
Analytical considerations for linear and nonlinear optimization
of the theoretical minimum emittance cells: Application

to the Compact Linear Collider predamping rings

F. Antoniou* and Y. Papaphilippou†

CERN, CH-1211 Geneva 23, Switzerland
(Received 18 October 2013; published 23 June 2014)

The theoretical minimum emittance cells are the optimal configurations for achieving the absolute
minimum emittance, if specific optics constraints are satisfied at the middle of the cell’s dipole. Linear
lattice design options based on an analytical approach for the theoretical minimum emittance cells are
presented in this paper. In particular the parametrization of the quadrupole strengths and optics functions
with respect to the emittance and drift lengths is derived. A multiparametric space can be then created with
all the cell parameters, from which one can choose any of them to be optimized. An application of this
approach is finally presented for the linear and nonlinear optimization of the Compact Linear Collider
predamping rings.
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I. INTRODUCTION

High brilliance or luminosity requirements, for electron
storage or linear colliders’ damping rings, necessitate ultra
low emittance beams. Under the influence of synchrotron
radiation, the theoretical minimum emittance (TME) [1] is
reached for specific optics conditions, including a unique
high cell phase advance [2]. The strong focusing needed for
accomplishing the TME conditions results in cells with
intrinsically high chromaticity. The chromatic sextupoles’
strengths are enhanced by the low dispersion of the TME cell
and reduce the dynamic aperture (DA). The ultimate target of
a low emittance cell designer is to build a compact ring,
attaining a sufficiently low emittance, with an adequately
large DA, driven by geometrical aperture and injection
requirements. The lattice design, however, is often based
on numerical tools whose optimization algorithms depend
heavily on the initial conditions. Reaching the optimal
solution necessitates several iterations, without necessarily
having a global understanding of the interdependence
between a series of optics parameters and knobs. Modern
techniques, as the multiobjective genetic algorithms
(MOGA) [3] or the global analysis of stable solutions
(GLASS) [4] attempt to achieve a global optics optimization
exploring numerically all possible solutions, within stability
and performance requirements. In this paper, a different
approach is followed by obtaining an analytical solution for
the quadrupole strengths and a complete parametrization of

the TME cell, using the thin lens approximation. In this way,
all cell properties are globally determined and the optimi-
zation procedure following any design requirement can be
performed in a systematic way. The properties of the cell are
studied in the case of the absolute minimum emittance limit,
but also away from this limit. In this respect, the terminology
TME cells refers to a cell design that does not specifically
reach the theoretical minimum value for the emittance.
Although approximate, the obtained solutions are very close
to the real thick-element optics and can be used as initial
conditions for efficiently matching the lattice through
numerical optics codes.
The Compact Linear Collider (CLIC) predamping rings

offer an ideal test bed for applying the procedure mentioned
above: they have to accommodate a large emittance beam,
coming in particular from the positron source, and reduce
its size to low enough values for injection into the main
damping rings. The latter requirement imposes a low
emittance cell linear optics design, whereas the former
one necessitates a large off-momentum DA.
The paper is organized as follows: In Sec. II, the analytical

expressions for the quadrupole strengths and other optics
parameters of the TME cell are derived, including conditions
for stability of the solutions and feasibility of the magnets. In
Sec. III, the complete parametrization of the TME cells is
performed using numerical examples of the analytical thin-
lens solutions, applicable to the CLIC predamping rings
(PDR) lattice design. A validation of the method through the
comparison of the results with numerical simulations using
MADX [5] is presented in Sec. IV. Finally, in Sec. V an
application of the analytical approach and the resonance free
lattice concept [6] is used for the linear and nonlinear
optimization of the CLIC PDR.
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II. ANALYTICAL APPROACH FOR
THE TME CELLS

A. The TME cell

A schematic layout of the TME cell is displayed in Fig. 1.
It consists of one dipole D of length ld and at least two
families of quadrupolesQ1,Q2, as pictured. The quadrupole
focal lengths are denoted by f1 ¼ 1=ðk1lq1Þ and f2 ¼
1=ðk2lq2Þ and the drifts between the elements by s1, s2
and s3. For simplicity, the center of consecutive dipoles is
considered as the entrance and exit of the TME cell.
The horizontal emittance of the beam in an isomagnetic

ring:

ϵx ¼
Cqγ

2

J xρx
hHxi; ð1Þ

is determined by the average dispersion invariant in the
dipoles, Hx ¼ γxD2

x þ 2αxDxD0
x þ βxD0

x
2, where αx; βx; γx

are the twiss parameters and Dx, D0
x the dispersion and

its derivative. The parameter Cq ¼ 3.84 × 10−13 m is the
quantum fluctuation coefficient for the electron, γ the
relativistic factor, J x the damping partition number, and
ρx the bending radius. The minimization of the dispersion
invariant average, provides the conditions of βx and Dx at
the center of the dipole, for achieving the theoretical
minimum emittance [1]:

βmin
xc ¼ ld

2
ffiffiffiffiffi
15

p ; αxc ¼ 0; Dmin
xc ¼ θld

24
; D0

xc ¼ 0; ð2Þ

where θ ¼ ld
ρx
¼ 2π

Nd
is the bending angle for Nd dipoles in

the ring. For a general TME cell, the geometrical emittance
can be expressed as:

ϵx ¼
Cqγ

2

J xρx

�
1

βxc

�
D2

xc −
θDxcld
12

þ θ2l2d
320

�
þ θ2βxc

12

�
; ð3Þ

where Dxc and βxc are the dispersion and beta functions at
the center of the dipole. Substituting the values ofDmin

xc and
βmin
xc in Eq. (3) with their TME expressions of Eq. (2), the

emittance becomes ϵxTME ¼ F Cqγ
3θ3. The scaling factor

F for the TME lattice is F ¼ 1

12
ffiffiffiffi
15

p
J x

and the damping

partition number J x ≈ 1, in the case of isomagnetic rings,
based on dipoles without a quadrupole gradient [7].

Defining the ratios βr ¼ βxc
βmin
xc

and Dr ¼ Dxc

Dmin
xc
, it is useful to

define the emittance detuning factor [2]:

ϵr ¼
9þ 4β2r þ 5ðDr − 2ÞDr

8βr
; ð4Þ

with ϵx ¼ ϵr · ϵx;TME. The detuning factor is an indication
of how much the emittance deviates from its theoretical
minimum, for a given set of optics parameters at the center
of the cell.
Inverting Eq. (4) and solving with respect to βr, the

following expression is computed:

βr ¼ ϵr �
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−9þ 4ϵ2r − 5ð−2þDrÞDr

q
: ð5Þ

The quadratic dependence on Dr of the argument in the
square root in Eq. (5), sets an upper and a lower limit for
the dispersion at the center of the dipole, in order for βr to
be a real number:

1−
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þϵ2r

p
ffiffiffi
5

p ≤Dr≤1þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þϵ2r

p
ffiffiffi
5

p : ð6Þ

B. Analytical solutions for the quadrupole strengths

The beta βxc and dispersion Dxc functions, at the dipole
center, impose two independent optics constraints and
thusat least twoquadrupole familiesareneededfor achieving
them. The horizontal optics functions are fully controlled by
these two pairs of quadrupoles, whereas in the absence of
additional knobs, the vertical plane optics is also uniquely
defined.Usingbasic linear optics arguments and the thin lens
approximation and for specificβxc andDxc at the center of the
dipole (or βr andDr), analytical expressions can be derived
for the strengths of the quadrupoles:

f1 ¼
s2ð4lds1 þ l2d þ 8DxcρxÞ

ð4lds1 þ l2d þ 8DxcρxÞ þ 4lds2 − 8Dsρx

¼ lds2½12s1 þ ldðDr þ 3Þ�
12ldðs1 þ s2Þ þ l2dðDr þ 3Þ − 24Dsρx

;

f2 ¼ −
8s2Dsρx

ð4lds1 þ l2d þ 8DxcρxÞ − 8Dsρx

¼ −
24s2Dsρx

12lds1 þ l2dðDr þ 3Þ − 24Dsρx
; ð7Þ

which are parametrized with the drift lengths s1; s2; s3.
The parameter Ds is the dispersion at the center of the
cell (between two mirror symmetric quadrupoles) and is
a function of the drift lengths, the optics functions at the
dipole center and the bending characteristics:

Ds ¼
A�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ ABC

p

64Bρ2x
; ð8Þ

FIG. 1. Schematic layout of the TME cell.
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where

A ¼ 8s2ρx½l4d þ 64D2
xcρ

2
x þ 16l2dðβ2xc −DxcρxÞ�

¼ 8

45
l4ds2½12β2r þ 5ðDr − 3Þ2�ρx;

B ¼ ldð2s1ld þ l2d þ 8β2xcÞ − 8ð2s1 þ ldÞDxcρx

¼ 1

15
l2d½ldð15þ 2β2r − 5DrÞ − 10s1ðDr − 3Þ�;

C ¼ 16s3ρxð4s1ld þ l2d þ 8DxcρxÞ
s2

¼ 16lds3½12s1 þ ldðDr þ 3Þ�ρx
3s2

: ð9Þ

The calculation of Ds springs from the symmetry
requirement at the middle of the cell, αx ¼ 0. By
applying the TME conditions at the middle of the
dipole (αx ¼ 0, D0

x ¼ 0), the αx function at the middle
of the cell has a quadratic dependence on (D−1

s ), which
results in the two solutions, with opposite sign in the
second component, for Ds.
The horizontal and vertical phase advances of the cell

can be defined through the trace of the cell transfer matrix
and from this, the horizontal phase advance can be written
in a simple form as:

cos μx ¼
ðl2d − 8DxcρxÞ2 − 16l2dβ

2
xc

ðl2d − 8DxcρxÞ2 þ 16l2dβ
2
xc
¼ 5ðDr − 3Þ2 − 12β2r

5ðDr − 3Þ2 þ 12β2r
:

ð10Þ

For Dr ¼ βr ¼ 1, μx ¼ arccosð1=4Þ ¼ 284.5° independent
on any cell parameter, which is a known property of the
TME cells [2]. The expression for the vertical phase
advance has a more complicated form:

cos μy ¼ 1þ lc
f1

þ lc
f2

þ s23ðlc − 2s23Þ
f21

þ s3ðlc − 2s3Þ
f22

þ 2s23lc − 2ðs223 þ s23Þ
f1f2

þ s2ðs23 þ s3Þðlc − 2s23Þ
f21f2

þ 2s2s3ðlc − s23 − s3Þ
f1f22

þ s22s3ðlc − 2s23Þ
f21f

2
2

; ð11Þ

where lc ¼ ld þ 2ðs1 þ s2 þ s3Þ the cell length and
s23 ¼ s2 þ s3. Unlike the horizontal plane, the vertical
phase advance depends not only on the optics functions at
the dipole center but also the cell geometry.

C. Momentum compaction factor

An analytical expression can also be derived for the
momentum compaction factor of the cell, under the TME
conditions (D0

x ¼ 0 at the center of the dipole), and can be
written in the form:

αp ¼
�
Dx

ρx

�
¼ 1

ld

Z
ld

0

DxðsÞ
ρx

ds

¼ 7

12
θ2 þ 2Dc

ρx
¼ θ2

12
ðDr þ 7Þ; ð12Þ

depending only on the dipole characteristics and in par-
ticular, quite strongly on the bending angle, which explains
the trend that the momentum compaction factor is reduced,
when the dipoles become shorter and/or weaker. The
momentum compaction factor for the absolute minimum
emittance (Dr ¼ 1) is

αTME
p ¼ 2θ2

3
; ð13Þ

which depends only on the dipole bending angle.

D. Optics stability

The stability criterion for both horizontal and vertical
planes is

TraceðMx;yÞ ¼ 2j cos μx;yj < 2; ð14Þ

whereMx;y is the transfer matrix of the cell and μx;y are the
horizontal and vertical phase advances per cell, respec-
tively. The latter ensures the optics stability and can be used
for constraining the cell characteristics (focal and drift
lengths).

E. The absolute minimum emittance limit

In the absolute minimum emittance limit, where
βr ¼ Dr ¼ 1, the parametric equations for the quadrupole
strengths are reduced to:

fTME
1 ¼ ðld þ 3s1Þð3ld þ 5s1Þs2

ðld þ 3s1Þð3ld þ 5s1Þ þ ð7ld þ 15s1Þs2 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ldðld þ 3s1Þð3ld þ 5s1Þs3 þ l2ds

2
2

q ;

fTME
2 ¼ 2lds2s3

ldðs2 þ 2s3Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ldðld þ 3s1Þð3ld þ 5s1Þs3 þ l2ds

2
2

q : ð15Þ
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Applying the requirement of opposite sign quadrupole strengths in the above equations, thus f1 × f2 < 0, in order to assure
optics stability in both planes, the case of (−) sign of Eq. (8) can be ignored. This shows that the dispersion at the symmetry
point of the cell can never become negative. For the (þ) sign, the following constraints are derived:

s3 >
½ld þ 3ðs1 þ s2Þ�½3ld þ 5ðs1 þ s2Þ�

4ld
and

s2 ≥
ðld þ 3s1Þð3ld þ 5s1Þ

4ld

or

s2 þ s3 <
ðld þ 3s1Þð3ld þ 5s1Þ

4ld

It is interesting to study the behavior of Eqs. (15) in the limit where the drift spaces lengths are going to zero. They are
then reduced to:

ðfTME
1 ; fTME

2 Þ⟶s1→0
�

3lds2
3ld þ 7s2 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s22 þ 3lds3

p ;
2s2s3

s2 þ 2s3 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s22 þ 3lds3

p �
;

ðfTME
1 ; fTME

2 Þ⟶s2→0 ð0; 0Þ;

ðfTME
1 ; fTME

2 Þ⟶s3→0
�

s2ð3ld þ 5s1Þ
3ld þ 5ðs1 þ s2Þ

;
4lds22

3l2d þ 14lds1 þ 15s21 − 4lds2

�
; ð16Þ

In the limits where s1 → 0 or s3 → 0 both f1 and f2
converge to specific values, depending on the dipole length
and on the drift spaces lengths. Thus, realistic solutions
exist even if the first quadrupole Q1 is placed exactly after
the dipole, without any space between them, or if the two
Q2 quadrupoles are merged to 1. In the limit where s2 → 0
both the focal lengths f1 and f2 go to zero or the
quadrupole strengths to infinity. A good separation of
the two quadrupoles is thus necessary in order to have a
feasible TME cell. In the limit of the absolute minimum
emittance and of s2 → 0, the cosϕy function goes also to
infinity verifying that those solutions are optically unstable.

F. Magnet technology constraints

Even if satisfied, the stability criteria do not necessarily
guarantee technologically feasible magnet strengths. The
pole tip field of the quadrupoles and chromatic sextupoles
is constrained by the maximum value allowed by the
chosen magnet technology. In addition, the radius of the
magnets’ aperture should be greater than a minimum value,
defined by beam and lattice properties.
The quadrupole gradient (expressed in [T=m]) is defined

as g ¼ kðBρxÞ, where k is the quadrupole strength and Bρx
the magnetic rigidity. From the definition of the pole tip

field: Bq ¼ R ∂By

∂x jy¼0 ¼ Rg, the gradient is g ¼ Bq

R , where R
is the quadrupole aperture radius. Considering a circular
beam pipe, the minimum required aperture radius in order
to accept all the particles of the incoming beam, for a non-
Gaussian beam distribution, is defined by the displacement

of the particles with the maximum action in the beam,
defined by an emittance ϵmax and a momentum deviation
ðδp=p0Þmax [8]:

Rmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2βϵmax

p
þ
�
δp
p0

�
max

·Dþ dco; ð17Þ

where β and D are the beta and dispersion functions at
this location, ðδp=p0Þ the total energy spread of the
beam, and dco a constant reflecting the tube thickness,
mechanical tolerances and maximum orbit distortion.
For a Gaussian beam distribution, Eq. (17) becomes:

Rmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2βϵmax þ ½ðδpp0

Þmax ·D�2
q

þ dco. The Rmin can be

computed for each element of the cell and takes its
maximum value at the center of the quadrupoles, where
the beta functions become maximum. The magnet tech-
nology constraint for the quadrupole gradient or strength is
then

g ≤
Bmax
q

Rmin
or

1

flq
¼ k ≤

1

ðBρxÞ
Bmax
q

Rmin
: ð18Þ

In a similar way, a magnet technology constraint can be
set for the sextupole strengths. As already mentioned, the
TME cells are intrinsically high chromaticity cells when
targeting their theoretical minimum emittance limit, as low
dispersion and strong focusing are needed to achieve the
ultra low emittance. The high chromaticity requires strong
sextupoles for the chromaticity correction, reducing the
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dynamic aperture of the machine. The sextupoles used for
the natural chromaticity correction are usually placed close
to the quadrupoles, in large dispersion and beta function
regions. In order to simplify the calculations, the sextupoles
are considered to be placed on top of the quadrupoles,
with equal lengths. The pole-tip field for the sextupoles is

Bs ¼ ðBρxÞb2R2 ¼ 1
2
R2 ∂2By

∂x2 jy¼0 and the sextupole gradient
ðBρxÞb2 ¼ Bs=R2. As the sextupoles are set to cancel the
chromaticity induced by the quadrupoles, the sextupole
strengths can be calculated by:

ξx ¼ −
1

4π

I
βx½KxðsÞ − SðsÞDðsÞ�ds ¼ 0;

ξy ¼ −
1

4π

I
βy½KyðsÞ þ SðsÞDðsÞ�ds ¼ 0; ð19Þ

where Kx;y the focusing and defocusing quadrupole

strengths and S ¼ b2
ðBρxÞ the sextupole strengths.

Evaluating the above integrals along the cell, the expres-
sions for the sextupole strengths are

S1 ¼ −
2ξqyπβx;d þ 2ξqxπβy;d

lqβx;fβy;dDx;f − lqβx;dβy;fDx;f
;

S2 ¼
2ξqyπβx;f þ 2ξqxπβy;f

lqβx;fβy;dDx;d − lqβx;dβy;fDx;d
; ð20Þ

where ξqx;y ¼ − 1
4π

H
βx;yKx;yds and lq the length of the

quadrupoles. For simplicity, we consider all the quadru-
poles to have the same length. In the expressions above,
the index f denotes the values of the optics functions on the
focusing quadrupoles while d denotes the values on the
defocusing quadrupoles. In order to have feasible solutions,
these values need to satisfy the constraint:

S ≤
Bmax
s

R2
min

1

ðBρxÞ2
: ð21Þ

Equations (5), (6), (7), (10), (18), (21) fully describe the
linear optics of the TME cell. The parameter space of the
cell, including geometrical and optical properties, can be
determined giving the possibility to optimize the cell
according to any design requirements.

III. NUMERICAL APPLICATION

The analytical parametrization can be used to study the
performance of any TME cell of interest. Some numerical
examples, applicable to the CLIC PDR lattice design, will
be used to demonstrate the results. The energy of the CLIC
damping rings complex of 2.86 GeV [9] and a dipole field
of 1.2 Tare used. The required output normalized emittance
from the CLIC PDR is 63 μm rad. Leaving a blowup
margin of 10%, and using Eq. (3), at least 19 dipoles
(or TME cells) of 1.2 T field and θ ¼ 2π=Nd ≈ 19° bending

angle, are needed. The example of a TME cell with 38
dipoles of 1.2 T bending field and θ ≈ 9.5° bending angle is
also discussed. In order to set the feasibility constraints of
the quadrupole and sextupole magnets, the maximum pole-
tip field of the quadrupoles is set to Bmax

q ¼ 1.1 T [10] and
for the sextupoles Bmax

s ¼ 0.8 T [11], which are typical
values for normal-conducting magnets. Both quadrupole
and sextupole lengths are set to lq ¼ 0.3 m. Fixing those
parameters, the free parameters left are the drift space
lengths, s1, s2, and s3, and the emittance ϵx, or the detuning
factor ϵr. The parametrization with respect to drift spaces
lengths and with respect to the emittance are treated
separately.

A. Parametrization with the drift lengths

At first, a constant emittance is considered and we seek
the drift spaces lengths satisfying the stability constraints
in both horizontal and vertical planes. By construction
the horizontal plane is always optically stable, thus this
constraint comes solely from the vertical plane. The vertical
phase advance [defined in Eq. (11)] was calculated for
all combinations of s1, s2, and s3, for s1 ∈ ð0.5; 2Þ m,
s2 ∈ ð0.5; 2Þ m, and s3 ∈ ð0.25; 1Þ m. The optically stable
solutions for a TME cell with bending angle of θ ¼ 2π=19,
corresponding to a dipole length of ld ¼ 2.6 m and an
equilibrium emittance of ϵTME

x ¼ 52 μm rad, parametrized
with s1, s2, and s3 are shown in the left part of Fig. 2. There
are two manifolds of stable solutions, clearly distinguished
with respect to the vertical phase advance. Solutions above
the diagonal in the (s1; s2) plane (i.e., small s1 and large s2
values) correspond to small phase advances (μy < 0.5),
while the solutions around the diagonal correspond to large
phase advances (μy > 0.5). The optics stability is indepen-
dent of the value of s3, as there are stable solutions for
each value of s3, for both regions of solutions. The right
part of Fig. 2 shows the stability region in the (s1; s2)
plane for different theoretical minimum emittance targets
(ϵxTME ∼ N−3

d ), color-coded with s3. Targeting lower TME
values, only the high phase advance solutions provide
optical stability.
The combinations of drift lengths satisfying the stability

requirements are then applied to Eqs. (7)–(11), for the
calculation of all cell properties. Figure 3 shows the
parametrization of the quadrupole focal lengths (top),
f1 (left) and f2 (right) and the horizontal (bottom, left)
and vertical (bottom, right) chromaticities with the drift
spaces lengths, s1, s2. The two manifolds of stable solutions
are clearly distinguished with respect to the quadrupole
focal lengths (especially for the defocusing quad) and the
horizontal and vertical chromaticities. The small s1—large
s2 region (low vertical phase advance solutions) corre-
sponds to weaker quadrupole strengths and smaller chro-
maticities. The small to moderate s2 region (large vertical
phase advance solutions) corresponds to strong quadrupole
focal lengths (especially the vertical one) and large
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chromaticities. If magnet feasibility constraints are applied
to these solutions, the latter region is rejected. The above
observations can lead to the conclusion that proper choice
of the drift spaces lengths triplet (s1, s2, s3) can assure the
stability of the motion, and leads to the minimization of the
quadrupole strengths (maximum focal lengths) and to the
minimization of the cell chromaticities in both planes,
achieving always the same minimum emittance.

In the case of the low emittance rings lattice design, low
chromaticity solutions are of interest for larger dynamic
aperture. The cell length, on the other hand, is preferred to
stay as compact as possible to minimize the circumference
of the ring. Figure 4 shows the (s1, s2, s3) triplets for which
the absolute chromaticity in both planes is less than 2,
color-coded with the total cell length lc (left). In the right
part of the figure, the projection of the solutions onto the

FIG. 3. Parametrization of the quadrupole focal lengths (top), f1 (left) and f2 (right) and the horizontal (bottom, left) and vertical
(bottom, right) chromaticities with the drift spaces lengths, s1, s2 providing optical stability.
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FIG. 2. Left: Parametrization of the vertical phase advance of a TME cell with a dipole bending angle of θ ¼ 2π=19 with the drift
spaces lengths s1, s2, s3, when targeting the theoretical minimum emittance. Only solutions providing optical stability are
presented. Right: The stability region in the (s1; s2) plane for different theoretical minimum emittance targets (ϵxTME ∼ N−3

d ),
color-coded with s3.
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(s1, s2) plane is shown, color-coded with the horizontal
chromaticity. In order to keep the chromaticity low and the
cell length as compact as possible, small values of s1 and
small to moderate values of s2 are needed. However, even
the minimum possible chromaticity of this cell is quite
large (ξx ∼ −1.65).

B. Parametrization with the emittance

Having the drift lengths fixed, Eq. (7) combined with
Eqs. (5) and (6) are studied numerically for different
detuning factors ϵr. In this example, the dipole bending
angle is set to θ ¼ 2π=38 and the drift lengths to
s1 ¼ 0.9 m, s2 ¼ 0.6 m, and s3 ¼ 0.5 m. This configura-
tion was found to be the optimal one for the CLIC PDR
lattice design, as will be shown later.
In order to achieve the absolute minimum emittance,

only one pair of initial optics functions ðDxc; βxcÞ or
ðDr; βrÞ exists [2]. However, relaxing this requirement
and detuning the cell to higher emittance values (ϵr > 1),
several pairs of ðDxc; βxcÞ lying in elliptical curves can

achieve the same emittance, as shown by Eq. (3). Figure 5
(left) shows the solutions of ðDr; βrÞ color-coded with the
detuning factor ϵr. Even though, by definition, all solutions
are stable in the horizontal plane, only a small fraction of
them satisfy the stability criteria of the vertical plane (black
squares). The parametrization of the focusing strengths
with the emittance is displayed in Fig. 5 (right), with the
same color-convention as before. The f1, f2 pairs for the
same detuning factor lie in distorted ellipses, which get
more distorted while moving to high detuning factors. In
order to tune the cell to the very low emittance, strong
quadrupole strengths are needed and only one combination
of (f1, f2) can tune the cell to the absolute emittance
minimum. Moving away from the minimum emittance
regime, the quadrupole strengths are relaxed for detuning
factors greater than 2. In the upper left corner of the plot,
solutions with both f1 and f2 positive cannot provide
stability as they always provide defocusing in the vertical
plane. It is interesting to notice that by changing the values
of f1 and/or f2 by a small amount, the system remains
stable if tuned in the relaxed ϵr regime but can easily get
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unstable if tuned to the absolute minimum emittance
conditions.
Scanning in a broader range of the detuning factor, two

different types of solutions survive the stability criteria.
Solutions with focusing Q1 and defocusing Q2 are pre-
sented in the top part of Fig. 6, while the opposite case is
presented in the bottom. Following the convention of [12],
we will refer to the former case as a conventional TME cell
while the latter as a modified TME cell. The parametriza-
tion of the cell detuning factor ϵr (left), and the horizontal
(middle) and vertical (right) chromaticities with the hori-
zontal and vertical phase advances of the cell is presented
for each case. For a conventional TME cell the chroma-
ticities get minimized in both planes toward small phase
advances, while the emittance detuning factor becomes
large. Large phase advances correspond to high chroma-
ticity values and small detuning factors. It is interesting to
notice that the high detuning factor solutions at large
horizontal phase advances produce large chromaticities, as
they correspond tominimumdispersion andbeta functions at
the center of the dipole which require strong focusing. In the
case of the modified TME cell, the chromaticities are
minimized for small phase advances as well, however in
this case solutionswith small detuning factors alsoexist.This
type of cell is discussed in detail in [12].

IV. VALIDATION OF THE METHOD

The results of the analytical solution were compared to
numerical simulations with MADX [5] for the thin and thick
lens cases. The plots of Fig. 7 show this comparison for
three different values of the quadrupole lengths, lq ¼ 1, 10,

and 20 cm. The three black curves in Fig. 7 represent three
different detuning factors, ϵr ¼ 1, 1.5, and 2. The analytical
solutions are shown in black, the solutions satisfying
the stability criteria in red while the MADX solutions are
presented in green, blue, and ciel, respectively. The agree-
ment for the thin lens is excellent, demonstrating the
validity of the analytical calculations. It is very interesting
that, even in the thick lens case, the agreement is still very
good. The analytical solution can be a very good approxi-
mation of the simulation results and can be helpful for
the lattice optimization and understanding. In this way the

FIG. 6. Parametrization of the cell detuning factor ϵr (left), and the horizontal (middle) and vertical (right) chromaticities with the
horizontal and vertical phase advances of the cell is presented for each case, for a conventional (top) and a modified (bottom) TME cell.

FIG. 7. Comparison between the analytical solution and MADX

simulations. The analytical solutions are presented in black,
the solutions satisfying the stability requirements in red and the
results from MADX for different quadrupole lengths: lq ¼ 1 cm in
green, lq ¼ 10 cm in blue, and lq ¼ 20 cm in ciel.
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optimal dipole characteristics, the geometrical character-
istics of the cell and the interesting phase advances can be
defined. It can also be very useful for the definition of initial
conditions to be used for the lattice design using numerical
tools, whose optimization algorithms depend heavily on the
initial values.
This approach was thus used in order to define the

optimal configuration and working point of the TME arc
cells of the CLIC PDR lattice design.

V. APPLICATION TO THE CLIC PDR DESIGN

The CLIC predamping rings provide the first stage of
damping of the eþ=e− beams of the linear collider. They
have to accommodate a 2.86 GeV beam with a large input
emittance of 7 mm rad, for positrons [13], and damp it
down to a normalized emittance of 63 μm rad for injection
into the main DR. The required input and output parameters
are given in Table I, for both electrons and positrons [14].
Unlike the DR, the PDR lattice design is not driven by

the emittance requirements [9]. The large energy spread
and beam size of the injected beam, especially the one
coming from the positron source, impose the requirements
of large momentum acceptance and dynamic aperture. Thus
the PDR lattice design is focused on the dynamic aperture
optimization, providing at the same time a large enough
momentum acceptance and the required output emittance.
Due to the more difficult characteristics of the positron
beam, emphasis is given to the design of the positron
predamping ring. The rings were chosen to have a racetrack
configuration with two arc sections and two long straight
sections (LSS), as a racetrack shape is the most compact
one if only 2 dispersion free regions are required, which is
valid for the case of the CLIC PDRs. The arc sections are
composed by TME cells, being the most compact low
emittance cells. On the other hand, the LSS are composed
by FODO cells filled with damping wigglers [9]. The
damping wigglers are necessary to achieve the low emit-
tance within a fast damping time, in order to fit into the
50 Hz repetition rate of the collider. Permanent magnet
wigglers of Bw ¼ 1.9 T peak field and λw ¼ 5 cm period

provide the fast damping time and the required output
emittance [15].
For the optimization of the CLIC PDR lattice design

low chromaticity solutions are of interest, as the design is
focused on the dynamic aperture optimization. In this
case, it is thus preferable to choose a cell that can achieve
an absolute minimum emittance much lower than the
requirement of the design and detune it to large detuning
factors (low phase advances), in order to minimize the
chromaticity. A scan on the drift spaces lengths can then
be performed in order to find the optimal configuration of
the cell. Here, the example of a detuned cell is considered
for a dipole bending angle of θ ¼ 2π=38, corresponding to
a minimum emittance of 6.5 μm rad and for a detuning
factor of ϵr ¼ 10. The emittance that this cell achieves,
even if detuned by a factor of 10, is still within the
requirements of the PDR design. Unlike the case of the
absolute minimum emittance described in Sec. III A, in
this case all choices of (s1, s2, s3) triplets ensure optical
stability. The parametrization of the horizontal (left) and
vertical (right) chromaticity with the drift spaces lengths
s1, s2 and the horizontal dispersion at the middle of the
dipole is presented in Fig. 8. Only low chromaticity
solutions for which jξx;yj < 2, are presented. There is a
clear correlation between the Dxc and the horizontal
chromaticity ξx. High chromaticity values correspond to
negative or small dispersion at the middle of the dipole, as
the latest require strong focusing by the quadrupoles.
Higher dispersion values at the middle of the dipole
correspond to smaller chromaticity values of the cell.
For the vertical chromaticity on the other hand, the same
pattern is followed for all dispersion planes, with smaller
s2 values providing the lowest vertical chromaticity.
Finally, the optimal configuration of the drift spaces
lengths, for the example under study, in order to provide
low chromaticity in a relatively short cell, was chosen to
be ðs1; s2; s3Þ ¼ ð0.9; 0.6; 0.5Þ m.

A. Nonlinear optimization

The main limitation of the DA in the low emittance
lattices comes from the nonlinear effects induced by the
strong sextupole strengths, which are introduced for the
chromaticity correction. From the nonlinear dynamics
theory [16], a resonance of order n defined by
nxqx þ nyqy ¼ p, with jnxj þ jnyj ¼ n the order of the
resonance and p any integer, is associated with a driving
term. Based on [6], the driving term of a resonance
associated with the ensemble of Nc cells vanishes, if the
resonance amplification factor is zero:

����X
Nc−1

p¼0

eipðnxμx;cþnyμy;cÞ
����¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− cos½Ncðnxμx;c þ nyμy;cÞ�
1− cosðnxμx;c þ nyμy;cÞ

s
¼ 0:

ð22Þ

TABLE I. Parameters before the injection to the predamping
rings and before the injection to the main damping rings.

Injected Extracted

Parameters e− eþ e−=eþ

Bunch population [109] 4.7 6.4 4.4
Bunch spacing [ns] 0.5=1 0.5=1 0.5
Bunches/train 312=156 312=156 312=156
Number of trains 1=2 1=2 1=2
Repetition rate [Hz] 50 50 50
Norm. horiz. emittance [μm rad] 100 7 × 103 63
Norm. vert. emittance [μm rad] 100 7 × 103 1.5
Norm. long. emittance [keV m] 2.86 2288 143
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This is achieved if: Ncðnxμx;c þ nyμy;cÞ ¼ 2kπ, provided
the denominator of Eq. (22) is nonzero, i.e.,
nxμx;c þ nyμy;c ≠ 2k0π, with k and k0 any integers. From
this, a part of a circular accelerator will not contribute to
the excitation of any nonlinear resonances, except those
defined by ηxμx þ ηyμy ¼ 2k3π, if the phase advances per
cell satisfy the conditions: Ncμx ¼ 2k1π and Ncμy ¼ 2k2π,
where k1, k2, and k3 are any integers. Prime numbers for
Nc, which in our case is the number of TME cells per arc,
are interesting, as there are fewer resonances satisfying
both diophantine conditions simultaneously.
The nonlinear optimization of the CLIC PDR lattice

was based on the resonance free lattice concept, described
above. From Eq. (3) and using a dipole field of Bd ¼ 1.2 T,
at least 19 dipoles are needed in order to achieve the
required output emittance. From this, convenient numbers
of Nc (number of dipoles per arc) are 11, 13, and 17, which
means 26, 30, and 38 dipoles in the ring, respectively,

including the dispersion suppressors’ dipole. Following the
results from the analytical parametrization of the TME
cells, small horizontal and vertical phase advances and
large detuning factors are favorable, for low cell chroma-
ticity. The largest number of cells is better for increasing
the detuning factor between the required and the minimum
emittance and the cancellation of a larger number of
resonance driving terms. Finally, the option of Nc ¼ 38
was chosen.
For the calculation of the resonance driving terms, the

PTC-normal module of the MADX code is used, taking into
account dipole and quadrupole fringe fields. The calcu-
lations are performed for different phase advances of the
TME cell, while the resonance driving terms are calculated,
for all the lattice. Figure 9 shows the dependence of the
third order resonance driving terms, for which ðj − kÞμx þ
ðl −mÞμy ¼ n and jj − kj þ jl −mj ¼ 3, on the horizontal
and vertical phase advances of the TME cell. Blue regions

FIG. 9. Horizontal and vertical phase advances of the PDR TME cell, parametrized with the third order Hamiltonian amplitudes.

FIG. 8. Parametrization of the horizontal (left) and vertical (right) chromaticity with the drift spaces lengths s1 and s2 and the
horizontal dispersion at the middle of the dipole, for a detuned cell (ϵr ¼ 10).
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correspond to small resonance excitation, while red
regions indicate maximum excitation. Comparing the 5
Hamiltonian resonant coefficients, the (2,1,0,0) mode is
almost suppressed (a factor of 4-6 smaller than the other
modes) and the (1,0,1,1) mode is weakly excited. The
nonlinear coupling term (1,0,2,0) is excited at high hori-
zontal or high vertical phase advances. The horizontal
mode (3,0,0,0) is also excited at high horizontal phase
advances. In all cases, minimum excitation is observed,
for integer multiples of 1=17.
Due to the fact that strong sextupoles are introduced in

the PDR lattice, for the chromaticity correction, higher
order resonances should also be considered. Figure 10
shows the dependence of the fourth order resonance
driving terms, for which jj − kj þ jl −mj ¼ 4, on the
horizontal and vertical phase advances of the TME cell.
Maximum excitation is observed for the nonlinear cou-
pling terms (2,0,0,2), (2,0,2,0), (1,1,2,0), and (2,0,1,1),
especially at the high horizontal or high vertical phase
advance limit of the scan. The horizontal modes (4,0,0,0)
and (3,1,0,0) are weakly excited with respect to the other
modes. The vertical modes (0,0,4,0) and (0,0,3,1) are also
excited, in the high horizontal phase advance limit for the

first and in the high vertical phase advance limit for the
second. All resonance driving terms are suppressed, for
phase advances that are integer multiples of 1=17, as
expected.
Here, the resonance driving terms are presented and

discussed only to demonstrate the proof of principle of the
resonance free lattice concept. In a further nonlinear
optimization of the lattice, especially when high-order
magnet errors are included, additional families of sextu-
poles, in nondispersive areas, can be used for the mini-
mization of the resonance driving terms which limit the
dynamic aperture.
Another quantity that has to be taken into account, is the

amplitude dependent tune shift δqx;y=δJx;y. From first order
perturbation theory, the leading order tune shift can be
represented by [17]:

�
δqx
δqy

�
¼

�
αhh αhv

αvh αvv

��
2Jx
2Jy

�
; ð23Þ

where αij are called the normalized anharmonicities and
they describe the variation of the tune at different ampli-
tudes (or action).

FIG. 10. Horizontal and vertical phase advances of the PDR TME cell parametrized with the fourth order Hamiltonian
amplitudes.
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Figure 11 shows the dependence of the horizontal (top,
left) and vertical (top, right) detuning with amplitude, δqx
and δqy, respectively, on the horizontal and vertical phase
advances. The bottom plots show the parametrization of

the factor δq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δq2x þ δq2y

q
(left) and the fifth radiation

integral I5 (right), which is an equivalent to the horizontal
emittance, with the horizontal and vertical phase
advances. The amplitude dependent tune shift gets larger
for large phase advances, while the emittance follows the
opposite behavior. For this reason a compromise solution
is chosen, where the horizontal emittance is reached for a
small (but not minimum) detuning with amplitude. The
optimal solution was chosen to be μx ¼ 5=17 and
μy ¼ 3=17. With this choice, a compromise is achieved,
for exciting the smallest number of resonances while
maintaining a rather small amplitude detuning and chro-
maticity, and staying within the output emittance require-
ments of the design.
However, numerology shows that for this choice of phase

advances, the nonlinear fifth order coupling resonance
driving terms are excited, for jj − kj ¼ 1 and jl −mj ¼ 4.
In this case, μx þ 4μy ¼ 5=17þ 4 × 5=17 ¼ 1. The five
modes are presented in Fig. 12, with the (1,0,1,3) mode

being the dominant for μx ¼ 5=17 and μy ¼ 3=17. The other
terms get excited for higher vertical phase advances.
For the chromaticity correction, four families of sextu-

poles are used. A set of sextupoles are located before
the focusing quadrupoles of the TME cells and a set of
sextupoles after the defocusing ones. The same setup is
followed for the two other families of sextupoles, which
are placed in the half TME cells of the dispersion
suppressors. As those sextupoles are not placed in dis-
persive areas, they do not contribute to the chromaticity
correction, but they can be used for further nonlinear
optimization of the lattice.
The optical functions of the TME cell are shown in

Fig. 13, where the horizontal (black) and vertical (red) beta
functions and the horizontal dispersion (green) along the
cell are depicted.
The change in the particles betatron frequencies, due

to the nonlinearities of the accelerator, can lead to the
crossing of resonance lines in the tune diagram. This results
in beam emittance blowup or in beam loss, thus, a careful
choice of the betatron tunes of the linear lattice is very
important for the beam quality and the beam lifetime. In the
CLIC PDR lattice, the betatron tunes are controlled by the
quadrupoles of the long straight section FODO cells.

FIG. 11. Top: Parametrization of the horizontal (top, left) and vertical (top, right) amplitude dependent tune shift, with the horizontal
and vertical phase advances of the TME cell. Bottom: Parametrization of the square root of the quadratic sum of the horizontal
and vertical amplitude dependent tune shifts (left) and of the fifth radiation integral (right), with the horizontal and vertical phase
advances of the TME cell.
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Figure 14 shows the working point in tune space for
momentum deviations δp=p0 from −1.2% to 1.2% (blue)
and the first order tune shift with amplitude (green) up to 6
σx;y. The on-momentum working point of the linear lattice
is ðqx; qyÞ ¼ ð16.39; 12.26Þ.

B. Dynamic aperture

The dynamic aperture (DA) is defined as the maximum
phase-space amplitude within which particles do not
get lost as a consequence of single-particle effects
[18]. The DA has to be at least equal to or larger than
the minimum beam transverse acceptance, Rmin. The
beam coming from the positron source is not expected

to be Gaussian, and the distribution in the storage ring is
not modified, until the beam is damped close to equi-
librium. For this reason, the minimum transverse accep-
tance is defined in terms of a maximum emittance ϵmax of
the particles with the maximum betatron action in the
beam, and of a maximum relative momentum deviation
ðδp=p0Þmax [8]:

Rmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2βϵmax

p
þDðδp=p0Þmax þ dco: ð24Þ

The incoming beam to the CLIC PDR is a round beam
with same horizontal and vertical rms emittances of ϵrms

x;y ¼
7 mm rad where, 99.9% of the particles are inside a

FIG. 13. The optical functions of the TME arc cell of the PDR.

FIG. 14. The working point in tune space for δp=p from −1.2
to 1.2% (blue) and the first order tune shift with amplitude up to
6σ (green). The on-momentum working point is (16.39, 12.27).

FIG. 12. The fifth order resonance driving terms for which jj − kj ¼ 1 and jl −mj ¼ 4.
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maximum emittance of ϵmax ¼ 10ϵrms
x;y and with maximum

ðδp=p0Þmax ¼ 3%. Applying this to Eq. (24), the minimum
acceptance can be calculated around the ring and is shown
in Fig. 15, in units of [m] (left) and in units of beam sizes
[σ] (right). A minimum DA of 4.5σx;y is required, in both
horizontal (blue) and vertical (red) planes, in order to fit the
large non-Gaussian beam coming from the positron source.
The DA of the ring was computed with numerical

particle tracking, over 1000 turns, with the PTC module
of MADX [5]. Figure 16 shows the initial positions of
particles that survived over 1000 turns, normalized to the
horizontal and vertical beam sizes, at the point of
calculation (σx ¼ 4 mm, σy ¼ 2 mm). The results for
δp=p0 ¼ 0% are shown in red, for δp=p0 ¼ 1.2% in green
and for δp=p0 ¼ −1.2% in blue. The minimum acceptance
is shown in black. For these calculations the magnet fringe
fields are taken into account, while any magnet error effects
are neglected. An adequate but tight dynamic aperture is
demonstrated, following an optimization procedure based

on the resonance free lattice concept, however, more
optimization steps are required when magnet errors and
the effect of wigglers are included.

C. Frequency maps

The frequency map analysis (FMA) examines the
dynamics in frequency space rather than configuration
space. Regular or quasiregular periodic motion is a single
point in frequency space characterized by a pair of fixed
tune values. Irregular trajectories exhibit diffusion in
frequency space, with the tunes changing in time. The
mapping of configuration space (x & y) to frequency space
(qx & qy) will be regular for regular motion and irregular
for chaotic motion. Numerical integration of the equations
of motion, for a set of initial conditions (x, y, x0, y0) and
computation of the frequencies as a function of time
(or turn number), constructs the map from the space of
initial conditions to frequency or tune space, over a finite
time span T [19,20]. An indication of how much the
frequency is changing with time, is measured through the
diffusion coefficient, defined by:

D ¼ log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqx1 − qx2Þ2 þ ðqy1 − qy2Þ2

q
; ð25Þ

where the index 1 refers to a certain number of turns, while
the index 2 to a consecutive same amount of turns. Large
negative values of D denote long-term stability while
values of D close to zero denote chaotic motion [19].
Tracking of particles with different initial conditions for

1024 turns, was performed with MADX-PTC [21]. The ideal
lattice including sextupoles and fringe fields is used, while
no magnet errors are taken into account. The frequency
map analysis was performed with the numerical analysis of
fundamental frequencies (NAFF) algorithm [19].
Figure 17 (left) shows the initial positions of particles

survived over 1024 turns, color-coded with the diffusion

FIG. 15. The required acceptance around the PDR in order to fit the positron beam in units meters (left) and in units of beam sizes
(right).

FIG. 16. The on and off momentum DA of the PDR for δp ¼ 0
(red), 1.2% (green) and −1.2% (blue).
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coefficient of Eq. (25), for on-momentum particles with
δp=p0 ¼ 0% (top) and for off-momentum particles with
δp=p0 ¼ 1.2% (middle) and δp=p0 ¼ −1.2% (bottom).
The particle positions in the horizontal and vertical axis
are expressed in units of horizontal and vertical beam
sizes at the point of calculation, where σx ¼ 4 mm and
σx ¼ 2 mm. The frequencies of the particles are presented
in the right plots, the frequency maps. The color indicates
the regularity of the orbits. Blue regions indicate very
regular motion, while dark-red regions indicate chaotic
motion. The absence of dots means that the particles were
lost. Resonance lines in the frequency maps are shown
as distorted areas, while the colors allow us to relate the
resonant features observed to regions of the physical space
[19]. From the frequency maps it is observed that the tune
is crossing the (1,4) resonance, which is not eliminated by

the TME phase advance choice (μx ¼ 5=17; μy ¼ 3=17) as
shown in Fig. 12. This seems to be the main limitation of
the DA.
The shape of the frequency maps, especially at high

amplitudes, does not have the triangular shape expected by
the linear dependence of the tune shift to the action, and
they appear to be folded. This occurs when terms of higher
order in the Hamiltonian become dominant over the
quadratic terms as the amplitude increases [19]. This
behavior occurs due to the suppression of the lower order
resonances, following the resonance free lattice concept,
which gives rise to higher order terms. Even though folded
maps may lead to potentially very unstable designs, in our
case this is not taken into account for the moment, as the
folding of the map appears at high amplitudes, beyond the
DA aperture limit.

FIG. 17. Diffusion maps (left) and frequency maps (right) for δp=p ¼ 1.2% (top), 0 (middle), and −1.2 (bottom).
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VI. CONCLUSION

An analytical parametrization for the TME cell has been
derived and presented in this paper, based on linear optics
arguments and the thin lens approximation. In that way all
cell properties, optical and geometrical, are globally deter-
mined and the optimization procedure following any design
requirements can be performed in a systematic way.
Stability criteria in both horizontal and vertical planes
and magnet technology constraints are also applied. A
comparison of the analytical solution with the results from
the simulation code MADX gave very good agreement, even
for the thick-elements optics. This method provides a very
useful tool for defining optimal regions of operation for the
best performance of the cell, according to the requirements
of the design. The same methodology can be applied in
other types of low emittance cells as well. In a double bend
achromat for example, considering the part of the cell
responsible for the emittance minimization (the two dipoles
and the 2 symmetric quadrupoles in between) the complex-
ity of the problem is expected to be the same. Regarding the
multibend achromats, this is a combination of the TME and
DBA problems. In that case, the complexity probably
becomes more important, especially in the case of non-
symmetric cells. On the other hand, the optimization of
single cells can be always done following the same route, as
the method provides a global analytical parametrization.
The analytical approach and the resonance free lattice

concept were finally used for the linear and nonlinear
optimization of the CLIC predamping rings, providing an
adequate dynamic aperture for a large incoming beam.
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