiffi
βwx β

w
y

p
eiðΔϕw;x−Δϕw;yÞ

4½1 − e2πiðQx−QyÞ�
ð1;−1Þ skew quadrupole

fð1Þ1010 ¼
P

wJw;1
ffiffiffiffiffiffiffiffiffiffi
βwx β

w
y

p
eiðΔϕw;xþΔϕw;yÞ

4½1 − e2πiðQxþQyÞ� (1, 1) skew quadrupole

fð1Þ3000 ¼ −
P

w
Kw;2ðβwx Þ3=2eið3Δϕw;xÞ
48½1−e2πið3QxÞ� (3,0) normal sextupole

fð1Þ1200 ¼ −
P

wKw;2ðβwx Þ3=2eið−Δϕw;xÞ

16½1 − e2πið−QxÞ� (1,0) normal sextupole

fð1Þ1020¼
P

wKw;2
ffiffiffiffiffi
βwx

p
βwy eiðΔϕw;xþ2Δϕw;yÞ

16½1−e2πiðQxþ2QyÞ� (1,2) normal sextupole

fð1Þ0120¼
P

wKw;2
ffiffiffiffiffi
βwx

p
βwy eið−Δϕw;xþ2Δϕw;yÞ

16½1−e2πið−Qxþ2QyÞ� ð1;−2Þ normal sextupole

fð1Þ0111 ¼
P

wKw;2
ffiffiffiffiffi
βwx

p
βwy eið−Δϕw;xÞ

8½1 − e2πið−QxÞ� (1,0) normal sextupole

fð1Þ0030 ¼ −
P

wJw;2ðβwy Þ3=2eið3Δϕw;yÞ

48½1 − e2πið3QyÞ� (0,3) skew sextupole

fð1Þ0012 ¼ −
P

wJw;2ðβwy Þ3=2eið−Δϕw;yÞ

16½1 − e2πið−QyÞ� (0,1) skew sextupole

fð1Þ2010 ¼
P

wJw;2β
w
x

ffiffiffiffiffi
βwy

p
eið2Δϕw;xþΔϕw;yÞ

16½1 − e2πið2QxþQyÞ� (2,1) skew sextupole

fð1Þ2001 ¼
P

wJw;2β
w
x

ffiffiffiffiffi
βwy

p
eið2Δϕw;x−Δϕw;yÞ

16½1 − e2πið2Qx−QyÞ� ð2;−1Þ skew sextupole

fð1Þ1101 ¼
P

wJw;2β
w
x

ffiffiffiffiffi
βwy

p
eið−Δϕw;yÞ

8½1 − e2πið−QyÞ� (0,1) skew sextupole
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focusing errors fð1Þ ¼ 0; fð2Þ ¼ 0

betatron coupling fð1Þ←J1; fð2Þ ¼ 0

normal sextupole fð1Þ←K2; fð2Þ ¼ 0

skew sextupole fð1Þ←J2; fð2Þ←J1 ⊗ K2

normal octupole fð1Þ←K3; fð2Þ←K2 ⊗ K2 ð3Þ

These considerations (detailed mathematical derivations
may be found in Appendix A and Ref. [12]) indicate that the
first-order analytic formulas for coupling and normal sextu-
pole RDTs of Table III are valid also to the second order,
provided that the usedC-S parameters (β andϕ) are evaluated
from the latticemodel including focusing errors. By doing so,
first-order beta-beating RDTs are automatically zero.
Second-order terms are instead to be computed and

included in the evaluation of skew sextupole RDTs, which
are excited to the first order by J2 (introduced by tilted
sextupoles and/or displaced octupoles), and to the second
order by the cross-product between coupling and normal
sextupoles, K2 ⊗ J1. In machines with strong focusing,
such as light sources, strong normal sextupole (K2), even if
multiplied by low (i.e., well corrected) coupling (J1), render
the second-order contribution to the skew sextupole RDTs
comparable to that of the first order, i.e., K2 ⊗ J1 ≃ J2.
Similar considerations apply for octupolar RDTs.
Another complication appearing when second-order

terms are to be taken into account is that RDTs f ¼
fð1Þ þ fð2Þ are no longer observables from the harmonic
analysis of turn-by-turn position data. The observable
RDTs (ORDTs) gjklm may be written as

gjklm ¼ fð1Þjklm þ fð2Þjklm þLðfð1Þpqrt ⊗ fð1ÞuvwzÞ; ð4Þ

where L is a linear function and jklm ≠ pqrt ≠ uwvz. For
this reason in Table I the ORDTs gjklm replace the first-order
fð1Þjklm in the four lines corresponding to skew sextupole
harmonics. Formulas for the computation of the ORDTs
from the lattice model are derived in Appendix A and may
be easily implemented numerically. An example may help
clarify the nature of L and reveal a counterintuitive feature:
The skew sextupole ORDT g0030 reads

g0030 = f
(1)
0030 + f

(2)
0030 −

i

3
f

(1)
1010f

(1)
0120 − f

(1)∗
1001f

(1)
1020 , (5)

↑ ↑ ↑
J2 J1 ⊗ K2 J1 ⊗ K2

fð2Þ0030 ¼ i
~hð2Þ0030 þ ĥ0030
1 − e2πið3QyÞ ; ð6Þ

where ~hð2ÞðsÞ0030 and ĥ0030 are computed in Eqs. (A22) and
(A24), respectively, whereas all other first order RDTs fð1Þ
are defined in Table III. The counterintuitive feature
exhibited by the additional term Lðfð1Þ ⊗ fð1ÞÞ is that a

skew sextupole resonance, the (0,3) in the case of g0030, may
be excited even in the absence of skew sextupole sources

fð1Þ0030 ¼ 0 and far away from the resonant condition 1 −
e2πið3QyÞ ≃ 1 and fð2Þ0030 ≃ 0, for example in the presence of
large coupling and close to the difference resonance

jfð1Þ1010j ≪ jfð1Þ1001j ∼ 1, since jg0030j ∼ 1
3
jfð1Þ1020j and the nor-

mal sextupole RDT fð1Þ1020 may be arbitrarily large. The effect
of betatron coupling and sextupole resonances has been
known since more than two decades [22,23].
In summary, the CRDTs F are measurable from turn-by-

turn position data (Table II). They may be also computed
from the model (fourth column of Table I) via the first-order
RDTs (Table III) or, if second-order contributions may not
be neglected, via the ORDTs of Appendix A. The logical
scheme to be followed in the nonlinear lattice modeling
discussed in this paper is the following:

B. Experimental precautions

An important condition necessary to ensure the appli-
cability of the single-BPM TbT data analysis is that
monitors are dual-plane. In fact, in order to extract the
CRDTs the knowledge of amplitude (2I) and phase (ψ0)
of both tune lines is mandatory, which in turn requires
the possibility of measuring TbT data in both planes at
the same BPM. Another requirement is that the beam
does not experience decoherence, otherwise additional
factors are to be included, as discussed in Ref. [5].
A further condition is that BPMs have no tilt or calibra-
tion error. Uncalibrated BPMs would provide TbT data in
the form of ~xðNÞBPM ¼ ηx ~xðNÞ, where ηx ≠ 1. The
amplitude of all spectral lines of Table I would then
be multiplied by η and the formulas of Table II would no
longer apply.
The amplitude of the tune lines, jHð1; 0Þj ¼ 1=2

ffiffiffiffiffiffiffi
2Ix

p
and jVð0; 1Þj ¼ 1=2

ffiffiffiffiffiffiffi
2Iy

p
, shall be constant along the ring,

as indicated by the first two lines of Table I. If this is not the
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case, there are three possible causes to be evaluated and
removed prior to any further analysis involving other
spectral lines.
First, the linear lattice model used to evaluate the β

functions at the BPMs is incorrect. The mismatch between
model and real β functions would result in a modulation of
the amplitude of the tune lines along the ring. By
comparing and fitting the measured BPM phase advance,
a reliable focusing model may be built and used to evaluate
correctly the beta functions at the BPMs. As discussed in
Sec. V, some octupolar CRDTs may perturb the phase of
the tune lines, though this effect may be controlled by a
careful choice of the initial excitation (i.e., kicker strength).
It is worthwhile to recall that the fit of the BPM phase
advance shall be accompanied by a fit of the measured
dispersion function for a reliable model.
Second, if a modulation persists even after fitting the

BPM phase advance (and dispersion), it shall be verified
whether octupole and (second-order) sextupole terms may
introduce a dependence on the longitudinal position. As
discussed in Appendix B, this perturbation depends on the
initial oscillation amplitude (or the action), i.e., on the
kicker strength, and may be evaluated from preliminary
single-particle tracking simulations. For the measurement
procedure discussed here, it is hence necessary to limit the
kicker strength so to keep the natural modulation of the
tune line amplitude induced by sextupoles well below
the desired experimental resolution. This contrasts with the
desire of having a large signal-to-noise ratio between
spectral noise and amplitude of the sextupolar lines, which
would require a strong initial excitation. Eventually a trade
off shall be found with the help of tracking simulations and
measured data at different kicker strengths.
The third source of tune line amplitude modulation is

represented by BPM calibration factors η ≠ 1 and tilts.
Assuming that the latter are negligible compared to other
sources of errors, the only way to infer η and remove them
before carrying out the spectral analysis is to impose
constant tune line amplitude at all BPMs after having
verified the previous two points. The Fourier transform
redone after scaling the measured data by η may then be
used for the analysis of the nonlinear model.
A last interesting figure to evaluate the quality of the TbT

BPM data and of their harmonic analysis is represented by
a cancellation condition that shall be satisfied by some
measured CRDTs. According to the definitions of the
normal sextupole terms of Table I it is straightforward to
prove that

F0 ¼ 2ℜfFNS2g −ℜfFNS1g þℜfFNS0g≡ 0 ð7Þ

anywhere in the ring: the closer F0 is to zero, the more
reliable is the harmonic analysis described here. Note that
the measured F0 along the ring depends only on: (i) the
linear lattice model (β functions used to normalize the BPM

TbT data); (ii) the BPM calibration factors, spatial and
spectral resolution, and electronic noise; (iii) initial beam
excitation, i.e., kicker strength. Luckily enough, it does not
depend on the nonlinear lattice model, being valid for any
sextupole setting.

C. From normal sextupole CRDTs to sextupole errors

Let us assume to have acquired TbT data from NBPM
BPMs. From the harmonic analysis of Table II it is possible to
infer the four normal sextupole CRDTs FNS3, FNS2, FNS1,
andFNS0, at all BPMs. Since these are all complex quantities,
a NBPM · 4 · 2 vector ~FNS;meas may be defined containing the
measured real and imaginary parts of the four CDRTs

~FNS;meas ¼ ðℜfFNS3g1;…;ℜfFNS3gNBPM
;

ℑfFNS3g1;…;ℑfFNS3gNBPM
;

…;

ℑfFNS0g1;…;ℑfFNS0gNBPM
Þ: ð8Þ

An equivalent vector may be defined from the model (C-S
parameters including focusing errors, β and ϕ, and sextupole
integrated gradients, K2): The RDTs f3000, f1200, f1020,
f0120, and f0111 may be evaluated from Table III, to be used
for the evaluation of the model CRDTs through the fourth
column of Table I. Being all passages from the integrated
strengths to the CRDTs linear, the model vector may be
defined as

~FNS;mod ¼ MNS
~K2; ð9Þ

where ~K2 contains allNsext known sources of sextupolar field
along the ring, and 8 · NBPM × Nsext matrixMNS depends on
the linear lattice only, through the β functions, the phase
advances between BPMs and sextupoles and the tunes. The
difference between measured and model CRDTs then reads

~FNS;meas − ~FNS;mod ¼ MNS
~ΔK2; ð10Þ

where ΔK�!2 contains the Nsext sextupole field errors to be
inferred after pseudoinverting (via SVD, for instance) the
above linear system. Note how the choice of defining the
CRDTs vector with the real and imaginary parts ensures
the linearity of the system, whereas the choice of decom-
posing these complex quantities in amplitude and phases, as
in Ref. [9], would have introduced an unnecessary and
avoidable nonlinearity in the problem, thus requiring a

nonlinear minimization routine for the evaluation of ΔK�!2.
The linear system of Eq. (10) may be also used for the

calibration of an individual sextupole. The optics model in
this case is necessary for the evaluation of the ð8 · NBPMÞ ×
1 matrix M only, whereas the left-hand side contains two
CRDT vectors measured with two different sextupole
strengths, i.e.,
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~FNS;measðK2Þ − ~FNS;measðK2 þ δK2Þ ¼ MNSδK2: ð11Þ

After pseudoinverting the above system, the inferred δK2

may be compared with the expected value from the change
of current in the sextupole and its calibration curve. The
latter may be reconstructed and compared with the mag-
netic model (or measurement) by repeating the procedure at
different δK2. Again, the problem of calibrating a nonlinear
magnetic element is reduced to a linear system when
looking at the CRDTs.

D. From normal sextupole CRDTs
to sextupole correction

The natural extension of Eq. (10) is a system for the
evaluation of a sextupole corrector setting. If all sextupole
magnets have independent power supplies and other
sources of sextupolar fields (such as fringe fields in bending
magnets) may be neglected, the pseudoinversion of
Eq. (10) already provides the set of corrections δK

�!
2 to

insert in the sextupoles. If this is not the case and only Ncor
corrector sextupoles are available (which is the case at the
ESRF storage rings, with 224 sextupoles grouped in 7
families and only 12 sextupole correctors available), the
system then reads

~FNS;meas − ~FNS;ref ¼ MNS;cor
~Kcor
2 ; ð12Þ

where ~Kcor
2 contains the strengths of the Ncor sextupole

correctors to be evaluated after pseudoinverting the above
system, and the 8 · NBPM × Ncor matrixMNS;cor depends on
the β functions and the phase advances between BPMs and
the correctors. Note that ~FNS;ref (reference or desired
vector) has been used in place of ~FNS;mod (model vector).
The difference may be of importance for those machines
(like the ESRF storage ring) where beta-beating is cor-
rected up to some percents and special insertion optics
break up significantly the machine natural periodicity.
~FNS;ref may refer hence to the ideal lattice without any
insertion optics, whereas ~FNS;mod refers to the actual model
including insertion optics (if any) and all known lattice
errors. It is assumed here that the best CRDT correction
shall be based on the ideal vector ~FNS;ref, rather than on
~FNS;mod. Once more, the problem of correcting nonlinear
magnetic elements is reduced to a linear system, Eq. (12),
to be pseudoinverted.

E. From skew sextupole CRDTs to sextupole tilts

The procedure described in the Sec. III D may be
repeated, with some precautions, for the evaluation of
sextupole tilts. From the harmonic analysis of the TbT
BPM data and Table II it is possible to infer the four skew
sextupole CRDTs FSS3, FSS2, FSS1, and FSS0, at all BPMs,
and cast them in a NBPM · 4 · 2 vector ~FSS;meas

~FSS;meas ¼ ðℜfFSS3g1;…;ℜfFSS3gNBPM
;

ℑfFSS3g1;…;ℑfFSS3gNBPM
;

…;

ℑfFSS0g1;…;ℑfFSS0gNBPM
Þ: ð13Þ

The evaluation of the corresponding vector from the model
requires a preliminary step. As discussed in Sec. III A,
contrary to normal sextupole terms, it is not possible to
ignore the second-order contribution to the skew sextupole
CRDTs due to cross terms between coupling and normal
sextupole RDTs, see Eq. (3). In other words, ideal skew
sextupoles CRDTs shall all be zero, but even with perfectly
upright sextupoles they may be nonzero because any
residual coupling in the machine transfers normal sextu-
pole spectral harmonics in the other plane, hence generat-
ing skew sextupole harmonics and corresponding CRDTs.
Not taking into account this natural contribution would
corrupt the evaluation of sextupole tilts. For this reason new
analytic formulas valid to second order have been derived.
They are presented in Appendix A and shall be used for the
evaluation of the skew sextupole ORDTs gjklm, and hence
of the CRDTs FSS. Provided that betatron coupling is well
modeled, the second-order contribution to the CRDTs FSS
may be then computed and any difference between the
model vector ~FSS;mod and the measured one ~FSS;meas will
depend on the sextupole tilts only, i.e.

~FSS;meas − ~FSS;mod ¼ MSS
~J2; ð14Þ

where the angles θ can be extracted from J2 according to

θ ¼ −
1

3
arcsin

�
J2
K2

�
; ð15Þ

since the skew sextupole strength introduced by a tilted
sextupole is J2 ¼ −K2 sin ð3θÞ.
It is worthwhile to mention that measuring skew sextu-

polar CRDTs will be unavoidably more difficult than
extracting normal sextupole CRDTs, the latter scaling with
the (strong) sextupole gradients, while the former scale
with the (small) sextupole tilts. Depending on the lattice
configuration and coupling correction, ~FSS may be one or
two orders of magnitude lower than ~FNS.
In machines with skew sextupole correctors, the system

of Eq. (12) may be modified as

~FSS;meas ¼ −MSS;cor
~Jcor2 ; ð16Þ

where the reference vector ~FSS;ref in this case is zero. In
machines without skew sextupole correction, skew quadru-
poles may be used to correct, along with coupling, skew
sextupole CRDTs, via the second-order contributions fð2Þjklm.
This latter option, however, would require us to solve a
more complex (but still linear in the skew quadrupole
strengths) system not discussed here.
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IV. EXPERIMENTAL RESULTS

A. Preparing measurements

The first natural preliminary step is to verify the
synchronization of all 224 BPMs installed along the
ESRF storage ring and to ensure that both kickers
(horizontal and vertical) are synchronized so as to have
the bunch train on their flattop: The measured invariants
and CRDTs would be corrupted if the beam experiences the
kicker pulse rise and/or fall.
The beam filling pattern and intensity are also optimized

so as to have the best BPM resolution, this being of
paramount importance in the analysis of spectral lines
whose amplitudes are up to three orders of magnitude lower
than the tune line. The chosen beam intensity will depend
also on the range of excitation imparted to the beam. The
beam is usually displaced horizontally to the beam from 1.3
to 5.5 mm. With a β function of 36.6 m this corresponds to
an invariant between about 10−4 and 4 × 10−4 m1=2. Higher
beam current would result in a different amplification
range with lower digitization resolution, whereas stronger
excitations risk to saturate the BPM signal.
As mentioned in Sec. III B the kicker strengths shall be a

trade-off between spectral resolution (the stronger, the better)
and second-order terms affecting the invariance of the tune
line amplitude (the weaker, the better). Measurements are
usually repeated at different kicker strengths. For the final
analysis of sextupolar CRDTs only the data set of 50
repeated measurements with both invariants ≃2.0 ×
10−4 m1=2 is used (corresponding to displacement of about
2.5 mm horizontally and 1.0 mm vertically, with β functions
of 36.6 and 6.0 m, respectively). For the octupolar model,
instead, data with stronger excitations are used. Note that
hereafter, unless specified otherwise, the invariant is referred
to as 1=2

ffiffiffiffiffi
2I

p
so as to be equal to the tune line amplitude

(see the first two rows in Table I).
As discussed in Sec. I, even though more than 2000 turns

may be stored by the BPMs and the weak decoherence
ensures about 1000 turns of exploitable data, it will be
shown how the best results are obtained when only 256
turns are used for the analysis of sextupolar CRDTs (512
turns for the octupolar).
Throughout the paper, all RDTs and machine parameters

(linear and nonlinear) from the model are evaluated by
MADX-PTC [24].

B. Linear analysis of TbT BPM data

The starting linear optics model used to evaluate the
expected CRDTs and the β functions at the BPMs (neces-
sary for the construction of TbT signals to be analyzed
~xðNÞ ¼ xðNÞ= ffiffiffiffiffi

βx
p

and ~yðNÞ ¼ yðNÞ= ffiffiffiffiffi
βy

p
) is based on

the preliminary measurement and fit of the orbit response
matrix (ORM) and dispersion [25]. As a figure of merit to
assess the quality of the linear lattice model, the BPM phase
advances are used: The smaller the deviation from the

theoretical values, the better the model. At each pair of
BPMs along the ring, the difference between measured and
model phase advances may be evaluated and plotted. Its
rms value over all BPMs may be also computed and used as
a single figure of merit. In Fig. 3 an example is shown. If
the ideal model without errors is used, large deviations are
observed, with a rms of about 11 mrad. When the linear
error model computed from the standard ORM measure-
ment is used, the residual rms drops to about 7.5 mrad, with
some remaining spikes in the vertical plane. On top of the
ORM model, a response matrix on the BPM phase advance
and dispersion was built and applied to the measured values
to further reduce the deviation with the measured data. It is
interesting to note how when going from the ideal model, to
the one from the ORM, until the one matching the
measured BPM phase advances, the rms variation along
the ring of the tune line amplitude, i.e., of the invariant, is
also reduced, as displayed in Table IV.
It is also worthwhile to notice how the residual rms error

on the BPM phase advance has a minimum for the fifth data
set of Table IV, with a kicker excitation so to generate an
invariant of about 2 × 10−4 m1=2. Larger excitations seem
to induce greater errors that could not be correlated to linear
lattice elements. Octupolar terms affecting the tune lines
may be the source of this larger discrepancy.
As far as the tune line amplitude variation along the ring

is concerned, all data set with excitation lower than 2.6 ×
10−4 m1=2 show a modulation of about 0.6% (with the TbT
model, most right columns of Table IV and Fig. 4).
Tracking simulations indicate that second-order sextupolar
terms contribute a mere 0.1–0.2% of this modulation. Most
of the discrepancy can be explained by small differences in
the signal attenuation induced by BPM cables of different
lengths, which introduces a modulation in the sum BPM
signal similar to the one in the bottom plot of Fig. 5.
Eventually, octupolar terms (unknown at this stage) may
account for part of the observed modulation. For the sake of
completion, effective BPM gains have been computed so as
to cancel the tune line amplitude modulation corresponding
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FIG. 3. Example of measured BPM phase advance deviation
from the models: ideal (black), with errors inferred from ORM
measurement (red) and with errors after fitting the measured
BPM phase advance and dispersion (green). Data correspond to
the fifth row of Table IV.
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to the fifth data set of Table IV, though they turned out to
play a limited role in the nonlinear analysis.
Even though it is not used for the determination of linear

lattice model, it is interesting to note how the CRDTs
cancellation condition defined by F0 of Eq. (7) is improved
when the BPM phase advance is corrected. In general, the
closer F0 is to zero among all BPMs, the more accurate is
the harmonic analysis. F0 is evaluated with the CRDTs
measured from the sextupolar spectral lines according to
Table II. Its rms values (for the fifth data set of Table IV)
goes from 4.4 m−1=2 with the ideal linear model, to
4.3 m−1=2 with the ORM error model, and eventually to
3.7 m−1=2 with the model based on the BPM phase
advance, even though large fluctuations among the 50
acquisitions are present, as shown in Fig. 6.
In conclusion, the linear analysis of the tune line

(amplitude and phase) provided an effective linear model

that improves considerably the quality of the harmonic
analysis. The deviation between model and measured BPM
phase advance is reduced by a factor greater than ten. The
modulation of the tune line (i.e., of the invariant) is reduced
from 2% to 0.6% or less. The cancellation term F0 is
reduced by about 20%. Effective BPM gains could be
inferred from the tune line amplitude modulation.

C. Nonlinear analysis of TbT BPM data

The effective linear lattice error model discussed in the
previous section may now be used to evaluate the modulated

TABLE IV. Kicker strengths and corresponding invariants for the 8 sets of TbT BPM data (50 repeated acquisitions). The rms
modulation of the tune line amplitude (i.e., of the invariant) and the rms deviation from the model BPM phase advance are measured
with three different linear lattice models: ideal with no error, with errors inferred from precedent ORM measurement and fit, and from
the harmonic analysis of TbT data. Horizontal and vertical data for the BPM phase advance are merged together when computing the
rms deviation.

Ideal lattice model Model with errors (ORM) Model with errors (TbT)

(H,V)
kicker
strength
(A, kV)

(H,V) mean
invariant
(m1=2)
×10−4

(H,V) rms
modulation

(m1=2)
×10−6

BPM
phase advance

rms error
×10−4 (rad)

(H,V) rms
modulation

(m1=2)
×10−6

BPM
phase advance

rms error
×10−4 (rad)

(H,V) rms
modulation

(m1=2)
×10−6

BPM
phase advance

rms error
×10−4 (rad)

(50, 1.0) (0.52, 0.89) (0.9, 1.6) 111 (0.7, 1.0) 75 (0.4, 0.4) 16
(100, 1.0) (1.00, 0.90) (1.7, 1.6) 110 (1.3, 1.0) 74 (0.7, 0.4) 13
(100, 1.5) (1.00, 1.37) (1.8, 2.4) 110 (1.3, 1.5) 74 (0.7, 0.7) 14
(200, 1.5) (1.99, 1.42) (3.5, 2.5) 111 (2.4, 1.6) 76 (1.4, 0.6) 11
(200, 2.1) (2.01, 1.98) (3.5, 3.5) 111 (2.4, 2.3) 75 (1.3, 0.9) 9
(250, 2.7) (2.55, 2.58) (4.5, 4.5) 111 (3.0, 3.3) 77 (1.7, 1.5) 12
(400, 2.5) (4.11, 2.52) (7.5, 4.8) 119 (4.8, 4.0) 91 (3.3, 2.2) 35
(400, 3.0) (4.14, 2.98) (7.5, 6.0) 118 (4.8, 5.0) 91 (3.5, 3.0) 36
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and vertical (bottom) tune line amplitudes along the ESRF
storage ring. Data correspond to the last row of Table IV (average
over 50 acquisitions).
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C-S parameters necessary to normalize the TbT data (β
functions) and to evaluate the model CRDTs from Tables III
and I. The measured CRDTs are instead inferred from the
sextupolar linesHð−2; 0Þ,Hð0;−2Þ, andVð�1;−1Þ accord-
ing to Table II. These lines are represented in blue in the
example of measured spectra of Fig. 7. As for the linear
analysis, a data set among those acquired at different kicker
strengths is to be chosen, considering that a too weak
excitation may affect the measurement because of the low
signal-to-noise ratio, whereas a too strong excitation may
introduce high-order terms not included in the present
analysis. As discussed in Sec. III B, the nonlinear analysis
presented here is valid as long as the CRDT residual F0 of
Eq. (7) is much lower than the average CRDT amplitudes.
The rms values of F0 (computed after averaging among the
224 BPMs and the 50 acquisitions) for each data set and for
different linear lattice models are reported in Table V.
Because of the ESRF storage ring tune working point

(Qx ¼ 36.440 and Qy ¼ 13.390) two sextupolar lines,
Hð0;−2Þ and Vð−1;−1Þ, necessary for the evaluation of
as many CRDTs receive a contribution from higher-order

octupolar terms, as shown in Fig. 7. A complete list of the
octupolar spectral lineswill begiven inSec.V. Ifnot taken into
account or avoided, this superposition will corrupt the CRDT
measurement and the overall nonlinearmodel. Even though it
is not possible to disentangle the individual contributions, the
CRDT residual F0 may be evaluated: the closer to zero, the
less detrimental are the octupolarlike terms. Another way out
may be found by slightly detuning themachine so as to ensure
a sufficient separation between these lines: By setting for
example Qx ¼ 36.438 and Qy ¼ 13.385 a separation of
0.022 in tune units would be assured. In the acquired data
(at nominal tunes) themeanvalueofF0 is alwaysvery close to
zero (between −0.4 and 0.8 m−1=2, depending on the data
set). The lowest rms F0 (3.7 m−1=2) is obtained for an
excitation corresponding to a mean invariant (in both planes)
of 2.0 × 10−4 m1=2. The CRDTs measured from this data set
are then used for the nonlinear lattice modeling.
As for the linear analysis, a figure of merit needs to be

defined to quantify the goodness of the sextupole model.
The difference between the measured CRDT vector and the
one for model may be used to this end. The rms value of
this vector, i.e., the residual R, provides a figure of merit
for the model,

residual R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hj~FNS;meas − ~FNS;modj2i

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðFNS;measðiÞ − FNS;modðiÞÞ2
s

; ð17Þ

where N ¼ 8 · NBPM [the 4 CRDTs are complex quantities,
separated in real and imaginary parts, see Eq. (8)]. It is
worthwhile to notice that R depends greatly on the lattice:
Different machines and optics may result in different
residuals for a similarly good sextupole model. In order
to compare different storage rings or settings, the residual
may be normalized by the mean CRDT amplitude.
A convenient way to display measured and model

CRDTs is to separate their phase and amplitude. In the
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left plot of Fig. 8 the measured CRDT phases are shown
together with the corresponding expectation from the ideal
model of the ESRF storage ring. The agreement is already
remarkable, as are the small statistical error bars. When
comparing the CRDT amplitude instead (right plot of
Fig. 8), the 16-fold periodicity of the ideal curves is
modulated in the measured CRDTs. The overall residual
is R ¼ 7.7 m−1=2.
Interestingly, in an earlier analysis based on a sextupole

calibration curve measured in 2001 the initial residual was
about 10% higher (R ¼ 8.4 m−1=2) and the magnetic errors
inferred from the measured CRTDs yielded suspiciously
large errors in some sextupole families. This curve was
indeed obtained after cycling a spare sextupole to 250 A.
On the other hand, those installed in the ring (mechanically
and magnetically identical to the spare one, with a few
exceptions) are grouped in seven families (3 chromatic and
4 harmonic) subjected to different cyclings: close to 250 A

for the chromatic sextupoles, between 120 and 150 A for
the harmonics. These facts triggered a new campaign of
magnetic measurements in 2012, reproducing in the labo-
ratory the different cyclings. These new calibration curves
are used since then for this analysis, resulting in the smaller
initial residual of R ¼ 7.7 m−1=2 and in much lower errors
in the harmonic sextupoles. This was the first evidence of
the predicting power of this new technique.
The observed modulation of the CRDT amplitudes on

top of the 16-fold periodicity is greatly reproduced after
introducing in the model the linear lattice errors, as shown
in the left plot of Fig. 9. The modulated β functions and
phase advances seem to be an important source, the residual
R dropping by more than 60% to 3.2 m−1=2. It should be
mentioned that the ESRF storage ring suffers from large β
beating (about 2–3% rms) compared to more recent third
generation light sources (well below 1%), because only 32
corrector quadrupoles are available for its correction (out of
256 magnets grouped in 6 families). The modulation of the
CRDT amplitudes in other machines, then, shall depend
greatly on their level of β beating. As far as the ESRF
storage ring is concerned, this second-order effect of
quadrupole errors on sextupole resonances generates in
some regions CRDTs of about 50% (up to 100% for the
vertical CRDT FNS0) larger than in an ideal machine (see
right plot of Fig. 8). This may have a considerable impact
on the dynamic aperture of the ring (the larger the CRDTs,
the greater the phase space distortion), independently on
any possible sextupole error.
Before performing the SVD pseudoinversion of the

linear system of Eq. (10) to infer sextupole errors, the
measured CRDTs are compared to the model after
introducing sextupolar fields in the 64 main bending
magnets. Measurements performed on prototypes in the
early 90s [26] indicated an integrated sextupole field of

TABLE V. Measured rms variation along the ESRF storage ring
of F0 against different lattice models (i.e., β functions at BPMs)
for all acquired data sets. The mean value is between −0.4 and 0.8
depending on the set (50 acquisition each, FFT over 256 turns).

rms F0 (m−1=2)

(H,V) kicker
strength
(A, kV)

(H,V) mean
invariant

m1=2 × 10−4

Ideal
lattice
model

Error
model
(ORM)

Error
model
(TbT)

(50, 1.0) (0.52, 0.89) 8.4 8.8 8.5
(100, 1.0) (1.00, 0.90) 5.6 5.9 5.4
(100, 1.5) (1.00, 1.37) 4.8 5.0 4.4
(200, 1.5) (1.99, 1.42) 4.4 4.4 3.9
(200, 2.1) (2.01, 1.98) 4.4 4.3 3.7
(250, 2.7) (2.55, 2.58) 5.1 4.9 4.3
(400, 2.5) (4.11, 2.52) 7.8 7.5 7.5
(400, 3.0) (4.14, 2.98) 7.9 7.6 7.6
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FIG. 8. Red: CRDT phases (left) and amplitudes (right) measured at the ESRF storage ring (with a special dedicated optics). Blue: the
same quantities computed from the ideal perfect lattice. The residual for this model is R ¼ 7.7 m−1=2.
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−1.8� 0.1 T=m. The plot of Fig. 10 shows how the
residual R reaches a minimum with a field of
−1.77� 0.09 T=m. The agreement is excellent, again
confirming the reliability of this measurement.
Interestingly, when solving the system of Eq. (10) to

evaluate the sextupole errors, the average error per family is
reduced by about one order of magnitude after introducing
the −1.77 T=m sextupole field in all 64 bending magnets,
as reported in Table VI.
However, in both cases the sextupole family S4 seems to

have a larger rms spread (0.8%) compared to other families
(between 0.1% and 0.4%). The magnets exhibiting the
largest deviations turned out to be the only four (recently
installed) independent sextupoles, with a relative error of
about −1.5%. These are shorter than the standard ones
(20 cm instead of 40 cm) and have been displaced by 10 cm
with respect to the nominal position so as to lengthen two

straight sections. New positions and calibration curves have
been included in the model (the integrated strength shall be
the same of the standard S4 sextupoles). A more detailed
analysis on these magnets is reported in Sec. IV E. When
introducing the sextupole field in the bending magnets and
fitting the 224 magnet errors by inverting the system of
Eq. (10), the residual drops to R ¼ 1.8 m−1=2: The corre-
sponding CRDT amplitudes are displayed in the right plot
of Fig. 9, while the errors (mean and rms of each family) are
reported in the last column of Table VI: The great majority
of the sextupole errors are well below the �1% specifica-
tion, as displayed in Fig. 11.
Of course, the inferred errors vary according to the

parameters for the SVD pseudoinversion of Eq. (10). All
the results shown in this section are derived by cutting the
number of eigenvectors to 26 (out of 224): more vectors
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TABLE VI. Mean and rms sextupole field relative errors (per
family) inferred from the CRDTs measurement. “Baseline
model” includes bending magnets with no higher-order fields,
whereas a sextupole component of −1.77 T=m is inserted in the
model of the last column. This improves the overall residual R
(see Fig. 10) and lowers the average errors in the 224 sextupoles
by about one order of magnitude.

Relative error [%] (average � rms) per family

Family with baseline model with −1.77 T=m in bendings

S4 −0.12� 0.79 −0.02� 0.80
S6 0.20� 0.43 −0.02� 0.43
S13 −0.14� 0.34 0.02� 0.34
S19 0.04� 0.11 ∼0.0� 0.11
S20 −0.07� 0.11 0.01� 0.11
S22 0.24� 0.41 −0.03� 0.41
S24 −0.09� 0.41 0.01� 0.42
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induce a limited reduction of less than 0.1 m−1=2 in the final
residual R at the expense of large sextupole errors, well
beyond 1%.
The sextupole field errors of Fig. 11 are computed

assuming that all 224 sextupoles are placed at their nominal
longitudinal position along the ring. Any displacement along
s, e.g., the circumference, would change the CRDTs through
the β functions and phases ϕ (see Table III) because of the
dependence of the latter on s. Part of the field errors
attributed to the magnets by the CRDTs may actually be
a combination of magnetic imperfection and longitudinal
displacement. Periodic metrological surveys and adjust-
ments are carried out at the ESRF storage ring twice per
year. However, they ensure a state-of-the-art alignment on
the transverse plane only. A longitudinal alignment was
carried out in the early 1990s during the installation only,
with specifications in the mm range. To understand the
contribution of longitudinal displacements δs on the CRDTs
and, hence, on the equivalent field errors in the sextupole, the
response matrix of Eq. (10) was extended, namely

~FNS;meas − ~FNS;mod ¼ MNS

�
wK · δK

�!
2

ws · δs
!

�
; ð18Þ

where δs
!

contains the Nsext ¼ 224 sextupole longitudinal
displacements, whereas wK andws ¼ 1 − wK are introduced
toweigh out the two contributions.MNS is now a 8 · NBPM ×
2 · Nsext response matrix. It has been observed that by
allowing rms longitudinal displacement up to about 3 mm
the magnetic errors drop by about 15%.
In Fig. 7 four spectral lines excited by skew sextupolar

terms, Hð�1;−1Þ, Vð−2; 0Þ, and Vð0;−2Þ are visible,
hence measurable. Since no physical skew sextupole is
installed in the machine, they are generated only by tilts of

the main normal sextupoles (or their residual skew com-
ponents) and by the cross product between residual
coupling and normal sextupoles. The former is a first-
order contribution, i.e., it can be well described by the
RDTs fjklm of Table III, whereas the latter is a second-order
term that can be correctly described only by the second-
order RDTs gjklm of Table I, to be evaluated from the model
as described in Table XIVof Appendix A. From these four
spectral lines, skew sextupole CRDTs FSS can be measured
after applying the corresponding formulas of Table II.
However, because of the low coupling and small sextupole
rotations, the lines are about one order of magnitude lower
than those excited by normal sextupoles (see Fig. 7).
Hence, the signal-to-noise ratio becomes an issue and
the measurement of the skew sextupole CRDTs is less
reliable, as can be seen from the top left plot of Fig. 12
where the error bars (evaluated from the statistics over 50
acquisitions) are of the same order of magnitude of the
baseline skew sextupole CRDTs. In order to enhance the
signal-to-noise ratio of the four lines, another series of
measurements have been taken after introducing large
coupling, by powering a well-calibrated skew quadrupole
corrector. By doing so, the second-order contribution to
~FSS;mod of Eq. (14) from gjklm becomes dominant, though it
can be evaluated from the model with great accuracy. The
four skew sextupole spectral lines are now enhanced well
above the noise level and the CRDT measurement becomes
more reliable, with smaller error bars (in relative terms), as
shown in the top right plot of Fig. 12. As done for the
sextupole field error, the system of Eq. (14) may be
pseudoinverted via SVD and an effective model of sextu-
pole tilts may be inferred from Eq. (15). In the bottom left
plot of Fig. 12 a model obtained with 35 out of 224
eigenvalues is displayed, with the corresponding CRDTs
shown in the bottom right plot of the same figure.
The resulting rms sextupole rotation is of about 1.3 mrad,

with some magnets exceeding �3 mrad. Again, results
vary according to the number of eigenvalues. However,
metrological surveys ensure rms girder rotations well below
0.1 mrad and it is hard to believe that magnets installed onto
them may account for more than 1 mrad. An alternative
explanation for such large skew sextupole components has
been proposed and is currently being investigated. During
magnetic measurements of new quadrupole magnets a large
skew quadrupole component was measured each time the
two halves of the yoke were not properly aligned (see left
picture of Fig. 13): For that specific magnet, as a rule of
thumb, a horizontal displacement between the two yokes of
100 μm would generated a skew quadrupole field, corre-
sponding to about 1 mrad equivalent rotation. This sensi-
tivity is suspected to be of importance for sextupoles too,
these being actually separated in three yokes (right picture
of Fig. 13). Numerical simulations and magnetic measure-
ments are planned to validate this conjecture. If confirmed,
hence, the large skew sextupole components observed in
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the ESRF storage ring may be induced by the limited
precision in the assembly of the three sextupole yokes,
rather than by the physical magnet rotation as a whole.
Another source of skew sextupole components in the
normal sextupoles is being investigated: As shown in the
bottom picture of Fig. 13, the cooling circuit is such to
generate a temperature gradient among the six poles and, in
turn, mechanical and magnetic asymmetries. These are
believed to induce additional multipole components,
among which skew sextupoles.

D. Correction of sextupolar CRDTs

After building up a realistic sextupolar error model, the
natural further step would be to use the measured CRDTs
(~FNS;meas) and the desired one (~FNS;ref , from the ideal lattice
model with no error), insert them in the linear system of
Eq. (12), and pseudoinvert it to evaluate the strengths of the
available sextupole correctors. The result of such an

exercise is shown in Fig. 14, where the difference vector
~FNS;meas-~FNS;ref is plotted before and after the correction,
together with the corresponding strengths of the 19
available sextupole correctors.
Even if elegant and efficient (the residual is almost

halved with just 19 correctors out of 224 sources of errors),
this approach is rather inconvenient. The main reason is
that, while focusing errors and coupling may be evaluated
and corrected routinely from ORM measurements, TbT
BPM measurements are less obvious and difficult to
perform with the same regularity.
A rapid look at the evolution of the residual R as a

function of the lattice models may provide a handy, though
not perfect, solution. Table VII summarizes this depend-
ence. Because of the relatively large persistent β-beating in
the ESRF storage ring, the main contribution to the
measured CRDTs (∼50%) originates from focusing errors,
whereas only 25% seems to stem from sextupole errors and
a further 25% is not accounted for (possibly because of
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FIG. 12. Top: amplitude of skew sextupole CRDTs measured at the ESRF storage ring (red) and from the model with no sextupole
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is performed with 35 (out of 224) eigenvalues. Bottom right: model (green) and measured (red) CRDTs after introducing these tilts.
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higher-order terms affecting the sextupolar spectral lines, as
shown in Fig. 7). This means that a detailed linear lattice
model would describe the true CRDTs with an accuracy
sufficient for their rough correction, even ignoring

sextupole errors. This corresponds to use and correct the
black (model) curves in the left plot of Fig. 9 instead of the
(measured) red curves: Even if not perfect, the model
CRDTs may already be used for an effective and rapid
correction. This may be a peculiarity of machines like the
one at the ESRF. For more recent accelerators with
independent magnets, and hence with much lower residual
focusing errors, this may not be the case.
To verify this conjecture, a test during machine-

dedicated time was carried out. The software application
for the measurement of the ORM and correction of
focusing and coupling errors was modified to compute
the normal sextupole CRDTs from the lattice model (i.e.,
from Tables III and I) including focusing errors and
coupling, generating the ~FNS;meas vector. The ideal C-S
parameters were instead used to compute the ideal
CRDTs, ~FNS;ref . In both cases sextupoles with no error
were used. The system of Eq. (12) was then pseudoin-
verted to infer the strengths of the sextupole correctors.
This procedure was applied to a standard multibunch
optics optimized for a train of 868 bunches (7=8 of the
storage ring circumference) filled with 200 mA (i.e.
0.23 mA per bunch). To enhance the Touschek effect
which is believed to be presently the main limitation for
the lifetime, another filling pattern with 192 bunches, each
of about 1 mA, was stored. With all sextupole correctors
turned off and a vertical emittance ϵy ¼ 7.1 pm
(ϵx ¼ 4 nm), a lifetime of 16.2 hours was measured.
After applying the standard manual optimization of the
four sextupolar resonance stop bands, the lifetime reached
24.2 hours. When the strengths computed automatically
from Eq. (12) were used, the measured lifetime was 22.4
hours. This proved the effectiveness of the method, which
can be used for a first correction from scratch before
trimming the correctors by hand with the standard ESRF
procedure. Nevertheless, it turned out to be not yet
optimal. Another test was carried out to a different optics
with higher chromaticity (to stabilize higher charges per
bunch) and clearly showed a poorer performance of the
CRDT correction compared to the standard procedure.
The reason for this dependence on the implemented optics
has not been yet understood.

FIG. 13. Top: Mechanical assemblies of the ESRF magnets:
Quadrupoles are separated in two halves (left), whereas three
yokes are screwed together to create sextupoles (right) with
survey monuments being placed on one arc only. Bottom: The
infrared image of a sextupole in operation shows a difference of
temperature among the six poles up to 5° C.
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vectors before (black) and after (orange) correction. Bottom:
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TABLE VII. Residual R of Eq. (18) between the measured
normal sextupole CRDTs and different lattice models.

Model characteristics
Residual R
[m−1=2]

ideal latticeþ 2001 sextupole calibration 8.4
ideal lattice þ 2012 sextupole calibration 7.7
lattice with focusing errorsþ 2012 sextupole
calibration

3.2

lattice with focusing errorsþ 2012 sextupole
calibration þ sextupole errors

1.8
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E. Beam-based calibration of
independent sextupoles via CRDTs

As discussed in the last paragraph of Sec. III D, the
measurement of CRDTs FNS may be repeated for different
gradients of individual sextupoles or correctors to obtain a
calibration curve, (integrated) strength vs. current. The
ESRF storage ring comprises of 224 sextupoles mostly
grouped in seven families, each sharing a common power
supply. Six new short magnets recently installed to
lengthen three straight sections are fed independently,
and two standard sextupoles have been stripped out and
paired on a single power supply. The correction of
sextupolar resonances is carried out by twelve correctors
(trim coils) hosted in as many magnets of the families S24
(eight) and S20 (four). Even though magnetically identical,
because of the different working points, the (stronger)
chromatic S20 are close to saturation, whereas the (weaker)
harmonic S24 are still in the linear regime. This results in
trim coils with different calibration curves, i.e., the slopes
Cf of the linear curve K2 ¼ Cf · I, where I denotes the
imparted current.
By measuring the CRDTs it is then possible to validate

the calibration of both the trim coils and the six indepen-
dent short sextupoles S4. The first check is necessary for
the effectiveness of the automatic resonance correction
discussed in the previous section, whereas the latter is to
confirm the hypothesis raised in Sec. IV C of having short
sextupoles weaker than expected.
For two trim coils in cell 8 (S20C8 and S24C8) the

measurement has been carried out with several points and
the calibration coefficient is obtained from a linear fit of the
curve K2 ¼ Cf · I. As shown in the upper plots of Fig. 15
the agreement with the model is nearly perfect for the
corrector S20C8, and compatible within 10% for S24C8.
The same measurement was then repeated for the other ten
correctors. Results are reported in the bottom chart of
Fig. 15. Because of the limited available machine time, the
linear fit for the remaining ten correctors was carried out
with two points only, at�1 A. Between each measurement,
magnets were not cycled and the persistence of some
remaining magnetic fields could not be excluded. If these
arguments may explain the poorer agreement between
standard model and measured coefficients for these ten
correctors, they cannot justify the large discrepancy
observed for two trim coils, in S24C23 and S24C29,
respectively. As far as the corrector in cell 23 is concerned,
the explanation is rather simple: As of 2013 the standard
40 cm long main magnet has been replaced by a new short
type. As a result, the calibration for its corrector is almost
halved (Cf from 0.443 to 0.239 A−1m2), consistent with
the measured value. In the case of the trim coils of S24C29,
thanks to this measurement, a mismatch was indeed found
between the power supplies (recent 2-A types) and one of
the two driver cards (still set for an old 5-A type). This
incongruity resulted in a corrector about 30% weaker than

normal (Cf from 0.443 to 0.310 A−1m2), again consistent
with measurements. Following these findings, the software
driving the trim coil S24C23 has been updated, and the
driver card of S24C29 was reprogrammed.
Results from the same measurement carried out for one

of the six new (short and independent) sextupole in cell 15,
S4C15, are reported in Fig. 16. This beam-based calibration
(Cf ¼ 0.0238� 0.002 A−1m2) is compatible with mag-
netic measurement (Cf ¼ 0.0241).
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FIG. 15. Beam-based calibration of sextupole correctors (trim
coils) from measurements of CRDTs and Eq. (11). For two
correctors in cell 8 of the ESRF storage ring the curves have
been measured in detail with several points: S20C8 is hosted in a
chromatic sextupole (top plot) close to saturation, hence with a
coefficient lower than in the correctors installed in the harmonic
sextupoles, such as S24C8 (center plot), which are still in the linear
regime. The measured coefficients (i.e., the slopes of the above
plots) for all twelve trim coils are reported in the bottom chart.
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V. GOING BEYOND: OCTUPOLAR SPECTRAL
LINES, CRDTS, AND MODELING

Figure 7 reveals the existence of four spectral lines well
above noise level (and hence measurable) excited by
octupolar CRDTs, namely Hð3; 0Þ, Hð−1; 2Þ, Vð2; 1Þ,
and Vð2;−1Þ. As shown in the same figure and described
in Table VIII, two additional lines are excited by these
terms, Hð1; 2Þ and Vð0; 3Þ. However, the latter are indis-
tinguishable from the sextupolar lines Hð0;−2Þ and
Vð−1;−1Þ, respectively, because of the tune working point.
Hence the corresponding CRDTs FNO4 and FNO5 of
Table VIII are not observable in our case. The best setting
for the ESRF storage ring turned out to be the last of
Table IV, with the horizontal kicker fired at 400 A and the
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FIG. 16. Beam-based calibration of the short independent
sextupole S4C15 from measurements of CRDTs and Eq. (11).

TABLE VIII. List of lines in the spectra of ~xðNÞ and ~yðNÞ excited by normal octupole CRDTs F ¼ jFjeiqF and excited resonances.
For each line (defined as in Table I), expressions for its amplitude and phase are given. The tune lines Hð1; 0Þ and Vð0; 1Þ are also
affected by octupolar terms that are however not observable. Quadrupole errors are to be included in the model when computing the
Courant-Snyder (C-S) parameters used to evaluate ~xðNÞ, ~yðNÞ and the CRDTs gjklm, which are defined in Table XV.

Spectral line Amplitude Phase ϕ Combined RDT Resonances Magnetic term

Vð0; 3Þ ð2IyÞ3=2jFNO5j qFNO5
þ π

2
þ 3ψy0 FNO5 ¼ 4g�0040 − g0013 (0,4),(0,2) y4

Hð1; 2Þ ð2IxÞ1=2ð2IyÞjFNO4j qFNO4
þ π

2
þ ψx0 þ 2ψy0 FNO4 ¼ 2g�2020;H − g1102 (2,2),(0,2) x2y2

Hð3; 0Þ ð2IxÞ3=2jFNO3j qFNO3
þ π

2
þ 3ψx0 FNO3 ¼ 4g�4000 − g1300 (4,0),(2,0) x4

Hð−1; 2Þ ð2IxÞ1=2ð2IyÞjFNO2j qFNO2
− π

2
− ψx0 þ 2ψy0 FNO2 ¼ 2g2002 − g�1120 ð2;−2Þ; ð0; 2Þ x2y2

Vð2;−1Þ ð2IxÞð2IyÞ1=2jFNO1j qFNO1
− π

2
þ 2ψx0 − ψy0 FNO1 ¼ 2g0220 − g�2011 ð2;−2Þ; ð2; 0Þ x2y2

Vð2; 1Þ ð2IxÞð2IyÞ1=2jFNO0j qFNO0
þ π

2
þ 2ψx0 þ ψy0 FNO0 ¼ 2g�2020;V − g0211 (2,2),(2,0) x2y2

TABLE IX. Formulas to evaluate octupolar CRDTs from the secondary lines in the spectra of ~xðNÞ and ~yðNÞ assuming properly
calibrated BPMs, turn-by-turn oscillations without decoherence and quadrupole errors included in the C-S parameters.

Combined RDT Amplitude Phase qF

FNO5 ¼ jFNO5jeiqFNO5 jFNO5j ¼ jVð0; 3Þj=½8jVð0; 1Þj3� qFNO5
¼ ϕVð0;3Þ − 3ϕVð0;1Þ − π

2

FNO4 ¼ jFNO4jeiqFNO4 jFNO4j ¼ jHð1; 2Þj=½8jHð1; 0ÞjjVð0; 1Þj2� qFNO4
¼ ϕHð1;2Þ − ϕHð1;0Þ − 2ϕVð0;1Þ − π

2

FNO3 ¼ jFNO3jeiqFNO3 jFNO3j ¼ jHð3; 0Þj=½8jHð1; 0Þj3� qFNO3
¼ ϕHð3;0Þ − 3ϕHð1;0Þ − π

2

FNO2 ¼ jFNO2jeiqFNO2 jFNO2j ¼ jHð−1; 2Þj=½8jHð1; 0ÞjjVð0; 1Þj2� qFNO2
¼ ϕHð−1;2Þ þ ϕHð1;0Þ − 2ϕVð0;1Þ þ π

2

FNO1 ¼ jFNO1jeiqFNO1 jFNO1j ¼ jVð2;−1Þj=½8jHð1; 0Þj2jVð0; 1Þj� qFNO1
¼ ϕVð2;−1Þ − 2ϕHð1;0Þ þ ϕVð0;1Þ þ π

2

FNO0 ¼ jFNO0jeiqFNO0 jFNO0j ¼ jVð2; 1Þj=½8jHð1; 0Þj2jVð0; 1Þj� qFNO0
¼ ϕVð2;1Þ − 2ϕHð1;0Þ − ϕVð0;1Þ − π

2

TABLE X. Detuning coefficients and second-order chromaticity for the special lattice optics studied throughout this paper. Measured
values are listed in the first column, whereas the corresponding numbers for the lattice model (all comprising the errors inferred in the
previous sections) are reported in the second column. The model is presented in three flavors: thin (Tn) and thick (Tk) sextupoles, and
with additional fringe fields in all magnets (Tk-FF). Octupolar fields are introduced in the 256 main normal quadrupoles to reproduce the
measured coefficients (first) and the octupolar CRTDs (then), yielding to the values in the last column.

Model without octupoles
Model with
octupoles

Parameter Measured Tk-FF Tk Tn Tk-FF

νxx
0 [m−1] 2430� 30 −1396 −2515 4185 2364

νxy
0 [m−1] −470� 15 1289 −115 4962 −521

νyy
0 [m−1] 4750� 50 3485 2518 8206 4846

Qx
″ [ ] −683� 24 −649 −657 −522 −660

Qy
″ [ ] −96� 17 −67 −74 −30 −82
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vertical at 3.0 kV. The formulas of Table IX to infer the
octupolar CRTDs from the spectral lines have been
corrected in the analysis by using the tune line amplitudes
averaged among all 224 BPMs, i.e., jHð1; 0Þj →
hjHð1; 0Þji and jVð0; 1Þj → hjVð0; 1Þji in order to reduce
the impact of octupolar terms on the tune line (see
discussion in the last part of Appendix B).
Even though no physical octupole is installed in the ESRF

storage ring, the nonlinear model including sextupoles (with
errors and tilts) alone does not suffice to reproduce global
nonlinear parameters such as amplitude dependent detuning
ν0 ¼ ∂Q=∂ð2IÞ, as reported in Table X and Fig. 17. The
agreement between this model and measurements is however
already good as far as the second-order chromatic terms
Q″ ¼ ∂2Q=∂δ2 are concerned. No significant difference has
been observed in the RDTs when representing sextupoles
either as thin or thick elements and when including fringe
fields. This is not the case for the global nonlinear parameters
and in Table X values for the three different models are
reported. All plots in this section refer to the thick model and
including fringe fields.
To the first order, sextupoles do not drive any detuning

with amplitude, which is a second-order effect (i.e., induced
by cross-product between sextupole terms). Octupolar
CRDTs too are excited by second-order sextupolar terms
even in the absence of physical octupoles. This can be seen
when comparing the four measured octupolar CRDTs with
those evaluated from the lattice model (including all errors),
as shown in the left plot of Fig. 18. Even though the global
behavior is rather well reproduced by the model, a clear
ingredient looks to be missing. Model CRDTs are evaluated
by using the same procedure developed for the skew
sextupole terms and described in Appendix A.
The first natural source of octupolar fields in a storage

ring is represented by normal quadrupoles, because of the
shape of their poles, fringe fields, and their geometry in two
halves (any variation of the vertical distance between the
two yokes generates octupolar fields). The linear lattice of
the ESRF storage ring is based on eight quadrupoles per
cell (256 magnets in total), with two pairs of identical
magnets in the achromat fed by common power supplies,
hence leaving six degrees of freedom. The first step in
building the octupolar lattice model was to introduce six
octupolar fields in the corresponding quadrupole families to
best reproduce the five nonlinear parameters (three detun-
ing coefficients and two second-order chromatic terms).
The 256 octupole fields have been then adjusted independ-
ently so as to best reproduce the measured CRDTs of
Fig. 18. As for the skew sextupole analysis, even though
model and measured CRDTs are excited mainly by second-
order contributions stemming from sextupoles, their differ-
ence will depend linearly on the octupolar field, and the
same SVD pseudoinversion carried out in the previous
sections may be generalized to octupoles. The results of
such a fit are shown in the right plot of Fig. 18 as far as the

CRDTs are concerned, whereas the values of the global
nonlinear parameters are reported in the last column of
Table X and in Fig. 17.
The octupole integrated gradients K3 (MADX defini-

tion) resulting from this analysis have been grouped for
each quadrupole family and compared with the expect-
ations from early magnetic measurements. Results are
shown in Table XI. It is worthwhile to stress two caveats
concerning such a comparison. First, measurements of
high-order multipole components are available for six
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quadrupoles only, out of 256, all taken at a fixed current of
222 A, whereas the six families operate within 217 and
492 A (near saturation). Second, the quadrupole mechanical
assembly discussed in Sec. IVD and shown in Fig. 13 is
such that there is an octupolar component dependent on the
vertical separation between the two halves. Magnetic mea-
surements carried out by the manufacturer [27] on the first
batch of magnets showed a linear dependence and that for a
vertical separation of 100 μm the values in the left column of
Table XI would increase by 50%. The octupole polarity
inferred for QD4 and QF5 families is inverse with respect to
the magnetic measurements. Being these two families placed
in the achromat next to the strong chromatic sextupoles, a
contribution coming from the latter is suspected.
It shall be mentioned that measurements of octupolar

CRDTs may be partially affected by BPM nonlinearities,
these scaling with x3 (y3) to the first order [11] and the

largest BPM data used for this analysis reaching about 6 mm.
On the other hand, the software driving the ESRF BPMs
computes the beam position using a nonlinear calibration
curve, based on finite-element simulations of the BPM
block, that accounts already for such nonlinearities.

V. CONCLUSION

This paper has shown how the harmonic analysis of turn-
by-turn data from beam position monitors may be exploited
for the reconstruction and correction of machine non-
linearities up to octupolar terms. An important peculiarity
of this approach is that the systems to be solved are always
linear, even though they refer to nonlinear magnets. This
represents a considerable step forward compared to pre-
ceding works on the same subject. Handy formulas have
been derived and tested with real data for the quantitative
evaluation of realistic magnetic model, for the calibration of
individual nonlinear magnets and for the correction of the
resonance driving terms. The analysis of the latter could
predict the sextupolar field component measured in bend-
ing magnets, as well some inconsistencies with the cali-
bration curves of sextupole magnets. Correcting sextupolar
resonance driving terms in the ESRF storage ring with a
low-chromaticity optics (for low-intensity multibunch
modes) resulted in increased lifetime, though the gain
was minimal when applied to optics with larger chroma-
ticity (for high-intensity few-bunch filling patterns).
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FIG. 18. Amplitudes of normal octupole CRDTs (red curves) measured at the ESRF storage ring (with a special dedicated optics).
Left: comparison with the model curves obtained from a lattice with no octupolar source (CRDTs are excited by sextupoles to the second
order only). Right: comparison with the same model after introducing octupole components in quadrupoles so as to fit the nonlinear
parameters of Table X and the measured octupolar CRDTs.

TABLE XI. Mean and rms normal octupole component K3 per
quadrupole family. The first column refers to magnetic measure-
ments (mag. meas.), while the second contains the values inferred
from fitting the five nonlinear parameters of Table X and the
measured octupolar CRDTs FNO of Fig. 18.

Quadrupole
family

K3 [m−3] from
mag. meas.

K3 [m−3] from TbT analysis
(average� rms)

QF2 2.1� 0.8 4.4� 1.6
QD3 −1.8� 0.7 −6.9� 0.7
QD4 −1.4� 0.5 2.5� 0.8
QF5 2.2� 0.8 −2.2� 1.4
QD6 −3.4� 1.8 −0.4� 2.4
QF7 3.6� 1.3 4.0� 3.3
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APPENDIX A: NONRESONANT NORMAL
FORMS AND RDTS UP TO THE 2ND ORDER

For a reliable analysis of the ESRF nonlinear lattice
model, the normal form and RDT description of Refs. [4–7]
needs to be extended to the second order. The theoretical
background has been already developed in previous works,
among which is the fundamental Ref. [28]. The first part of
this appendix does not provide any further development to
that work: Results of main interest in the context of this
article are reported for the sake of consistency and
nomenclature only. Mathematical proofs of the new results
may be found in Ref. [12].
The turn-by-turn evolution of the complex C-S coor-

dinates, hq;� ¼ ~q� i ~pq ¼
ffiffiffiffiffiffiffi
2Jq

p
e∓iðϕqþϕq;0Þ, reads

~hsþC¼ ~MðsÞ~hs; ~MðsÞ¼e∶ ~H∶R; e∶ ~H∶¼
YW
w¼1

e∶ ~Hw∶;

ðA1Þ
where ~h ¼ ðhx;þ; hx;−; hy;þ; hy;−Þ, C is the ring circum-
ference, s is a generic position, and R denotes the phase-
space rotation, whose frequencies are the betatron tunes.W
is the total number of multipoles and the Hamiltonian term
of the generic nonlinear magnet w reads

~HwðsÞ ¼
X
n≥2

Xn¼jþkþlþm

jklm

hw;jklmei½ðj−kÞΔϕ
ðsÞ
w;xþðl−mÞΔϕðsÞ

w;y�

× hjw;x;þhkw;x;−hlw;y;þhmw;y;−; ðA2Þ
where hw;q;� is the coordinate at the generic magnet w,

while ΔϕðsÞ
w;q is the phase advance between the latter and the

observation point s. n denotes the magnet order: n ¼ 2; 3; 4
for quadrupoles, sextupoles, and octupoles, respectively.
The coefficients within the sums read

hw;jklm ¼ −
½Kw;n−1ΩðlþmÞ þ iJw;n−1Ωðlþmþ 1Þ�

j! k! l! m! 2jþkþlþm

× ilþmðβw;xÞ
jþk
2 ðβw;yÞlþm

2 ;

ΩðiÞ ¼ 1 if i is even; ΩðiÞ ¼ 0 if i is odd:

ðA3Þ
ΩðiÞ is introduced to select either the normal or the skew
multipoles. Kw;n−1 and Jw;n−1 are the (MADX) integrated
magnet strengths of the multipole expansion

−ℜ
�X
n≥2

ðKw;n−1 þ iJw;n−1Þ
ðxw þ iywÞn

n!

�
: ðA4Þ

If nonlinear terms are of relevance, at sufficiently large
amplitudes the phase space is deformed from ellipses to
more complex curves. In the case of normal sextupoles, the
horizontal phase space (x; px) assumes a typical triangular
shape, as a result of additional harmonics excited by these
magnets (see Table I). The C-S transformation, being linear,
will just remove the dependence on the linear parameters,
rotating the triangle in an upright position and smoothing
out its distortion. However, the invariant circle may not be
retrieved, since the linear transformation may not include
nonlinearities. The phase-space trajectory being still closed
and regular, it must exist a transformation capable to
retrieve a circle. Such transformation indeed exists and
is a polynomial function F

F ¼
X
n≥2

Xn¼jþkþlþm

jklm

fjklmζ
j
x;þζkx;−ζly;þζmy;−; ðA5Þ

where n denotes the multipole order, fjklm are the RDTs
and ζq;� ¼ ffiffiffiffiffiffiffi

2Iq
p

e∓iðψqþψq;0Þ are the new complex normal
form coordinates, which are the nonlinear generalization
of the complex C-S complex variable of hq;�. ð2IÞ is
the nonlinear invariant, whereas ψ denotes the phase in
normal form. The equation establishing the change of
coordinates in normal form may be written in terms of
Lie operators

e∶H∶R ¼ e∶−F∶e∶ ~H∶Re∶F∶ ðA6Þ

R is the same rotation of Eq. (A1), ~H ¼ ~HðJx; Jy;ϕx;ϕyÞ is
the phase-dependent Hamiltonian of Eq. (A1) (J and ϕ are
the linear invariant and betatron phase), whereas HðIx; IyÞ
is the phase-independent Hamiltonian in normal forms,
with I the nonlinear invariant. Any dependence on the
angles would indeed be related to the existence of fixed
points different from the origin, around which stable orbits
may exist, hence creating discontinuous phase space
trajectories, as the ones of Ref. [29]: In this (resonant)
case, no regular transformation may convert all separated
trajectories in continuous circles.
Following the same procedure of Ref. [28], all operators

may be decomposed in first- and second-order terms:

F ¼ Fð1Þ þ Fð2Þ; ðA7Þ

H ¼ Hð1Þ þ Hð2Þ; ðA8Þ

~H ¼ ~Hð1Þ þ ~Hð2Þ ¼
XW
w¼1

~Hw þ 1

2

XW
w¼1

Xw−1
u¼1

½ ~Hu; ~Hw�: ðA9Þ
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Equation (A9) results from Eq. (A1): The composition of
Lie operators indeed obeys to the Campbell-Backer-
Hausdorff (CBH) theorem

e∶A∶e∶B∶e∶C∶ ¼ e∶AþBþCþ1
2
fþ½A;C�þ½B;C�g∶ þOð3rdÞ;

where [,] denotes the Poisson bracket, the first term
(Aþ Bþ C) is the first-order truncation while the rest is
the second-order contribution. Higher-order terms are here
included in the reminder Oð3rdÞ. Being these operators
polynomial functions, Eq. (A6) apply to all coefficients
hjklm (for ~H), fjklm (for F), hjjll (forH). The rotation R then

will also act to each term ðζjx;þζkx;−ζly;þζmy;−Þ, i.e.

R ¼ e2πi½ðj−kÞQxþðl−mÞQyÞ�; ∀ j; k; l; m: ðA10Þ

1. First-order RDTs

The normal form transformation up to the first order
reads

~Hð1Þ‡ ¼ ðI − RÞFð1Þ ⇒ Fð1Þ ¼
~Hð1Þ‡

I − R
; ðA11Þ

where ~Hð1Þ‡ represents the phase dependent part of the C-S
Hamiltonian. Recalling that both F and ~Hð1Þ are poly-
nomial functions [see Eqs. (A5) and (A2)], and the

definition of R given in Eq. (A10), the above relation
must hold for any index set j; k; l; m, i.e.,

fð1ÞjklmðsÞ ¼
P

whw;jklme
i½ðj−kÞΔϕðsÞ

w;xþðl−mÞΔϕðsÞ
w;y�

1 − e2πi½ðj−kÞQxþðl−mÞQy� : ðA12Þ

Note that the dependence on the phase of ~Hð1Þ‡ implies that
first-order RDTs fjjll do not exist, as they would be phase-
independent. The presence of the phase advances between
the location where fjklm is either evaluated or measured (s)
and the one of the magnet w implies that RDTs vary along
the ring. Formulas in Table III are derived from Eqs. (A12)
and (A3).
To complete the normal form approach, explicit formulas

for the change of coordinates are missing. They are readily
derived from

~hðs; NÞ ¼ e∶F
ðsÞ∶~ζðs; NÞ: ðA13Þ

The Lie operator may be expanded as a Taylor series

e∶F∶~ζ ¼ ~ζ þ ½F; ~ζ� þ 1

2
½F; ½F; ~ζ�� þOð3rdÞ; ðA14Þ

where the reminder contains higher-order Poisson brackets.
After truncating to the first Poisson bracket the complex
C-S coordinates read

hx;−ðs; NÞ ¼
ffiffiffiffiffiffiffi
2Ix

p
eið2πQxNþψ s;x;0Þ − 2i

X
jklm

jfðsÞjklmð2IxÞ
jþk−1

2 ð2IyÞlþm
2 ei½ð1−jþkÞð2πQxNþψs;x;0Þþðm−lÞð2πQyNþψs;y;0Þ�; ðA15Þ

hy;−ðs; NÞ ¼ ffiffiffiffiffiffiffi
2Iy

p
eið2πQyNþψs;y;0Þ − 2i

X
jklm

lfðsÞjklmð2IxÞ
jþk
2 ð2IyÞlþm−1

2 ei½ðk−jÞð2πQxNþψs;x;0Þþð1−lþmÞð2πQyNþψ s;y;0Þ�; ðA16Þ

from which Table IV of Ref. [7] is derived.
In conclusion, up to the first order, Eq. (A12) is the

formula to evaluate the RDTs from the lattice parameters,
while Eqs. (A15) and (A16) may be used to compute (or
measure) them from the FFT of turn-by-turn position data,
either simulated via tracking or measured by BPMs. Both
approaches provide the same equivalent RDTs. In the
following part it will be shown how this equivalence is
no longer true when second-order terms are to be taken into
account.

2. Second-order RDTs

The second-order term of the normal form transforma-
tion reads

Fð2Þ ¼
�
~Hð2Þ‡ þ 1

2

�
Hð1Þ;

I þ R
I − R

~Hð1Þ‡
�

þ 1

2

�
~Hð1Þ‡;

~Hð1Þ‡

I − R

�‡�
=ðI − RÞ: ðA17Þ

If first-order detuning terms (generated by focusing errors

and octupolar terms) are negligible some simplifications

may be applied: The first-order Hamiltonian in the complex

C-S coordinates will always be phase-dependent, i.e.,

~Hð1Þ‡ ≡ ~Hð1Þ,Hð1Þ ¼ 0 and ½ ~Hð1Þ‡; ~Hð1Þ‡
I−R �‡ ¼ ½ ~Hð1Þ; ~Hð1Þ

I−R�, sim-

plifying the above equation to

Fð2Þ ¼
�
~Hð2Þ‡ þ 1

2

�
~Hð1Þ;

~Hð1Þ

I − R

��
=ðI − RÞ: ðA18Þ

The assumption of having no detuning term in the

first-order Hamiltonian (Hð1Þ ¼ 0) shall not be confused

with the unnecessary assumption of having zero linear

detuning, that may come from sextupolar terms in the

second-order Hamiltonian (Hð2Þ ≠ 0). The second-order

C-S Hamiltonian ~Hð2Þ reads
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~Hð2ÞðsÞ ¼ i
XW
w¼1

Xw−1
u¼1

�X
jklm

X
pqrt

hw;jklmhu;pqrtei½ðp−qÞΔϕ
ðsÞ
u;xþðr−tÞΔϕðsÞ

u;yþðj−kÞΔϕðsÞ
w;xþðl−mÞΔϕðsÞ

w;y�

× ½ðjq − kpÞhjþp−1
x;þ hkþq−1

x;− hlþr
y;þhmþt

y;− þ ðlt −mrÞhjþp
x;þ hkþq

x;− hlþr−1
y;þ hmþt−1

y;− �
�
: ðA19Þ

In general only those sets of index jklm and pqrt in Eq. (A19) satisfying the following relations shall be evaluated and
summed up

~Hð2Þ
abcdðsÞ ¼ if ~hð2ÞabcdðsÞghax;þhbx;−hcy;þhdy;− ⇒

8>>><
>>>:

jþ p − 1 ¼ a

kþ q − 1 ¼ b

lþ r ¼ c

mþ t ¼ d

or

8>>><
>>>:

jþ p ¼ a

kþ q ¼ b

lþ r − 1 ¼ c

mþ t − 1 ¼ d

: ðA20Þ

An example may be of help in understanding this procedure. Let us evaluate the skew sextupolelike Hamiltonian term
~Hð2Þ
0030. According to Eqs. (A19) and (A20), the possible combinations of indexes jklm and pqrt generating a term

proportional to h3y;þ must satisfy the following conditions

~Hð2Þ
0030ðsÞ ¼ if ~hð2Þ0030ðsÞgh3y;þ ⇒

8>>><
>>>:

jþ p − 1 ¼ 0

kþ q − 1 ¼ 0

lþ r ¼ 3

mþ t ¼ 0

or

8>>><
>>>:

jþ p ¼ 0

kþ q ¼ 0

lþ r − 1 ¼ 3

mþ t − 1 ¼ 0

; ðA21Þ

resulting in

~Hð2Þ
0030ðsÞ ¼ if ~hð2Þ0030ðsÞgh3y;þ

¼ i

�XW
w¼1

Xw−1
u¼1

−hw;1010hu;0120ei½Δϕ
ðsÞ
u;xþΔϕðsÞ

u;y−Δϕ
ðsÞ
w;xþ2ΔϕðsÞ

w;y� þ hw;0110hu;1020ei½−Δϕ
ðsÞ
u;xþΔϕðsÞ

u;yþΔϕðsÞ
w;xþ2ΔϕðsÞ

w;y�

− hw;1020hu;0110ei½Δϕ
ðsÞ
u;xþ2ΔϕðsÞ

u;y−Δϕ
ðsÞ
w;xþΔϕðsÞ

w;y� þ hw;0120hu;1010ei½−Δϕ
ðsÞ
u;xþ2ΔϕðsÞ

u;yþΔϕðsÞ
w;xþΔϕðsÞ

w;y�
�
h3y;þ: ðA22Þ

The second step in evaluating Eq. (A18) is the computation of ½ ~Hð1Þ; ~Hð1Þ
I−R�. After some algebra the following relations are

derived

1

2

�
~Hð1Þ;

~Hð1Þ

I − R

�
¼ i

XW
w¼1

XW
u¼1

�X
jklm

X
pqrt

hw;jklmhu;pqrt
ei½ðp−qÞΔϕ

ðsÞ
u;xþðr−tÞΔϕðsÞ

u;yþðj−kÞΔϕðsÞ
w;xþðl−mÞΔϕðsÞ

w;y�

1 − e2πi½ðp−qÞQxþðr−tÞQy�

× ½ðjq − kpÞhjþp−1
x;þ hkþq−1

x;− hlþr
y;þhmþt

y;− þ ðlt −mrÞhjþp
x;þ hkþq

x;− hlþr−1
y;þ hmþt−1

y;− �
�
;

1

2

�
~Hð1Þ;

~Hð1Þ

I − R

�
abcd

¼ ifĥð2ÞabcdðsÞghax;þhbx;−hcy;þhdy;− ⇒

8>>><
>>>:

jþ p − 1 ¼ a

kþ q − 1 ¼ b

lþ r ¼ c

mþ t ¼ d

or

8>>><
>>>:

jþ p ¼ a

kþ q ¼ b

lþ r − 1 ¼ c

mþ t − 1 ¼ d

: ðA23Þ

The above expression is similar to the one of Eq. (A19) with two notable differences. Both summations here extend over
the total number of magnets W, whereas the two are nested in Eq. (A19). The exponential term is now scaled by the
rotational term I − R. However, the same selection rules of Eq. (A20) apply. It is worthwhile to mention that the more

general case ½ ~Hð1Þ‡; ~Hð1Þ‡
I−R �‡ is retrieved by requesting that only those terms with j ≠ k, l ≠ m, p ≠ q, and r ≠ t are included in

the summations.
The explicit expression for the 0030 example, after applying the same selection rules of Eq. (A21), reads
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1

2

�
~Hð1Þ;

~Hð1Þ

I − R

�
0030

ðsÞ ¼ ifĥ0030ðsÞgh3y;þ

¼ i

�XW
w¼1

XW
u¼1

−hw;1010hu;0120
ei½Δϕ

ðsÞ
u;xþΔϕðsÞ

u;y−Δϕ
ðsÞ
w;xþ2ΔϕðsÞ

w;y�

1 − e2πi½QxþQy� þ hw;0110hu;1020
ei½−Δϕ

ðsÞ
u;xþΔϕðsÞ

u;yþΔϕðsÞ
w;xþ2ΔϕðsÞ

w;y�

1 − e2πi½−QxþQy�

− hw;1020hu;0110
ei½Δϕ

ðsÞ
u;xþ2ΔϕðsÞ

u;y−Δϕ
ðsÞ
w;xþΔϕðsÞ

w;y�

1 − e2πi½Qxþ2Qy� þ hw;0120hu;1010
ei½−Δϕ

ðsÞ
u;xþ2ΔϕðsÞ

u;yþΔϕðsÞ
w;xþΔϕðsÞ

w;y�

1 − e2πi½−Qxþ2Qy�

�
h3y;þ: ðA24Þ

The example is completed by writing the analytic expres-
sion for f0030 up to the second order

f0030 ¼ fð1Þ0030 þ fð2Þ0030 ¼
1

1 − e2πið3QyÞ

×

�XW
w¼1

hw;0030ei3Δϕ
ðsÞ
w;y þ i ~hð2Þ0030ðsÞ þ iĥ0030ðsÞ

�
;

ðA25Þ

where ~hð2Þ0030ðsÞ and ĥ0030ðsÞ are excited by skew quadru-
poles (via h1010 and h0110) and normal sextupoles (via

h1020 and h0120), see Eqs. (A22) and (A24), while the first
term in the r.h.s. is excited by either skew sextupoles, if
any, or tilted normal sextupoles through h0030 and
Eq. (A12). The Hamiltonian coefficients (h0030, h1010,
and similar) may be computed from the magnet strengths
and the C-S parameters via Eq. (A3). The same compu-
tation may be carried out for any other RDTs in the same
way.
The last missing step is to include second-order terms in

the change of coordinates of Eqs. (A13) and (A14). In
analogy with the previous approach, the function F is split
in its first- an second-order parts

~hðs; NÞ ¼ e∶F∶~ζ ¼ ~ζ þ ½Fð1Þ þ Fð2Þ; ~ζ� þ 1

2
½Fð1Þ þ Fð2Þ; ½Fð1Þ þ Fð2Þ; ~ζ�� þOð3rdÞ

¼ ~ζ þ ½Fð1Þ þ Fð2Þ; ~ζ� þ 1

2
½Fð1Þ; ½Fð1Þ; ~ζ�� þOð3rdÞ: ðA26Þ

The result is

hx;−ðs; NÞ ¼ ζx;− − 2i
X
abcd

a½fð1Þabcd þ fð2Þabcd�ζa−1x;þ ζbx;−ζ
c
y;þζdy;−

− 2
X
jklm

X
pqrt

pfð1Þjklmf
ð1Þ
pqrtfζjþp−2

x;þ ζkþq−1
x;− ζlþr

y;þζmþt
y;− þ ðlt −mrÞζjþp−1

x;þ ζkþq
x;− ζlþr−1

y;þ ζmþt−1
y;− g; ðA27Þ

hy;−ðs; NÞ ¼ ζy;− − 2i
X
abcd

c½fð1Þabcd þ fð2Þabcd�ζax;þζbx;−ζc−1y;þ ζdy;−

− 2
X
jklm

X
pqrt

rfð1Þjklmf
ð1Þ
pqrtfðjq − kpÞζjþp−1

x;þ ζkþq−1
x;− ζlþr−1

y;þ ζmþt
y;− þ ½lt −mðr − 1Þ�ζjþp

x;þ ζkþq
x;− ζlþr−2

y;þ ζmþt−1
y;− g: ðA28Þ

If second-order terms may be neglected, Eqs. (A15) and
(A16) are retrieved. The above equations show how
second-order terms prevent the direct measurement of

the RDTs fjklm ¼ fð1Þjklm þ fð2Þjklm from the secondary spec-
tral lines (harmonics in the first summation). Among the
terms in the second double summation, in fact, there will be
always some harmonics overlapping those of the first
summation. An example may again help to clarify this
point. Let us select in Eq. (A28) those terms proportional to
ζ2y;þ, i.e., those exciting the spectral line Vhð0;−2Þ (of the
complex C-S variable hy;− ¼ ~y − i ~py). The first sum selects

the index 0030, while in the second double summation only
those index satisfying the following conditions shall be
kept

8>>><
>>>:

jþ p − 1 ¼ 0

kþ q − 1 ¼ 0

lþ r − 1 ¼ 2

mþ t ¼ 0

or

8>>><
>>>:

jþ p ¼ 0

kþ q ¼ 0

lþ r − 2 ¼ 2

mþ t − 1 ¼ 0

; ðA29Þ

resulting in
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Vhð0;−2Þ ¼ −6i
�
fð1Þ0030 þ fð2Þ0030 −

i
3
½fð1Þ1010f

ð1Þ
0120 − fð1Þ�1001f

ð1Þ
1020 þ 2fð1Þ0020f

ð1Þ
0021 − 6fð1Þ0030f

ð1Þ
0011�

�
ζ2y;þ: ðA30Þ

Assuming than no physical skew sextupoles exist, first-

order skew sextupole RDTs fð1Þ0030 and fð1Þ0021 are generated
by small tilts of normal sextupoles. Since focusing errors

are assumed to be already small, the products fð1Þ0020f
ð1Þ
0021

and fð1Þ0030f
ð1Þ
0011 are negligible compared to the products

fð1Þ1010f
ð1Þ
0120 and fð1Þ�1001f

ð1Þ
1020, both generated by the low

coupling and the large sextupole RDTs. By making use
of Eq. (A25), the observable RDT (ORDT) g0030 is

Vhð0;−2Þ ¼ −6ifg0030gζ2y;þ

¼ −6i
�
fð1Þ0030 þ i

~hð2Þ0030 þ ĥ0030
1 − e2πið3QyÞ

−
i
3
½fð1Þ1010f

ð1Þ
0120 − fð1Þ�1001f

ð1Þ
1020�

�
ζ2y;þ: ðA31Þ

This example shows how the equivalence between the
RDTs computed from the lattice and those either measured
or evaluated from turn-by-turn data breaks down when
second-order terms are to be included. In Table IV of
Ref. [7] by using the spectral line Vhð0;−2Þ to infer f0030
and hence the sextupole tilts may under- or overestimate the
reality, since part of Vhð0;−2Þ is also excited by second-
order terms uncorrelated to the sextupole tilts.

APPENDIX B: QUADRUPOLE ERRORS AND
TUNE LINE AMPLITUDE

In Table I (easier) first-order RDTs fjklm for skew
quadrupole and normal sextupole spectral lines are used,
while for skew sextupoles (more complex) second-order
ORDTs gjklm are invoked. The latter are also used in
Table VIII for normal octupoles. In this section motivations
and conditions for such a choice are provided. It will be
shown how this is related to the removal of RDTs generated
by focusing errors when using the modulated β functions
(i.e., computed from a lattice including quadrupole errors)
rather than those of the ideal lattice.
Parenthetically, a novel procedure for using single-BPM

turn-by-turn data to measure the β functions is described,
which is complementary to the traditional approach based
on the direct measurement of the phase advance between
two consecutive BPMs [30]. The latter is independent on
calibration errors, but requires a perfect synchronization
among the BPMs. The proposed scheme, on the contrary,
necessitates well-calibrated monitors but does not need any
synchronization, as for the nonlinear analysis of Table I.
If focusing errors δK1 are not included in the model, they

generate the following RDTs

f2000 ¼
P

W
w δKw;1β

w
x e2iΔϕw;x

8ð1 − e4πiQxÞ ; ðB1Þ

f0020 ¼
P

W
w δKw;1β

w
y e2iΔϕw;y

8ð1 − e4πiQyÞ : ðB2Þ

Provided that betatron coupling is sufficiently weak, i.e.,
that 2P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−j2f1001j2 þ j2f1010j2

p
of Ref. [21] is negli-

gible compared to f2000, the tune line amplitude of ~x ¼
x=

ffiffiffiffiffi
βx

p
is affected by the RDTs according to

jHð1;0Þj¼
ffiffiffiffiffiffiffi
2Ix

p
2

f1þ2sinhð4jf2000jÞ
× ½sinhð4jf2000jÞþcoshð4jf2000jÞsinq2000�g1=2;

ðB3Þ

In Ref. [12] it is shown how by replacing the ideal βx in the
definition of ~x with

βx1 ¼ βxf1þ 2 sinh ð4jf2000jÞ½sinh ð4jf2000jÞ
þ cosh ð4jf2000jÞ sin q2000�g ðB4Þ

a RDT-independent tune line, jHð1; 0Þj ¼ ffiffiffiffiffiffiffi
2Ix

p
=2 is

retrieved. Equivalent relations apply in the vertical plane
after replacing f2000 with f0020. Equation (B4) provides
an analytical expression for the horizontal beta-beating
introduced by quadrupole errors:

Δβx
βx

¼ 2 sinh ð4jf2000jÞ½sinh ð4jf2000jÞ

þ cosh ð4jf2000jÞ sin q2000�: ðB5Þ

The same algebra applied to the vertical plane leads to

Δβy
βy

¼ 2 sinh ð4jf0020jÞ½sinh ð4jf0020jÞ

þ cosh ð4jf0020jÞ sin q0020�: ðB6Þ

In Fig. 19 a comparison between the beta-beating as
computed by MADX and by Eqs. (B5) and (B6) is shown.
The agreement is remarkable.
In practice then, the perturbations introduced by the

focusing error RDTs f2000 and f0020 of Eqs. (B1) and (B2)
may be absorbed by replacing the ideal C-S parameters βx;y
and Δϕx;y with the modulated ones βx1;y1 and Δϕx1;y1. By
doing so, the new Courant-Snyder coordinates will no
longer show quadrupole errors, and the beta-beat RDTs
vanish, i.e.,
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f2000ðβx;ΔϕxÞ ≠ 0 but f2000ðβx1;Δϕx1Þ≡ 0; ðB7Þ

f0020ðβy;ΔϕyÞ ≠ 0 but f0020ðβx1;Δϕx1Þ≡ 0: ðB8Þ

Physically this corresponds to the fact that not including
focusing errors in the computation of the C-S parameters
results in mismatched functions and a phase space topology
(ellipses) dependent on the longitudinal position along the
ring (through the s-dependent beta-beating RDTs f2000 and
f0020). When, instead, the C-S parameters used to compute
the C-S coordinates properly account for all normal
quadrupole forces, the corresponding phase space topology
becomes invariant along the ring (and circular).
If the number of oscillations of f2000 and f0020 along the

ring is sufficiently large and the number of BPM is enough
to cover uniformly the path, by averaging the tune line
amplitudes among all BPMs, the oscillating term cancels
out and the invariant may be retrieved:

ffiffiffiffiffiffiffi
2Ix

p
2

≃ 1

N

XN
n¼1

jHð1; 0Þjn;
ffiffiffiffiffiffiffi
2Iy

p
2

≃ 1

N

XN
n¼1

jVð0; 1Þjn;

ðB9Þ

where N is the number of available BPMs (not necessarily
synchronized over the same turns and/or bunches) and
jHð1; 0Þjn are the tune line amplitudes measured at the
different monitors. More intriguingly, the same single-BPM
turn-by-turn data may be post-processed to extract the true
β function at its location, since

βx1;n ¼
� jHð1; 0Þjn
hjHð1; 0Þji

�
2

βx;n; ðB10Þ

βy1;n ¼
� jVð0; 1Þjn
hjVð0; 1Þji

�
2

βy;n: ðB11Þ

The use of the C-S parameters that already include
focusing errors in evaluating the first-order RDTs of
Table III not only will correctly account for the modulation
introduced by the β functions, but has a tremendous impact
in simplifying the second-order analysis of coupling and
normal sextupole RDTs of Tables XII and XIII, respec-
tively: The first-order beta-beat RDTs being all zero (as
well as the corresponding Hamiltonian coefficients),
second-order ORDTs gjklm are equivalent to the first-order
RDTs fð1Þjklm. For this reason in Table I the latter are used in
the entries corresponding to skew quadrupoles and normal
sextupoles and no beta-beat RDT is reported in the tune
lines. Second-order ORDTs gjklm are instead used for the
skew sextupolelike entries because they are generated by
nonzero coupling and normal sextupole RDTs.
Focusing errors hence, if not included in the lattice

model, modulate the tune line amplitudes and thus the β
functions. The modulation is independent on the initial
conditions (action and phase). Another, more complex,
amplitude dependent modulation is introduced at the
second order by normal sextupoles, requiring a careful
preliminary analysis in order to make it negligible. The tune
lines may be extracted from Eqs. (A27) and (A28) and
include all terms proportional to ζx;− and ζy;− in the
horizontal and vertical planes, respectively. In Ref. [12]
it is shown that

Hð1; 0Þ ¼ f1þ THxjζxj2 þ THyjζyj2gζx;−; ðB12Þ

Vð0; 1Þ ¼ f1þ TVxjζxj2 þ TVyjζyj2gζy;−; ðB13Þ

where THx;Hy and TVx;Vy vary along the ring and are
quadratic functions of the first-order normal sextupoles
RDTs (fð1Þ3000; f

ð1Þ
1002, and similar). Equations (B12) and

(B13) reveal also the nonlinear coupling introduced by
sextupoles which makes the tune line amplitude in one
plane dependent on the action jζj of the other. If not
negligible, this nonlinear modulation may corrupt the
evaluation of the invariants ð2Ix;yÞ from the tune line
amplitudes and hence the overall analysis discussed here,
which is based on the formulas of Table II.
Given a certain sextupole setting, THx;Hy and TVx;Vy are

fixed. It is then of interest to estimate the largest beam
oscillation amplitude that keeps the modulation below a
tolerable level. To this end, preliminary single-particle
tracking simulations at different initial conditions x0 and
y0 (i.e., amplitudes) may be carried out. By storing the
particle positions at all BPMs and performing the FFT of
the Courant-Snyder coordinates ~x and ~y, the tune line
amplitudes may be plotted along the ring and their
modulation evaluated against x0 and y0. In Fig. 20 an
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FIG. 19. Comparison between the beta-beating computed by
MADX after loading an error model constructed from an ORM
measurement in the ESRF storage ring (red) and that evaluated
from Eqs. (B5) and (B6) (black stars).
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example with betatron oscillations of x0 ¼ 10 mm and
y0 ¼ 2.2 mm (large values by ESRF standards) is shown.
Focusing errors are included in the model when computing
the β functions and the residual modulation of about 3% is

generated exclusively by sextupole RDTs. Results from a
more complete scan of the ESRF storage ring are reported
in Table XVI. They suggest to limit the transverse oscil-
lation to x0 ≃ 3.5 mm and y0 ≃ 1 mm, corresponding to

TABLE XIII. List and definition of second-order ORDTs gjklm from the normal sextupolelike secondary spectral lines of the complex

C-S signals hx;− ¼ ~x − i ~px (hy;− ¼ ~y − i ~py). First-order sextupolar RDTs (f
ð1Þ
3000, f

ð1Þ
1200, and similar) are those of Table III, derived from

Eqs. (A12) and (A3). The second-order Hamiltonian terms ~hð2Þjklm and ĥjklm are to be computed from Eqs. (A20) and (A23). Beta-beat

RDTs fð1Þ2000 and fð1Þ0020 are defined in Eqs. (B1) and (B2). If C-S parameters are evaluated from the linear lattice model with quadrupole

errors included, the second-order contributions vanish, i.e., gjklm ¼ fð1Þjklm, as discussed in Appendix B. Products between skew sextupole
and coupling RDTs have been excluded: It is indeed assumed that no physical strong skew sextupole is powered and that first-order
skew sextupole RDTs are generated by small sextupole tilts. In Eqs. (A27) and (A28) skew sextupole first-order RDTs enter always
multiplied by the already-small first-order coupling RDTs, hence making these products negligible.

h spectral line fgjklmg Magnetic term

Hhð−2; 0Þ ¼ −6ifg3000gζ2x;þ �
fð1Þ3000 þ i

~hð2Þ3000 þ ĥ3000
1 − e2πið3QxÞ −

i
3

h
2fð1Þ2000f

ð1Þ�
1200

i� x3

Hhðþ2; 0Þ ¼ −2ifg1200gζ2x;− �
fð1Þ1200 þ i

~hð2Þ1200 þ ĥ1200
1 − e2πið−QxÞ þ i

h
4fð1Þ�2000f

ð1Þ�
1200 þ 6fð1Þ2000f

ð1Þ�
3000

i� x3

Hhð0;−2Þ ¼ −2ifg1020;Hgζ2y;þ �
fð1Þ1020 þ i

~hð2Þ1020 þ ĥ1020
1 − e2πiðQxþ2QyÞ þ i

h
2fð1Þ2000f

ð1Þ
0120 − 2fð1Þ0020f

ð1Þ�
0111

i� xy2

Hhð0;þ2Þ ¼ −2ifg1002gζ2y;− �
fð1Þ1002 þ i

~hð2Þ1002 þ ĥ1002
1 − e2πiðQx−2QyÞ þ i

h
2fð1Þ�0020f

ð1Þ�
0111 þ 2fð1Þ2000f

ð1Þ�
1020

i� xy2

Vhðþ1;þ1Þ ¼ −2ifg0111gζx;−ζy;− �
fð1Þ0111 þ i

~hð2Þ0111 þ ĥ0111
1 − e2πið−QxÞ þ i

h
4fð1Þ�0020f

ð1Þ
0120 þ 4fð1Þ0020f

ð1Þ�
1020 þ 2fð1Þ2000f

ð1Þ�
0111

i� xy2

Vhð−1;−1Þ ¼ −4ifg1020;Vgζx;þζy;þ �
fð1Þ1020 þ i

~hð2Þ1020 þ ĥ1020
1 − e2πiðQxþ2QyÞ − i

h
2fð1Þ2000f

ð1Þ
0120

i� xy2

Vhðþ1;−1Þ ¼ −4ifg0120gζx;−ζy;þ �
fð1Þ0120 þ i

~hð2Þ0120 þ ĥ0120
1 − e2πið−Qxþ2QyÞ þ i

h
2fð1Þ�2000f

ð1Þ
1020

i� xy2

Vhð−1;þ1Þ ¼ −2ifg1011gζx;þζy;− �
fð1Þ1011 þ i

~hð2Þ1011 þ ĥ1011
1 − e2πiðQxÞ þ i

h
4fð1Þ�0020f

ð1Þ
1020 þ 4fð1Þ0020f

ð1Þ�
0120 − 2fð1Þ2000f

ð1Þ
0111

i� xy2

TABLE XII. List and definition of second-order ORDTs gjklm from the skew quadrupolelike secondary spectral lines of the complex

C-S signals hx;− ¼ ~x − i ~px (hy;− ¼ ~y − i ~py). First-order coupling RDTs fð1Þ1001 and fð1Þ1010 are those of Table III, derived from Eqs. (A12)

and (A3). The second-order Hamiltonian terms ~hð2Þjklm and ĥjklm are to be computed from Eqs. (A20) and (A23). Beta-beat RDTs fð1Þ2000

and fð1Þ0020 are defined in Eqs (B1) and (B2). If C-S parameters are evaluated from the linear lattice model with quadrupole errors included

the second-order contributions vanish, i.e., gjklm ¼ fð1Þjklm, as discussed in Appendix B.

h spectral line fgjklmg Magnetic term

Hhð0; 1Þ ¼ −2ifg1001gζy;− �
fð1Þ1001 þ i

~hð2Þ1001 þ ĥ1001
1 − e2πiðQx−QyÞ þ i

h
2fð1Þ�0020f

ð1Þ
1010 þ 2fð1Þ2000f

ð1Þ�
1010

i� xy

Hhð0;−1Þ ¼ −2ifg1010;Hgζy;þ �
fð1Þ1010 þ i

~hð2Þ1010 þ ĥ1010
1 − e2πiðQxþQyÞ − i

h
2fð1Þ0020f

ð1Þ
1001 − 2fð1Þ2000f

ð1Þ�
1001

i� xy

Vhð1; 0Þ ¼ −2ifg0110gζx;− �
fð1Þ0110 þ i

~hð2Þ0110 þ ĥ0110
1 − e−2πiðQx−QyÞ þ i

h
2fð1Þ0020f

ð1Þ�
1010 þ 2fð1Þ�2000f

ð1Þ
1010

i� xy

Vhð−1; 0Þ ¼ −2ifg1010;Vgζx;þ �
fð1Þ1010 þ i

~hð2Þ1010 þ ĥ1010
1 − e2πiðQxþQyÞ þ i

h
2fð1Þ0020f

ð1Þ
1001 − 2fð1Þ2000f

ð1Þ�
1001

i� xy
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ffiffiffiffiffiffiffi
2Ix

p ≃ ffiffiffiffiffiffiffi
2Iy

p ≃ 3.1 × 10−4 m1=2 with relative variation of
about 0.2%, well within the measurement statistical fluc-
tuations of about 1%. Larger oscillations would induce a
beneficial larger spectral resolution (higher ratio between
sextupolar secondary lines and background noise), but also
a larger modulation of the tune line amplitudes, which is
detrimental for the correct evaluation of the invariants 2Ix;y,
hampering in turn the correct measurements of sextupolar
RDTs.
As reported in Ref. [4], the spectral lineHhð−1; 0Þ of the

complex C-S signals ~x − i ~px receives a contribution from
the normal octupole term x4 via two ORDTs, g3100 and
g2011. It can be shown that

Hhð−1; 0Þ ¼ ½3g3100ð2IxÞ3=2 þ 4g2011ð2IxÞ1=2ð2IyÞ�
× ð−2iÞe−ið2πQxNþψx0Þ: ðB14Þ

This implies that, on top of the focusing errors not included
in the model and second-order normal sextupole terms, the

tune line Hð1; 0Þ of the real C-S signal ~x receives a
contribution from octupolar terms, since Hð1; 0Þ ¼
1=2½Hhð1; 0Þ þHhð−1; 0Þ�. Three problems arise at
large excitation amplitude and or with large octupolar
components in the lattice: (i) The tune phase is affected
by octupolar terms and the linear lattice modeling discussed
in Sec. IV B is corrupted; (ii) It is no longer possible to
extract any linear combination of g3100 and g2011, because
of the different dependence on the action of the two terms,
∝ ð2IxÞ3=2 and ∝ ð2IxÞ1=2ð2IyÞ, respectively; (iii) The tune
line amplitude is no longer equal to ð2IxÞ1=2 and the
computation of the other CRDTs from Tables II and IX
are affected by an intrinsic error. Equivalent considerations
apply for the vertical tune line, affected by the y4 octupolar
terms, g0013 and g1102.
In conclusion, the turn-by-turn analysis of the nonlinear

lattice model may be carried out and the formulas of
Tables I and II applied provided that: (i) Focusing errors are
correctly included in the model when computing the C-S

TABLE XIV. List and definition of second-order ORDTs gjklm from the skew sextupolelike secondary spectral lines of the complex

C-S signals hx;− ¼ ~x − i ~px (hy;− ¼ ~y − i ~py). First-order sextupolar RDTs (f
ð1Þ
3000, f

ð1Þ
1200, and similar) are those of Table III, derived from

Eqs. (A12) and (A3). The second-order Hamiltonian terms ~hð2Þjklm and ĥjklm are to be computed from Eqs. (A20) and (A23). ORDTs no
longer have two RDTs properties: gjklm ≠ g�kjml and gjklm;H ≠ gjklm;V . Products between skew sextupole and beta-beat RDTs have been
excluded: It is indeed assumed that no physical strong skew sextupole is powered and that first-order skew sextupole RDTs are generated
by small sextupole tilts. In Eqs. (A27) and (A28) skew sextupole first-order RDTs enter always multiplied by the already-small beta-beat
first-order RDTs, hence making these products negligible. See the 0030 example in the main text.

h spectral line fgjklmg
Magnetic
term

Vhð0;−2Þ ¼ −6ifg0030gζ2y;þ
�
fð1Þ0030 þ i

~hð2Þ0030 þ ĥ0030
1 − e2πið3QyÞ −

i
3

h
fð1Þ1010f

ð1Þ
0120 − fð1Þ�1001f

ð1Þ
1020

i�
y3

Vhð0;þ2Þ ¼ −2ifg0012gζ2y;−
�
fð1Þ0012 þ i

~hð2Þ0012 þ ĥ0012
1 − e2πið−QyÞ − i

h
fð1Þ1001f

ð1Þ
0111 − fð1Þ�1010f

ð1Þ�
0111 þ fð1Þ�1001f

ð1Þ�
0120−f

ð1Þ
1010f

ð1Þ�
1020

i�
y3

Vhðþ2; 0Þ ¼ −2ifg0210gζ2x;−
�
fð1Þ0210 þ i

~hð2Þ0210 þ ĥ0210
1 − e2πið−2QxþQyÞ − i

h
fð1Þ�1001ðfð1Þ0111 þ fð1Þ1200Þ−2fð1Þ�1010f

ð1Þ
0120 − 3fð1Þ1010f

ð1Þ�
3000

i�
x2y

Vhð−2; 0Þ ¼ −2ifg2010;Vgζ2x;þ
�
fð1Þ2010 þ i

~hð2Þ2010 þ ĥ2010
1 − e2πið2QxþQyÞ − i

h
3fð1Þ�1001f

ð1Þ
3000 − 2fð1Þ1001f

ð1Þ
1020þfð1Þ1010ðfð1Þ�0111 − fð1Þ�1200Þ

i�
x2y

Hhðþ1;þ1Þ ¼ −2ifg1101gζx;−ζy;−
�
fð1Þ1101 þ i

~hð2Þ1101 þ ĥ1101
1 − e2πið−QyÞ − i

h
2fð1Þ�1001f

ð1Þ�
0120 þ fð1Þ1001ðfð1Þ0111 þ 2fð1Þ1200Þ

−2fð1Þ1010f
ð1Þ�
1020 þ fð1Þ�1010ð−fð1Þ�0111 − 2fð1Þ�1200Þ

i�
x2y

Hhð−1;−1Þ ¼ −4ifg2010;Hgζx;þζy;þ
�
fð1Þ2010 þ i

~hð2Þ2010 þ ĥ2010
1 − e2πið2QxþQyÞ −

i
2

h
2fð1Þ1010f

ð1Þ�
1200 − 6fð1Þ�1001f

ð1Þ
3000

i�
x2y

Hhðþ1;−1Þ ¼ −2ifg1110gζx;−ζy;þ �
fð1Þ1110 þ i

~hð2Þ1110 þ ĥ1110
1 − e2πiðQyÞ − i

h
2fð1Þ1001f

ð1Þ
0120 þ fð1Þ1010ð−fð1Þ0111 þ 2fð1Þ1200Þ

−2fð1Þ�1010f
ð1Þ
1020 þ fð1Þ�1001ðfð1Þ�0111 − 2fð1Þ�1200Þ

i�
x2y

Hhð−1;þ1Þ ¼ −4ifg2001gζx;þζy;−
�
fð1Þ2001 þ i

~hð2Þ2001 þ ĥ2001
1 − e2πið2Qx−QyÞ −

i
2

h
2fð1Þ1001f

ð1Þ�
1200 − 6fð1Þ�1010f

ð1Þ
3000

i�
x2y
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parameters to be used when evaluating the first-order RDTs
of Table III and when normalizing the measured turn-by-
turn data before performing the FFT, ~x ¼ x=

ffiffiffiffiffi
βx

p
and

~y ¼ y=
ffiffiffiffiffi
βy

p
; (ii) The transverse beam excitation is con-

veniently chosen as a trade off between maximizing the
spectral signal-to-noise ratio and minimizing the tune line
modulation induced by sextupoles and octupoles. This will
result in tune lines having the same amplitude along the
ring (jHð1; 0Þj≃ ffiffiffiffiffiffiffi

2Ix
p

=2 and jVð0; 1Þj≃ ffiffiffiffiffiffiffi
2Iy

p
=2), in zero

beta-beat RDTs, and hence in the possibility of using first-
order RDTs for the analysis of normal sextupole errors.

APPENDIX C: COMBINED RDTS FRM
SINGLE-BPM TURN-BY-TURN DATA

In this appendix the procedure for the evaluation of the
single-BPM combined RDTs (CRDTs) of Tables I and VIII
is outlined. As discussed in Appendix B it is assumed that
quadrupole errors are included in the computation of the
C-S parameters, and that transverse oscillations are suffi-
ciently small to neglect the interference of sextupole and
octupole RDTs on the tune lines. Equations (A27) and
(A28) may be rewritten as

TABLE XV. List and definition of second-order ORDTs gjklm from the normal octupolelike secondary spectral lines of the complex

C-S signals hx;− ¼ ~x − i ~px (hy;− ¼ ~y − i ~py). First-order sextupolar terms (fð1Þ3000, f
ð1Þ
1200, and similar) are those of Table III, whereas first-

order octupolar RDTs (fð1Þ4000; f
ð1Þ
1300; ...) may be computed from Eqs. (A12) and (A3). The second-order Hamiltonian terms ~hð2Þjklm and

ĥjklm are to be computed from Eqs. (A20) and (A23). ORDTs have no longer two RDTs properties: gjklm ≠ g�kjml and gjklm;H ≠ gjklm;V .
If quadrupole errors are included in the model when computing the C-S parameters, first-order quadrupolar RDTs vanish, i.e.,

fð1Þ2000 ¼ fð1Þ0020 ¼ 0.

h spectral line fgjklmg Magnetic term

Hhð−3; 0Þ ¼ −8ifg4000gζ3x;þ
n
fð1Þ4000 þ i

~hð2Þ4000 þ ĥ4000
1 − e2πið4QxÞ − i

h
fð1Þ2000f

ð1Þ
3100

io
x4

Hhð3; 0Þ ¼ −2ifg1300gζ3x;−
n
fð1Þ1300 þ i

~hð2Þ1300 þ ĥ1300
1 − e2πið−2QxÞ þ i

h
6fð1Þ�3000f

ð1Þ�
1200 − 2fð1Þ21200 þ 8fð1Þ2000f

ð1Þ
4000

io
x4

Hhð−1; 2Þ ¼ −4ifg2002gζx;þζ2y;−
n
fð1Þ2002 þ i

~hð2Þ2002 þ ĥ2002
1 − e2πið2Qx−2QyÞ þ i

h
3fð1Þ�1020f

ð1Þ
3000 − fð1Þ1002f

ð1Þ�
1200 þ 2fð1Þ�0020f

ð1Þ
2011

io
x2y2

Hhð1;−2Þ ¼ −2ifg1120gζx;−ζ2y;þ
n
fð1Þ1120 þ i

~hð2Þ1120 þ ĥ1120
1 − e2πið2QyÞ − 2i

h
fð1Þ1020ðfð1Þ1200 − fð1Þ0111Þ þ fð1Þ0120ðfð1Þ�0111 − fð1Þ�1200Þ

−2ðfð1Þ�2000f
ð1Þ
2020 þ fð1Þ2000f

ð1Þ
0220Þ

io x2y2

Hhð1; 2Þ ¼ −2ifg1102gζx;−ζ2y;−
n
fð1Þ1102 þ i

~hð2Þ1102 þ ĥ1102
1 − e2πið−2QyÞ − 2i

h
fð1Þ�0120ðfð1Þ1200 þ fð1Þ0111Þ − fð1Þ�1020ðfð1Þ�0111 þ fð1Þ�1200Þ

−2ðfð1Þ�2000f
ð1Þ
2002 þ fð1Þ2000f

ð1Þ
2020Þ

io x2y2

Hhð−1;−2Þ ¼ −4ifg2020;Hgζx;þζ2y;þ
n
fð1Þ2020 þ i

~hð2Þ2020 þ ĥ2020
1 − e2πið2Qxþ2QyÞ þ i

h
3fð1Þ0120f

ð1Þ
3000 − fð1Þ1020f

ð1Þ�
1200 þ 2fð1Þ0020f

ð1Þ
2011

io
x2y2

Vhð−2;−1Þ ¼ −4ifg2020;Vgζ2x;þζy;þ
n
fð1Þ2020 þ i

~hð2Þ2020 þ ĥ2020
1 − e2πið2Qxþ2QyÞ − i

h
3fð1Þ0120f

ð1Þ
3000 − fð1Þ1020f

ð1Þ�
1200 þ 2fð1Þ2000f

ð1Þ
1120

io
x2y2

Vhð−2; 1Þ ¼ −2ifg2011gζ2x;þζy;−
n
fð1Þ2011 þ i

~hð2Þ2011 þ ĥ2011
1 − e2πið2QxÞ − i

h
3fð1Þ3000f

ð1Þ
0111 − fð1Þ�1200f

ð1Þ�
0111 − 4fð1Þ�0120f

ð1Þ
1020 þ fð1Þ�20111

−4ðfð1Þ�0020f
ð1Þ
2020 þ fð1Þ0020f

ð1Þ
2002Þ

io x2y2

Vhð2;−1Þ ¼ −4ifg0220gζ2x;−ζy;þ
n
fð1Þ0220 þ i

~hð2Þ0220 þ ĥ0220
1 − e2πið−2Qxþ2QyÞ þ i

h
3fð1Þ�3000f

ð1Þ
1020 − fð1Þ1200f

ð1Þ
0120 þ 2fð1Þ�2000f

ð1Þ
1120

io
x2y2

Vhð2; 1Þ ¼ −2ifg0211gζ2x;−ζy;−
n
fð1Þ0211 þ i

~hð2Þ0211 þ ĥ0211
1 − e2πið−2QxÞ − i

h
fð1Þ0111ðfð1Þ1200 þ fð1Þ0111Þ − 3fð1Þ�3000f

ð1Þ�
0111

−4fð1Þ�1020f
ð1Þ
0120 − 4ðfð1Þ0020f

ð1Þ
0202 þ fð1Þ�0020f

ð1Þ
0220Þ

io x2y2

Vhð0;−3Þ ¼ −8ifg0040gζ3y;þ
n
fð1Þ0040 þ i

~hð2Þ0040 þ ĥ0040
1 − e2πið4QyÞ − i

h
fð1Þ0020f

ð1Þ�
0013

io
y4

Vhð0; 3Þ ¼ −2ifg0013gζ3y;−
n
fð1Þ0013 þ i

~hð2Þ0013 þ ĥ0013
1 − e2πið−2QyÞ þ i

h
fð1Þ�1020f

ð1Þ�
0111 þ fð1Þ�0120f

ð1Þ
0111 − 8fð1Þ0020f

ð1Þ�
0040

io
y4
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hxðNÞ ¼
ffiffiffiffiffiffiffi
2Ix

p
eið2πQxNþψx0Þ − 2i

X
jklm

jgjklmð2IxÞ
jþk−1

2 ð2IyÞlþm
2 ei½ð1−jþkÞð2πQxNþψx0Þþðm−lÞð2πQyNþψy0Þ�; ðC1Þ

and, equivalently for the vertical plane,

hyðNÞ ¼ ffiffiffiffiffiffiffi
2Iy

p
eið2πQyNþψy0Þ − 2i

X
jklm

lgjklmð2IxÞ
jþk
2 ð2IyÞlþm−1

2 ei½ðk−jÞð2πQxNþψx0Þþð1−lþmÞð2πQyNþψy0Þ�: ðC2Þ

gjklm are the ORDTof Tables XII–XV, measurable at the location of a generic BPM. The four indices are selected according
to the type of the magnetic elements exciting the RDTs and obey to the selection rules of Table XVII. The real parts of the
above expressions read

~xðNÞ ¼
ffiffiffiffiffiffiffi
2Ix

p
2

½eið2πQxNþψx0Þ þ c:c� þ 2
X
jklm

jð2IxÞ
jþk−1

2 ð2IyÞlþm
2 ℑfgjklmei½ð1−jþkÞð2πQxNþψx0Þþðm−lÞð2πQyNþψy0Þ�g; ðC3Þ

~yðNÞ ¼
ffiffiffiffiffiffiffi
2Iy

p
2

½eið2πQyNþψy0Þ þ c:c� þ 2
X
jklm

lð2IxÞ
jþk
2 ð2IyÞlþm−1

2 ℑfgjklmei½ðk−jÞð2πQxNþψx0Þþð1−lþmÞð2πQyNþψy0Þ�g: ðC4Þ

In deriving the above equations, the relation
ℜfizg ¼ −ℑfzg, valid for any complex number z, is used.
c:c. stands for complex conjugate. The following relations
then apply

�ð2IxÞ¼ð2jHð1;0ÞjÞ2
ψx0¼ argfHð1;0Þg ;

�ð2IyÞ¼ð2jVð0;1ÞjÞ2
ψy0¼argfVð0;1Þg . ðC5Þ

Let us start with coupling CRDTs. By replacing gjklm
with the first-order RDTs fð1Þjklm and selecting in Eq. (C3)
those terms satisfying the conditions jþ k ¼ 1 and mþ
l ¼ 1 the following harmonics are generated

2
ffiffiffiffiffiffiffi
2Iy

p
ℑffð1Þ1001e

ið2πQyNþψy0Þ� þ fð1Þ1010e
−ið2πQyNþψy0Þ�g

¼
ffiffiffiffiffiffiffi
2Iy

p
i

½ðfð1Þ1001 − fð1Þ�1010Þeið2πQyNþψy0Þ

− ðfð1Þ�1001 − fð1Þ1010Þe−ið2πQyNþψy0Þ�

¼
ffiffiffiffiffiffiffi
2Iy

p
i

½Fxyeið2πQyNþψy0Þ − c:c:�; ðC6Þ

where

( jHð0; 1Þj ¼ ffiffiffiffiffiffiffi
2Iy

p jFxyj
argfHð0; 1Þg ¼ qFxy

þ 3
2
π þ ψy0

;

⇒

8>><
>>:

Fxy ¼ fð1Þ1001 − fð1Þ�1010

jFxyj ¼ jHð0; 1Þj=ð2jVð0; 1ÞjÞ
qFxy

¼ argfHð0; 1Þg − 3
2
π − argfVð0; 1Þg

;

ðC7Þ

since both ð2IyÞ and ψy0 are measurable from the vertical
tune line Vð0; 1Þ, via Eq. (C5). It shall be noticed that a
choice must be made on the selection of the spectral line,
since Eq. (C6) is real. Fxy may be inferred from either
Hð0; 1Þ or by its complex conjugate Hð0;−1Þ: These two
lines have equal amplitudes but opposite phases. The
choice is made here to make use of the lines in the region
[0,0.5] in tune units, assuming that both tunes Qx;y lie in
that interval. With this assumption, Hð0; 1Þ is used, while
Hð0;−1Þ is rejected. If the tunes are in the region [0.5,1],

TABLE XVI. Dependence of tune line amplitudes mean value and rms modulation against initial conditions evaluated from single-
particle tracking and FFT of the particle position recorded at the 224 BPMs in the ESRF storage ring. The sextupole setting is the same
used in the experiments and focusing errors are included in the lattice model. The observed amplitude dependent modulation is due to
second-order sextupole terms.

ðx0; y0Þ (mm) ðjHð1; 0Þj; jVð0; 1ÞjÞ mean value m1=2 ðjHð1; 0Þj; jVð0; 1ÞjÞ rms modul. m1=2 Relative modulation

(0.4, 0.1) ð0.3; 0.3Þ × 10−4 ð3.1; 2.7Þ × 10−9 ∼10−4
(1.2, 0.5) ð1.0; 1.4Þ × 10−4 ð4.6; 5.0Þ × 10−8 < 10−3

(2.2, 0.5) ð2.0; 1.4Þ × 10−4 ð0.1; 0.1Þ × 10−6 < 10−3

(2.2, 0.7) ð2.0; 2.0Þ × 10−4 ð0.2; 0.2Þ × 10−6 ∼0.1%
(2.8, 0.8) ð2.6; 2.6Þ × 10−4 ð0.4; 0.4Þ × 10−6 ∼0.2%
(4.5, 0.8) ð4.1; 2.6Þ × 10−4 ð0.8; 0.9Þ × 10−6 ∼0.3%
(4.4, 0.9) ð4.1; 3.0Þ × 10−4 ð0.9; 1.1Þ × 10−6 ∼0.4%
(8.0, 2.0) ð8.9; 6.9Þ × 10−4 ð1.1; 1.5Þ × 10−5 ∼2%
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the opposite is true. This rule will apply to all secondary
spectral lines discussed in this paper. The same algebra
repeated for the vertical signal of Eq. (C4):

2
ffiffiffiffiffiffiffi
2Ix

p
ℑffð1Þ0110e

ið2πQxNþψx0Þ� þ fð1Þ1010e
−ið2πQxNþψx0Þ�g

¼
ffiffiffiffiffiffiffi
2Ix

p
i

h
ðfð1Þ0110 − fð1Þ�1010Þeið2πQxNþψx0Þ

− ðfð1Þ�0110 − fð1Þ1010Þe−ið2πQxNþψx0Þ
i

¼
ffiffiffiffiffiffiffi
2Ix

p
i

½Fyxeið2πQxNþψx0Þ − c:c:�; ðC8Þ

where( jVð1; 0Þj ¼ ffiffiffiffiffiffiffi
2Ix

p jFyxj
argfVð1; 0Þg ¼ qFyx

þ 3
2
π þ ψx0

;

⇒

8>>><
>>>:

Fyx ¼ fð1Þ0110 − fð1Þ�1010

jFyxj ¼ jVð1; 0Þj=ð2jHð1; 0ÞjÞ
qFyx

¼ argfVð1; 0Þg − 3
2
π − argfHð1; 0Þg

:

ðC9Þ

ð2IxÞ and ψx0 are replaced by the horizontal tune line
Hð1; 0Þ, via Eq. (C5). Equations (C7) and (C9) prove the
skew quadrupole entries in Tables I and II. Even though

these two equations form a linear system, it is impossible to
extract the two coupling RDTs from the two CRDTs, the
system being degenerate. Nevertheless, the following
relation applies

Fxy0 ¼ ℜfFxyg −ℜfFyxg≡ 0: ðC10Þ

Fxy0 may be then used to assess the reliability of the
harmonic analysis, as far as coupling is concerned, in the
same way F0 of Eq. (7) does for the sextupolar analysis.
The same procedure may be applied for the normal

sextupole spectral lines of Table I, again replacing the

ORDTs gjklm by the first-order RDTs fð1Þjklm in Eqs. (C3) and
(C4). For skew sextupole and normal octupole spectral
lines the ORDTs of Tables XIV and XV, respectively, shall
be used. For more details, see Ref. [12].
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TABLE XVII. Selection of index relative to the magnets.

Multipole kind Magnetic term Index relations

Normal quadrupole x2 jþ k ¼ 2 mþ l ¼ 0
Normal quadrupole y2 jþ k ¼ 0 mþ l ¼ 2
Skew quadrupole xy jþ k ¼ 1 mþ l ¼ 1
Normal sextupole x3 jþ k ¼ 3 mþ l ¼ 0
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Skew sextupole y3 jþ k ¼ 0 mþ l ¼ 3
Skew sextupole x2y jþ k ¼ 2 mþ l ¼ 1
Normal octupole x4 jþ k ¼ 4 mþ l ¼ 0
Normal octupole y4 jþ k ¼ 0 mþ l ¼ 4
Normal octupole x2y2 jþ k ¼ 2 mþ l ¼ 2
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