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Numerical characterization of synchrotron radiation based on the Wigner function method is explored in
order to accurately evaluate the light source performance. A number of numerical methods to compute the
Wigner functions for typical synchrotron radiation sources such as bending magnets, undulators and
wigglers, are presented, which significantly improve the computation efficiency and reduce the total
computation time. As a practical example of the numerical characterization, optimization of betatron
functions to maximize the brilliance of undulator radiation is discussed.
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I. INTRODUCTION

Recent progress of accelerator theories and technologies
has made it possible to generate an electron beam whose
emittance is comparable to that of diffraction limited light
even in the angstrom x-ray region, both in the storage-
ring and energy-recovery-linac schemes. These novel
accelerator-based synchrotron radiation (SR) facilities are
expected to improve the spatial coherence of SR to an
unprecedented level and will be complementary to the
x-ray free electron lasers as pulsed x-ray sources. It should
be noted, however, that it is necessary to accurately evaluate
the characteristics of radiation in order to take full advan-
tage of the high source quality to be realized in such
advanced SR facilities.
In the framework of geometrical optics, light can be

described as a point particle (photon) having definite
coordinates and its motion can be fully characterized by
four coordinate variables under a paraxial approximation.
To be more specific, the photons move in the 4-dimensional
(4D) phase space spanned by r ¼ ðx; yÞ and θ ¼ ðθx; θyÞ,
namely, positions and angles in the horizontal and vertical
directions. Although the above description of photon
motion is convenient for a lot of applications, it is not
allowed in wave optics in which diffraction plays an
important role for propagation of light and the two
coordinates x and θx cannot be defined simultaneously.
Even so, we define the photon density dðr; θÞ in the 4D
phase space (hereinafter, phase-space density) for a number
of practical reasons as follows.
First, its distribution function is required to carry out the

ray-trace simulation based on the geometrical optics, which

is widely used to design the optical components in the SR
beam line. Second, its maximum value, which is usually
referred to as brilliance or brightness, gives us good
information on how many coherent photons are available
and can be brought to the sample.
A number of computer codes have already been

developed for numerical characterization of SR, in which
the photon distribution is given either as a far-field
pattern or as a near-field pattern. The former refers to the
photon flux per unit solid angle, faðθÞ, which is obtained
by integrating dðr; θÞ over r. The latter refers to the
photon flux per unit area, fsðrÞ, which is obtained by
integrating dðr; θÞ over θ. Note that analytical formulas
of the two functions fa and fs are explicitly derived
from classical electrodynamics and numerical computa-
tions of them are rather straightforward. This is not the
case for the function dðr; θÞ, whose mathematical expres-
sion cannot be derived only within the framework of
classical electrodynamics. As a result, a Gaussian
approximation is usually made, in which dðr; θÞ is
approximated by a 4D Gaussian function whose standard
deviations are defined by the functions fa and fs. It
should be noted, however, that the Gaussian approxima-
tion in the characterization of SR is not actually proven
to be validated in all cases, i.e., the accuracy and
reliability of this method are not clear.
In order to overcome the above difficulty, characteriza-

tion of SR based on the cross-spectral density has been
performed by several authors, especially focused on the
transverse coherence properties of undulator radiation
(UR). In [1], a rigorous expression for the cross-spectral
density, with the electron beam distribution taken into
account, has been derived together with its asymptotic
form, and the coherence properties have been investigated
in a comprehensive way. In [2], a phenomenological
approach, which is based on an assumption that radiation
is generated by a Gaussian Schell-model source, has been
successfully introduced.
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Another way of accurately characterizing SR is based on
the so-called Wigner function [3], which is directly related
to dðr; θÞ and has been introduced by several authors [4–9].
In these papers, analytical and numerical methods have
been discussed to calculate the phase-space density of UR
emitted from a single electron, which makes clear the
difference between the exact and Gauss-approximated
profiles of dðr; θÞ. It should be noted, however, that the
effects due to the finite emittance and energy spread of the
electron beam have not been taken into account except for a
few examples. The reason for this will most probably be the
fact that numerical computation of dðr; θÞ under such a
“practical” condition results in an eightfold integration and
thus requires a huge amount of computation time. Recently,
analytical methods to reduce the numerical cost have been
presented in [10], which takes advantage of the fact that the
dimension of the Wigner function can be reduced from 4 to
3 under the rotational symmetry. This method has been
applied to the round electron beam which will be available
in an energy-recovery linac or an ultimated storage ring
with full coupling. Note, however, that this technique
cannot be applied to more common SR sources in which
the radial symmetry is not available.
In this paper, numerical methods to compute the phase-

space density of SR are explored in more detail for the
purpose of reducing the total number of numerical oper-
ations and completing the computation within a reasonable
time even under the practical conditions. One numerical
example is also discussed in order to show the potential and
practical applications of the numerical characterization of
SR based on the Wigner function method. Note that the
bending magnet radiation (BMR) and wiggler radiation
(WR), in addition to UR, are also within the scope of this
paper, whose Wigner functions have not been seriously
considered in the previous papers.

II. GENERAL FORMULATION OF THE
PHASE-SPACE PHOTON DENSITY

Let us first describe the general method to formulate the
phase-space photon density based on the Wigner function
method. In the following discussions, let z be the main axis
of the electron beam and thus the optical axis of SR, x and y
be the horizontal and vertical axes perpendicular to z, and
the coordinate origin be the center of the SR source.

A. Wigner function of SR emitted by a single electron

We start with the well-known formula that denotes the
frequency-domain electric field of SR emitted from a single
electron at the frequency of ω, which is given as [11]

EωðrÞ¼
ieω
4πε0c

Z
1

RðzÞ
�
βðzÞ−

�
1þ ic

ωRðzÞ
�
nðzÞ

�
eiωτðzÞdz;

ð1Þ

with

RðzÞ ¼ r − reðzÞ; nðzÞ ¼ RðzÞ=RðzÞ;

and

τðzÞ ¼ 1

2c

�
z
γ2

þ
Z

z
β2⊥ðz0Þdz0 þ

½ρ − ρeðzÞ�2
Z − z

�
;

where e denotes the electron charge, c the speed of light, ε0
the vacuum permittivity, r ¼ ðX; Y; ZÞ means the vector
directing from the origin to the observation point, and γ is
the Lorentz factor of the electron moving along a trajectory
specified by reðzÞ with the relative velocity of βðzÞ. The 2D
vectors ρ, ρe, and β⊥ denote the transverse components of
the 3D vectors r, re and β, respectively. Note that the
integration range depends on the type of the SR source.
The photon density in the 4D phase space at the

longitudinal position z ¼ Z is given by the Wigner function
defined as

Wðρ; θ; ZÞ ∝
Z

E�
ω

�
ρþ ρ0

2
; Z

�
Eω

�
ρ −

ρ0

2
; Z

�
eikθ·ρ

0
dρ0;

ð2Þ

where k ¼ ω=c denotes the wave number of radiation, ρ ¼
ðX; YÞ the transverse position already defined, θ ¼ ðθx; θyÞ
the angle with respect to the optical axis, and Eω refers to
either of the two field components corresponding to
horizontal and vertical polarization states. The coefficient
of the Wigner function should be determined so that its
integration over ρ and θ gives the total photon flux of the
relevant polarization state. For details of the properties of
Wigner function, refer to [5] and [9].
Now we find from Eqs. (1) and (2) that the Wigner

function is given as a threefold integral. In order to take into
account the effects due to the finite emittance and energy
spread of the electron beam, we need to convolute the
Wigner function W with the 5D distribution function,
which means that we need to carry out an eightfold integral
to compute the phase-space density under a practical
condition. Also note that the phase-space density at the
source point z ¼ 0 is usually desired for characterization of
radiation, which requires another numerical operation. To
be more specific, the complex amplitude Eωðρ; ZÞ is
computed at a certain longitudinal position z ¼ Z at least
behind the exit of the SR source, and then is back
propagated to the source point z ¼ 0 by means of the
Fresnel-Kirchhoff’s diffraction integral [12].
The complicated numerical process explained above to

compute the Wigner function at the source point is
significantly simplified by introducing an angular repre-
sentation of the complex amplitude, which has been
originally pointed out by Kim [6] and is repeated here
in more detail.
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Let us first introduce the spatial Fourier transform of
Eωðρ; ZÞ defined as

Eωðθ; ZÞ ¼
1

λ2

Z
Eωðρ; ZÞe−ikθ·ρdρ; ð3Þ

where λ ¼ 2π=k denotes the wavelength of radiation. Then
it is easy to show that the Wigner function defined by
Eq. (2) can be redefined using Eω as follows

Wðρ; θ; ZÞ ∝
Z

E�
ω

�
θþ θ0

2
; Z

�
Eω

�
θ −

θ0

2
; Z

�
e−ikθ

0·ρdθ0:

ð4Þ

Although both Eqs. (2) and (4) are available to compute the
Wigner function, the latter is much more preferable
especially for the computation at the source point as
explained in what follows.
The inverse transform of Eω gives

Eωðρ; ZÞ ¼
Z

Eωðθ; ZÞeikθ·ρdθ

¼ eikρ
2=2Z

Z
Eωðθ; 0Þe−ikZðθ−ρ=ZÞ2=2dθ; ð5Þ

where we have applied the diffraction theory given as

Eωðθ; ZÞ ¼ Eωðθ; 0Þe−ikZθ2=2;

which is valid under the paraxial approximation [13]. Note
that the fast oscillating factor eikZ has been omitted in the
above equations because it is not important in the following
discussions.
Using the relation

lim
Z→∞

e−iZt
2 ¼ e−iπ=4

ffiffiffiffi
π

Z

r
δðtÞ;

Eq. (5) can be rewritten as

Eωðθ; 0Þ ¼
i
λ
lim
Z→∞

ZEωðρ ¼ θZ; ZÞe−ikZθ2=2; ð6Þ

which means that the angular representation of the complex
amplitude is given by the field pattern observed at the
position infinitely far from the source point. After sub-
stituting ρ ¼ θZ into Eq. (1) and taking the limit Z → ∞,
we have the following relations

RðzÞ → Z; nðzÞ → θ;

τðzÞ → 1

2γ2c

Z
z
f1þ γ2½β⊥ðz0Þ − θ�2gdz0 þ kθ2Z

2
:

As a result, Eq. (6) is simplified to

Eωðθ; 0Þ ¼ −
e

2ε0cλ2

Z
½βx;yðzÞ − θx;y�eiωτðzÞdz; ð7Þ

with

τðzÞ ¼ 1

2γ2c

Z
zf1þ γ2½β⊥ðz0Þ − θ�2gdz0;

where either of the two subscripts x and y should be chosen
according to the relevant polarization state. The above
equation to compute Eωðθ; 0Þ is much simpler than Eq. (1)
to compute Eω. Furthermore, it is more convenient in the
point that one can take advantage of numerical techniques
that are familiar to the formulation of SR, such as an
expansion by Bessel functions, and an application of the
periodic condition of undulator magnetic fields, to be
discussed later. Also note that no special numerical
operation is required to compute Eω at the source point.
This is not the case for Eω, which cannot be directly
computed at the source point.

B. Normalization

Now let us introduce several normalizations to make
easier the further discussions. In the case of typical SR
sources as discussed later, it is convenient to normalize the
coordinate variables ρ and θ as follows

ρ̂ ¼ ðU;VÞ≡ ρ=χ; θ̂ ¼ ðu; vÞ≡ θ=χ0; ð8Þ

where χ and χ0 are the angular and positional normalization
factors to be defined according to the type of the SR source,
andU (u) and V (v) are the normalized positions (angles) in
the horizontal and vertical directions, respectively. Using
these normalized coordinates, we define the normalized
Wigner function as

Ŵðρ̂; θ̂Þ ¼
Z

Wðθ̂; θ̂0Þe−iθ̂0·ρ̂dθ̂0; ð9Þ

where W is a bilinear function given by

Wðθ̂; θ̂0Þ ¼ Ê�
�
θ̂þ θ̂0

2

�
Ê
�
θ̂ −

θ̂0

2

�
;

with

Êðθ̂Þ≡ −
2ε0cλ
γe

Eωðθ; 0Þ ¼
1

γλ

Z
½βx;yðzÞ − θx;y�eiωτðzÞdz;

ð10Þ

being the normalized complex amplitude at the source
point. Note that the normalization factors should have the
relation
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χχ0 ¼ λ

2π
; ð11Þ

so that the definition of Ŵ is consistent with the definition
of Wigner function.
In order to define the relation between the phase-space

density d and the normalized Wigner function Ŵ, let us
consider the total photon flux, i.e., the number of photons in
a unit bandwidth

dN
dω=ω

¼
ZZ

dðρ; θÞdρdθ;

which is also calculated by

dN
dω=ω

¼ ε0cλ2

πℏ

Z
jEðθÞj2dθ

¼ αγ2

4π2χ02

ZZ
Ŵðρ̂; θ̂Þdρ̂dθ̂;

where ℏ is the reduced Planck’s constant and α the fine
structure constant. Comparing the two formulas above, we
finally have

d ¼ αγ2

λ2χ02
Ŵ: ð12Þ

C. Convolution with the electron
beam distribution function

The discussions so far have been limited to the special
case of SR emitted from a single electron. In the case of the
practical electron beam, we have to take into account the
effects due to the finite emittance and energy spread. To be
more specific, the normalized Wigner function is given by

Ŵðρ̂; θ̂Þ ¼
ZZZ

Ŵsðρ̂ − ρ̂0; θ̂ − θ̂0; ηÞpðρ̂0; θ̂0; ηÞdρ̂0dθ̂0dη;
ð13Þ

where η ¼ ðγ − γ0Þ=γ0 denotes the normalized energy
deviation from the average γ0, Ŵs the normalized
Wigner function for a single electron defined in Eq. (9)
with the argument η being explicitly included, and p the
distribution function of the electron beam represented in the
ðρ̂; θ̂; ηÞ phase space. In derivation of Eq. (13), we have
made an assumption that the magnetic field of the SR
source does not depend on the transverse position. As a
result, effects due to the positional and angular offsets of
each electron are taken into account by the convolution
integral with respect to ρ̂0 and θ̂0 [6]. Other special cases
when this is not validated, such as SR sources with focusing
magnets, including the natural focusing of insertion
devices, are out of the scope of this paper.

Now let us assume that the distribution function p can be
decoupled to Gaussian functions, i.e.,

pðU;V; u; v; ηÞ ¼ fðU; uÞgðV; vÞhðηÞ; ð14Þ

with

fðU; uÞ ¼ 1

2πσUσu
exp

�
−
ðU þ α̂uÞ2

2σU
−

u2

2σ2u

�
; ð15Þ

gðV; vÞ ¼ 1

2πσVσv
exp

�
−
ðV þ α̂vÞ2

2σV
−

v2

2σ2v

�
;

hðηÞ ¼ 1ffiffiffiffiffiffi
2π

p
ση

exp

�
−

η2

2σ2η

�
; ð16Þ

which is usually the case for the electron beam in SR
facilities. In the above formulas, we have introduced
several parameters to specify the electron beam quality.
The meaning of ση is straightforward. As for the other
parameters in Eqs. (15) and (16), refer to the Appendix
about how they are related with the typical beam param-
eters such as the emittance, Twiss parameters, and
dispersion functions.
Let us now turn to the convolution integral. In the ðU; uÞ

plane, we have

ZZ
ŴsðU −U0; u − u0ÞfðU0; u0ÞdU0du0

¼
Z

e−iu
00Udu00

Z
eiu

00U0
dU0

Z
Wðu − u0; u00ÞfðU0; u0Þdu0

¼ 1ffiffiffiffiffiffi
2π

p
σu

Z
exp

�
−iu00U −

σ2Uu
002

2

�
du00

×
Z

Wðu − u0; u00Þ exp
�
−iα̂uu0u00 −

u02

2σ2u

�
du0;

where we have omitted several arguments that are not
relevant. Note that the integration over U0 is reduced to a
simple Fourier transform of a Gaussian function by sub-
stituting Eq. (15), and has been carried out analytically. The
convolution in the ðV; vÞ plane can be done in the same
manner. The normalized Wigner function for the practical
electron beam is thus given by

Ŵðρ̂; θ̂Þ ¼ 1

2πσuσv

Z
exp

�
−iθ̂00 · ρ̂ −

σ2Uu
002 þ σ2Vv

002

2

�
dθ̂00

×
Z

exp

�
−iα̂uu0u00 − iα̂vv0v00 −

u02

2σ2u
−

v02

2σ2v

�
dθ̂0

×
Z

hðηÞWðθ̂ − θ̂0; θ̂00; ηÞdη: ð17Þ

The integration over η in Eq. (17) means the convolution
with the energy distribution function of the electron beam
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to take into account the effects due to the energy spread. It
is easy to understand that this integration can be omitted for
BMR and WR, because the complex amplitudes of them
are not sensitive to the electron energy γ, as explained later.
This is not the case for UR whose spectrum has a sharp
peak depending on γ, and thus the numerical cost to
evaluate Ŵ can be much higher than those of BMR and
WR, when the energy spread is not negligible. This
problem is discussed later in more detail, together with a
countermeasure against it.

III. SPECIFIC FORMULAS FOR
TYPICAL SR SOURCES

Equation (17) is the universal formula to compute
the phase-space density of SR from the practical

electron beam. Now let us actually apply this formula
to three typical SR sources: BMs, undulators, and
wigglers.

A. Bending magnets

The relative velocity of an electron passing through the
uniform field generated by a BM is given as

βxðzÞ ¼
z
Rb

; βyðzÞ ¼ 0;

where Rb denotes the bending radius. Substituting into
Eq. (10), we have the normalized complex amplitude of
BMR for the horizontally polarized component as
follows

Ê ¼ 1

γλ

Z �
z
Rb

− θx

�
exp

�
ik
2γ2

Z
z

0

�
1þ γ2θ2y þ

�
γθx −

γz0

Rb

�
2
�
dz0

�
dz

¼ 1

γλ
eiΛ

Z
z̄
Rb

exp

�
ik
2γ2

�
ð1þ γ2θ2yÞz̄þ

γ2z̄3

3R2
b

��
dz̄: ð18Þ

with

Λ ¼ kRb

2γ2
θx

�
1þ γ2θ2y þ

γ2θ2x
3

�
;

being the phase of radiation.
It is well known that the integration can be done analyti-

cally and be given by themodified Bessel functions [14].We
introduce the angular normalization factor defined as

χ0 ¼ 1

ϵγ
;

with

ϵ ¼
�
3ω

4ωc

�
1=3

;

being the normalized photon energy, where ωc denotes the
critical frequency of BMR. Then we have

Êðθ̂Þ ¼ 2iffiffiffi
3

p
π
ϵðϵ2 þ v2ÞK2=3

�
2

3
ðϵ2 þ v2Þ3=2

�
eiΛ; ð19Þ

with

Λ ¼ ϵu

�
ϵ2 þ v2 þ u2

3

�
:

Note that the positional normalization factor is defined as

χ ¼ Rb

2ϵ2γ2
;

to satisfy the relation (11). In the same manner, we have

Êðθ̂Þ¼−
2ffiffiffi
3

p
π
ϵv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2þv2

p
K1=3

�
2

3
ðϵ2þv2Þ3=2

�
eiΛ; ð20Þ

for the vertically polarized component. Using Eqs. (9), (19),
and(20), thenormalizedWigner functionŴ canbecomputed
for BMR emitted by a single electron.
Figure 1(a) shows the distribution of Ŵ at the critical

frequency (ω ¼ ωc) plotted in the horizontal phase space
ðU; uÞ, where the vertical coordinates have been assumed
to be 0 (V ¼ v ¼ 0). We find a profile composed of many
layers, each of which has a parabolic shape. It should be
noted, however, that this multilayer structure easily dis-
appears under a practical condition as shown in Fig. 1(b), in
which Ŵ has been computed under the same condition as in
Fig. 1(a) except that σU ¼ 1 has been assumed. This
corresponds to the horizontal beam size of 0.12 μm, if
we assume the electron energy of 6 GeVand bending radius
of 30 m, which is much smaller than typical values in
practical accelerators for SR sources. We find that with
such a small but finite beam size, all the layers but the main
one have disappeared.
The parabolic shape of Ŵ in the horizontal phase space

can be qualitatively explained by the geometrical optics
using Fig. 2, in which an electron moving along a circular
orbit with a radius of Rb is schematically illustrated. Let us
assume that a photon is emitted toward the tangential
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direction, when the electron passes through the point A.
Then it is easy to show that the horizontal coordinate X of
the photon at the longitudinal origin (z ¼ 0) is given by
X ¼ −Rbθ

2
x=2. Using the normalization factors χ and χ0,

this reduces to a relation U ¼ −u2. Thus the photon
distribution in the horizontal phase space is dominated

by this function, which is actually shown by the dashed line
in Fig. 1(b).
Figure 1(c) shows the distribution of Ŵ as in Fig. 1(a),

but in the vertical phase space ðV; vÞ, where the horizontal
coordinates have been assumed to be ðU; uÞ ¼ ð−1.6; 0Þ as
indicated by the black “x” in (a). Compared to Fig. 1(a)
or (b), the profile looks more similar to that of the
Gaussian beam.

B. Undulators

The electron trajectory in an undulator is characterized
by the periodic condition given as

βðzþ λuÞ ¼ βðzÞ;

where λu is the undulator period. Assuming the number of
periods to be N, the normalized complex amplitude of UR
is given as

Ê ¼ 1

λγ2

Z
NT=2

−NT=2
fðτÞeiωτdτ;

with

fðτÞ ¼ ðγβx;y − γθx;yÞ
dz
dτ

;

being a periodic function of τ with the period of T. Note
that the integration variable in Eq. (10) has been changed
from z to τ. It is well known that the period T depends on γ
and θ, and is given by

Tðγ; θÞ ¼ ð1þ γ2θ2 þ K2
x=2þ K2

y=2Þλu
2γ2c

;

where Kx and Ky are the horizontal and vertical deflection
parameters of the undulator, respectively. The frequency
defined by ω1ðγ; θÞ ¼ 2π=Tðγ; θÞ is referred to as the
fundamental frequency of UR, at which the spectrum
has a sharp peak.
Expanding the periodic function fðτÞ into a Fourier

series, we have

Ê ¼ 1

λγ2

Z
NT=2

−NT=2

�X
n

fne−inω1τ

�
eiωτdτ; ð21Þ

where fn denotes the Fourier coefficient. Then the inte-
gration in Eq. (21) can be done analytically and Ê is
represented as a summation of harmonics, i.e.,

Ê ¼ Nλu
λγ2

X
n

f̂nSn;

with
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FIG. 1. Normalized Wigner function of BMR emitted by a
single electron calculated on the ðU; uÞ plane sliced at
ðV; vÞ ¼ ð0; 0Þ. (b) Same as (a), but σU ¼ 1 has been assumed
to investigate the effects due to the finite electron beam size in the
horizontal direction. The dashed line shows the graphical plot of
U ¼ −u2 (refer to the text). (c) Same as (a), but on the ðV; vÞ
plane sliced at ðU; uÞ ¼ ð−1.6; 0Þ.

z

x

x

X
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A

FIG. 2. Schematic illustration of emission of radiation from an
electron (red circle) moving along the circular orbit indicated by
the solid black line. The coordinate X denotes the horizontal
position of a photon (yellow circle) at the longitudinal origin,
which is emitted from the electron when it passes the point A.
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f̂n ≡ Tfn
λu

¼ 1

λu

Z
λu

0

ðγβx;y − γθx;yÞeinω1τðzÞdz;

and

Sn ¼ sinc

�
πnN

ω − nω1

nω1

�
; ð22Þ

where we have introduced the so-called sinc function
defined as

sincðxÞ≡ sinðxÞ=x:
Note that fn denotes the complex amplitude of radiation
generated within a single period at the nth harmonic photon
energy, while Sn denotes its enhancement by coherent sum
of radiation over N periods.
For further discussions, let us introduce the reference

electron energy γ0, which usually refers to the average
energy of the electron beam. Then ω0 ¼ 2π=Tðγ0; 0Þ and
λ0 ¼ 2πc=ω0 denote the corresponding fundamental
frequency and wavelength observed on axis, respectively.
We then define the angular normalization factor χ0 ¼ 2σnr0,
where σnr0 is the angular divergence of UR at the nth
harmonic defined by

σnr0 ¼
ffiffiffiffiffiffiffiffiffi
λ0
2nL

r
;

where L denotes the undulator length. This equation has
been derived by a Gaussian approximation of jEj2, i.e., the
angular profile of UR [6]. It should be noted that the above
approximation is correct only at nω0, the nth harmonic
photon energy, and the angular divergence at other detuned
energies cannot be clearly defined.
It is easy to show that the positional normalization factor

is given by χ ¼ σnr, where σnr denotes the source size of
UR defined by

σnr ¼
λ

4πnσnr0
;

which is derived by assuming that UR emitted by a single
electron is diffraction limited.
Equation (22) now reduces to

Snðθ̂; ηÞ ¼ sinc

�
πθ̂2

�
1þ ϵ

nN

�
þ πϵ

�
; ð23Þ

with

ϵ ¼ nN

�
ω − nω0

nω0

− 2η

�
; ð24Þ

which denotes the deviation of the electron and photon
energies from the reference values γ0 and ℏω0.

Figures 3(a)–(c) show the Wigner functions of the
fundamental UR plotted in the ðU; uÞ plane, for three
different values of energy deviation: (a) ϵ ¼ 0, (b) ϵ ¼ −1,
and (c) ϵ ¼ −2. Note that the vertical coordinates have been
assumed to be 0 (V ¼ v ¼ 0) and individual Wigner
functions are normalized by the maximum values. It is
found that the distribution shrinks more for smaller values
of ϵ.
From the above discussions, together with the definition

of ϵ (24), it is easy to understand that we cannot omit the
integration over η in Eq. (17), which increases the total
number of numerical operations by at least one order of
magnitude. Its numerical cost, however, can be made
nearly negligible by means of a numerical technique
explained below.
The complex amplitude of the nth harmonic is given as a

product of two functions fn and Sn except the constants. It
is easy to understand that the latter changes rapidly as γ
especially around γ0, while the former is a slowly varying
function of γ. It is thus reasonable to factor fn out of the
integral. To be more specific, we have

Z
hðηÞWðθ̂ − θ̂0; θ̂00; ηÞdη ∝

Z
hðηÞSnðθ̂1; ηÞSnðθ̂2; ηÞdη

≡ Pnðθ̂1; θ̂2Þ;

with

θ̂1;2 ¼ θ̂ − θ̂0 � θ̂00

2
;

FIG. 3. Normalized Wigner function of UR emitted by a single
electron plotted on the ðU; uÞ plane sliced at ðV; vÞ ¼ ð0; 0Þ for
three different energy deviations: (a) ϵ ¼ 0, (b) ϵ ¼ −1, and
(c) ϵ ¼ −2. The 2D Gaussian profile with the standard deviation
of σU ¼ 1 and σu ¼ 1=2 is plotted in (d) for reference.
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where the function Pn can be computed easily once the
parameters such as n, N, and ση are given. In order to
reduce the numerical cost, we create the tabulated data of
Pn in advance of starting the numerical computation of
Eq. (17), which can be used to interpolate at arbitrary
arguments of θ̂1;2. The interval and range of the tabulated
data should be decided so that the interpolation of Pn is
accurate enough, but its numerical cost and required
memory size are not too large. In practice, our experiences
show that the numerical cost of creating the tabulated data
with enough data points is much less than that of other
numerical operations.
It is interesting to compare the results shown in

Figs. 3(a)–(c) with the conventional results based on the
Gaussian approximation as shown in Fig. 3(d), where a 2D
Gaussian function is plotted, with the standard deviations
of 1 and 1=2 in the U and u directions, respectively. This
corresponds to the Gaussian beam having the source size of
σ1r and angular divergence of σ1r0 . The difference between
the two distribution functions based on the Wigner function
and the Gaussian approximation leads to the difference in
the optimum betatron function to be discussed later.

C. Wigglers

Wigglers are equivalent to undulators in terms of the
magnetic circuit. Namely, both devices generate a periodic
magnetic field to enhance the radiation intensity. The
properties of WR, however, differs significantly from those
of UR, because the radiation is incoherently summed up
over the whole periods. The calculation of the Wigner
function should be done accordingly.
If we assume that the wiggler is composed of many small

BMs with the alternating polarity, it is reasonable to
calculate the Wigner function of WR by summing up all
the local Wigner functions that correspond to individual
half periods (magnetic poles), the procedure of which is
explained in the following sections. Note that each small
BM should have a field gradient along the longitudinal
axis, which corresponds to the sinusoidal field distribution
of the wiggler.

1. Complex amplitude of radiation generated
in the central magnetic pole

The electron trajectory in a wiggler is given as

βxðzÞ ¼
K
γ
sin kuz; βyðzÞ ¼ 0; ð25Þ

where λu ¼ 2π=ku denotes the wiggler period and K
denotes the deflection parameter. Note that the polarity
of the magnet pole positioned at the center of the wiggler is
the same as that of the BM discussed in Sec. III A, which is
defined to be positive. The normalized complex amplitude
of radiation for the horizontally polarized component,
which is generated in this magnetic pole, is given as

Êþ
0 ðθ̂Þ ¼

1

γ2λ

Z
λu=4

−λu=4
ðK sin kuz − γθxÞeiωτðzÞdz; ð26Þ

with

τðzÞ ¼ 1

2γ2c

Z
z
½1þ γ2θ2y þ ðK sin kuz0 − γθxÞ2�dz0:

The integration in Eq. (26) can be done semianalytically
by means of an approximate method following the formu-
lation of BMR as explained below.
First we change the integration variable from z to

z̄ ¼ z − ϕ0=ku, where ϕ0 is an angle to satisfy the two
conditions: jϕ0j ≤ π=2 and sinϕ0 ¼ γθx=K. Obviously, ϕ0

cannot be defined when jθxj > K=γ, in which case Êþ
0 is

defined to be zero. Otherwise, Eq. (26) reduces to

Êþ
0 ðθ̂Þ ¼

K
γ2λ

eiΛ
Z

qðz̄Þ

× exp

�
ik
2γ2

Z
z̄

0

½1þ γ2θ2y þ p2ðz̄0Þ�dz̄0
�
dz̄; ð27Þ

with

qðz̄Þ ¼ 2 sin

�
kuz̄
2

�
cos

�
kuz̄
2

þ ϕ0

�
;

and

Λ ¼ k
2γ2ku

�
ð1þ γ2θ2 þ K2=2Þϕ0

þ γθx

�
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 − γ2θ2x

q
− 2

��
:

Because a small portion of the electron trajectory around
the longitudinal position z ¼ ϕ0=ku ≡ z0 contributes to the
formationof radiationobservedat thehorizontal angleθx, the
integration in the above equation converges within a narrow
range jkuz̄j ∼ 0. Thus the function q can be replaced as

qðz̄Þ → kuz̄ cos kuz0;

with which Eq. (27) reduces to

Êþ
0 ðθ̂Þ ¼

1

γλ
eiΛ

Z
z̄

RbðθxÞ

× exp

�
ik
2γ2

½ð1þ γ2θ2yÞz̄þ
γ2z̄3

3R2
bðθxÞ

�
�
dz̄; ð28Þ

with

RbðθxÞ ¼
γ

kuK
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðγθx=KÞ2

p ;

being the bending radius at the longitudinal position z ¼ z0.
We now find that Eq. (28) is similar to (18) and thus the
integration can be done analytically.
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As in the case of BMR, we introduce the normalization
factors as follows

ϵ ¼
�
3ω

4ωc

�
1=3

; χ0 ¼ 1

ϵγ
;

with

ωc ¼
3πγ2cK

λu
;

being the critical frequency corresponding to the maximum
wiggler field. The positional normalization factor χ can be
modified as

χ ¼ K
γku

1

2ϵ2K2
≡ xa

2ϵ2K2
;

where xa denotes the amplitude of the electron trajectory.
Using the normalized angular coordinate, Êþ

0 is given as

Êþ
0 ðθ̂Þ ¼

2iffiffiffi
3

p
π

ϵðϵ2 þ v2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðu=ϵKÞ2

p K2=3

�
2ðϵ2 þ v2Þ3=2

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðu=ϵKÞ2

p
�
eiΛ;

ð29Þ

with

Λ ¼ ϵK

��
ϵ2 þ u2 þ v2 þ ϵ2K2

2

�
sin−1

�
u
ϵK

�

þ u

�
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2K2 − u2

p
− 2

��
:

In the same manner, we have

Êþ
0 ðθ̂Þ ¼ −

2ffiffiffi
3

p
π

ϵv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ v2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðu=ϵKÞ2

p K1=3

�
2ðϵ2 þ v2Þ3=2

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðu=ϵKÞ2

p
�
eiΛ;

for the vertically polarized component.
In order to check the validity of the above method, Êþ

0

has been computed with the semianalytical formula (29)
and compared with the more accurate numerical results
based on Eq. (26), which is shown in Fig. 4. The absolute
value and argument of Êþ

0 computed with (29) are plotted as
a function of u, together with the deviations from the
rigorous results with (26). Note that K ¼ 10, v ¼ 0, and
ω ¼ ωc have been assumed. We find that the deviations are
negligible nearly in the whole range of interest, except
around the angle indicated by the dotted line, which
corresponds to jθxj ¼ K=γ. This angle is usually much
larger than γ−1, because the deflection parameter of any
wiggler is much larger than unity. Thus the application of
semianalytical formula (29) is validated as long as we are

not interested in characterization of radiation in such a large
angle region.
The above discussions for the positive pole can be

extended to calculate the complex amplitude Ê−
0 of radi-

ation generated in the negative pole positioned at the
wiggler center. By reversing the sign of βx in Eq. (25),
it is easy to show

Ê−
0 ðθ̂Þ ¼ −Êþ�

0 ðθ̂Þ:

2. Summation of local Wigner functions

The complex amplitude Ê�
0 ðθ̂Þ derived in the previous

section can be used to compute the local Wigner function at
the central magnetic pole. Next we extend this procedure to
other magnetic poles positioned away from the origin, and
sum up all the local Wigner functions over the whole
periods.
Assuming that the wiggler magnet starts with the

positive pole, the longitudinal positions of the mth positive
and negative poles are given as

z�m ¼
�
m −

N þ 1

2
� 1

4

�
λu ≡ ν�mλu;

FIG. 4. Complex amplitude Ê0 as a function of the horizontal
angle u in terms of (a) absolute value and (b) argument. The black
solid line shows the semianalytical results using Eq. (29), while
the red dashed lines show deviations from the more accurate
numerical results using Eq. (26).
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where the superscript � stands for the polarity of the
magnetic pole. The complex amplitude of radiation, which
is generated at themth positive pole and is propagated to the
wiggler origin, is obtained by multiplying Êþ

0 by the phase
factor describing the diffraction effect. Namely, we have

Êþ
m ¼ Êþ

0 expðikzþmθ2=2Þ ¼ Êþ
0 expð2πiνþmϵKθ̂2Þ;

with which the local Wigner function is calculated as

Ŵþ
mðρ̂; θ̂Þ ¼

Z
Wþðθ̂; θ̂0Þ expð−4πiνþmϵKθ̂ · θ̂0Þe−iθ̂0·ρ̂dθ̂0;

with

Wþðθ̂; θ̂0Þ ¼ Êþ�
0

�
θ̂þ θ̂0

2

�
Êþ
0

�
θ̂ −

θ̂0

2

�
:

Summing up all the periods, the normalized Wigner function
for the positive pole is given as

Ŵþðρ̂; θ̂Þ ¼
XN
m¼1

Ŵþ
mðρ̂; θ̂Þ

¼
Z

Wþðθ̂; θ̂0Þ expð−πiϵKθ̂ · θ̂0Þ

×
sinð2πϵKNθ̂ · θ̂0Þ
sinð2πϵKθ̂ · θ̂0Þ e−iθ̂

0·ρ̂dθ̂0: ð30Þ

In the same manner, we have

Ŵ−ðρ̂; θ̂Þ ¼
Z

Wþðθ̂;−θ̂0Þ expðπiϵKθ̂ · θ̂0Þ

×
sinð2πϵKNθ̂ · θ̂0Þ
sinð2πϵKθ̂ · θ̂0Þ e−iθ̂

0·ρ̂dθ̂0

¼ Ŵþð−ρ̂; θ̂Þ; ð31Þ

for the negative pole. The normalized Wigner function of
WR is now obtained by adding the two functions Ŵþ and
Ŵ−. But before that, we need to recall the fact that the
electron is shifted horizontally by a distance of xa alternately
when it passes through the individual poles. This means that
Ŵþ and Ŵ− should be translated along the U axis by the
distance of xa=χ ¼ 2ϵ2K2, but toward the opposite direction.
Then we finally have the normalizedWigner function of WR
as follows

ŴðU;V; u; vÞ ¼ ŴþðU þ 2ϵ2K2; V; u; vÞ
þ Ŵþð−U þ 2ϵ2K2; V; u; vÞ:

Figure 5(a) shows the distribution of Ŵ at the critical
frequency (ω ¼ ωc) plotted in the horizontal phase space
ðU; uÞ, where K ¼ 10, N ¼ 5, and ðV; vÞ ¼ ð0; 0Þ have

been assumed. We find 10 separate linear ridges, each of
which corresponds to the magnetic pole distributed along
the longitudinal axis. For example, the linear ridge indi-
cated by ν−1 comes from the initial (1st) negative pole, while
that by νþ5 from the final (5th) positive pole. We also find
that the ridges coming from the negative poles intersect at
the coordinates ðU; uÞ ¼ ðþxa=χ; 0Þ, while those from the
positive poles intersect at ðU; uÞ ¼ ð−xa=χ; 0Þ. Obviously,
this is attributed to the horizontal shift of the electron
trajectory, xa, described above. As a result, we have two
source points in the horizontal direction in the case of WR,
which has been already pointed out by several authors [4].
Figure 5(b) shows the distribution of Ŵ under the same

condition as (a), but plotted in the vertical phase space ðV; vÞ,
where ðU; uÞ ¼ ð−xa=χ; 0Þ has been assumed. The number
of linear ridges is half of those found in (a), because the
contribution from the negative pole is negligible in this case.
Note that we have assumed σU ¼ 18 and σV ¼ 1.8 in the

above discussions. This is to make the graphical plot more

FIG. 5. Normalized Wigner function of WR plotted on (a) the
ðU; uÞ plane sliced at ðV; vÞ ¼ ð0; 0Þ and (b) ðV; vÞ plane sliced
at ðU; uÞ ¼ ð−xa=χ; 0Þ.
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visible even in the wide range of interest, by means of
broadening the individual ridges and eliminating the multi-
layer structure as discussed in Fig. 1(a).

IV. CORRELATION COEFFICIENT
OF THE WIGNER FUNCTION

The phase-space density discussed so far, which is
defined by the Wigner function Ŵ, is given as a function
of the 4 coordinate variables: U, V, u, and v. For
applications that require the distribution of the phase-space
density, such as the ray-tracing simulation to design optical
elements, ŴðU;V; u; vÞ is given as tabulated data com-
puted at the 4D grid points, which may be probably stored
in an external file. It is then imported to another code and is
utilized to reproduce the distribution. Obviously, this
process requires a lot of numerical cost. Assuming that
we need Np points in one direction to accurately reproduce
the distribution of Ŵ, the total number of grid points, and
thus the number of data points to be computed and stored in
the external file, reaches N4

p. If Ŵ can be decoupled to two
functions representing the distributions in the horizontal
and vertical phase spaces as in the case of p, i.e., the
distribution function of the electron beam given in Eq. (14),
the total data count reduces to 2N2

p.
Let us introduce a distribution function Ŵd defined as

ŴdðU;V; u; vÞ≡ ŴhðU; uÞŴvðV; vÞ
F̂

;

with

ŴhðU; uÞ ¼
ZZ

ŴðU;V; u; vÞdVdv;

ŴvðV; vÞ ¼
ZZ

ŴðU;V; u; vÞdUdu;

being the Wigner functions projected on the horizontal and
vertical phase spaces, and

F̂ ¼
ZZZZ

ŴðU;V; u; vÞdUdVdudv;

being the normalized total photon flux. Note that integra-
tion of Ŵd over the 4D phase space equals that of Ŵ, i.e., F̂.
Integrating Eq. (17) over V and v, it is easy to show that

ŴhðU;uÞ ¼
ffiffiffiffiffiffi
2π

p

σu

Z
exp

�
−iu00U −

σ2Uu
002

2

�
du00

×
Z

exp

�
−iαuu0u00 −

u02

2σ2u

�
du0

×
Z

Ê�
�
u− u0 þ u00

2
; v

�
Ê
�
u− u0 −

u00

2
; v

�
dv;

and a similar expression for ŴhðV; vÞ. Note that the
integration over η has been omitted in the above equation
for simplicity.
In order to examine if one can decouple the Wigner

function and substitute Ŵd for Ŵ, let us introduce a
parameter κ defined as follows

κ ¼ hŴdŴiffiffiffiffiffiffiffiffiffi
hŴ2

d

q
i

ffiffiffiffiffiffiffiffiffiffi
hŴ2i

q ;

where hfi denotes the mean value of the function f
averaged over the range of interest in the phase space.
This parameter, which can be regarded as the cross
correlation coefficient in signal processing and statistics,
ranges from−1 to 1 and gives us the information of how the
two functions Ŵd and Ŵ are similar to each other. To be
more specific, Ŵ can be well approximated by Ŵd, if κ is
close to 1.

FIG. 6. Correlation coefficient κ of the Wigner function in the
case of UR, which is plotted as a function of (a) the energy
deviation and (b) emittance of the electron beam for three
different values of energy deviation. The red line in (b) shows
that for BMR computed at the critical frequency.
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Figure 6 (a) shows the correlation coefficient κ for
UR emitted from a single electron, which has been
computed as a function of the energy deviation param-
eter ϵ. At the fundamental photon energy (ϵ ¼ 0), κ is
relatively high (∼0.96), while it rapidly drops for lower
photon energies, meaning that approximation by Ŵd is
less accurate.
It should be noted that the above discussion should be

more or less modified when we take into account the effects
due to the finite emittance of the electron beam, whose
distribution function is supposed to be decoupled. In order
to investigate such an effect, the correlation coefficients at
ϵ ¼ 0;−1, and −2 have been computed as a function of the
electron emittance. For simplicity, we set up the related
parameters as follows: α̂u;v ¼ 0, σU;V=σu;v ¼ 10, and
ε̂v=ε̂h ¼ 0.1, where ε̂h;v is defined as

ε̂h;v ≡ 2σU;Vσu;v;

which denotes the electron beam emittance normalized by
the emittance of diffraction-limited light (λ=4π), and is
referred to as the reduced emittance. The results of
computation are shown in Fig. 6(b) as solid, dashed, and
dotted black lines. We find that κ rapidly approaches one
when ε̂h becomes larger than unity. This result also applies
to BMR, as indicated by the red line in the same figure.
Note that the above discussion is valid only for the

conditions under consideration and may not be universal.
Even so, we may conclude that if the electron beam
emittance is relatively larger than the optical emittance
at the target wavelength, the Wigner function can be
decoupled and Ŵk can be utilized instead of Ŵ.

V. EXAMPLE: OPTIMIZING THE
BETATRON FUNCTIONS

As a practical application of the numerical method
described so far, let us consider the process to optimize
the betatron functions and maximize the brilliance of UR.
Table I summarizes the electron and undulator parameters

assumed in the computation, which are typical design
values in SR facilities currently under planning.
Before discussions on the result of optimization based on

theWigner function method, let us first recall the traditional
method of optimization based on the Gaussian approxi-
mation. It is well known that the betatron function of the
electron beam is optimized when it equals that of
the photon beam emitted from a single electron. This gives
the optimum betatron function βopt;G based on the Gaussian
approximation, which is defined as

βopt;G ¼ σnr
σnr0

¼ L
2π

:

For example, we have βopt;G ¼ 0.64 m when the undulator
is 4 m long. Note that this discussion is validated only at the
nth harmonic photon energies because the angular diver-
gence and source size of UR are not clearly defined at other
energies, as already mentioned in Sec. III B. To be more
specific, βopt;G at these detuned photon energies cannot be
defined by the traditional method.
Now let us turn to the optimization based on the

Wigner function method. Because the electron emittance
is about one order of magnitude larger than the optical
emittance, it is reasonable to decouple the Wigner
function as discussed in Sec. IV and thus we look for
the betatron functions that maximize the projected
Wigner functions Ŵh;v.
Figures 7(a) and (b) show the on-axis Wigner function,

Ŵh;vð0; 0Þ, computed at the fundamental photon energy
(ℏω0 ¼ 10 keV) as a function of βx;y. The dashed lines
indicate βx;y ¼ 0.64 m, being the optimum condition
determined by the Gaussian approximation. We find that
the actual optimum value is slightly shifted to larger
value (βx;y ∼ 1 m).
In the above optimization, the photon energy has been

fixed at the fundamental energy of UR in order to compare
with the traditional method. In practice, we can tune the
photon energy to maximize the brilliance as well as the
betatron functions. Figures 7(c) and (d) show the contour
plot of Ŵh;vð0; 0Þ as a function of βx;y and ℏω, where we
find that it is maximized when the photon energy is slightly
detuned to lower energy (ℏω ∼ 9.97 keV). This is consis-
tent with the fact that the total photon flux of UR is nearly
doubled when the photon energy is detuned from ℏω0 to
some lower optimum energy [4].
Note that the optimum betatron function at this optimum

photon energy (ℏωopt) is shifted from 1 m to 0.7 m. This
means that the optimum betatron function at the photon
energy of ℏωopt, which is determined by the Wigner
function method, is close to βopt;G, i.e., the optimum value
roughly determined by the Gaussian approximation with-
out taking into account the energy detuning. Although this
result sounds useful and convenient, we have to take care
that it has not been proven to be universal.

TABLE I. Electron beam and undulator parameters used in the
computation to optimize the betatron functions.

Parameter Value

Electron beam
Energy 6 GeV
Natural emittance 10−10 m · rad
Coupling constant 0.1
Energy spread 10−3

Betatron functions 1 m
Undulator
Period 20 mm
K value 1.19
Length 4 m
Fundamental energy 10 keV
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VI. SUMMARY

We have described the numerical methods to compute
the phase-space density based on the Wigner function
method. In addition to the optimization of betatron func-
tions discussed in Sec. V, there exist a large number of
practical applications, such as an exact evaluation of
brilliance and its comparison between facilities, an accurate
computation of the photon distribution at the source point
to be utilized in the external ray-tracing program, and so on.
In this paper, the Wigner function at the source point

Wðρ; θ; z ¼ 0Þ has been described. It is worth noting that
once it is given, the Wigner function at any longitudinal
position z ¼ Z is easily evaluated by using the relation
Wðρ; θ; z ¼ ZÞ ¼ Wðρ − Zθ; θ; z ¼ 0Þ. Also note that the
cross-spectral density can be computed by Fourier-
transforming the Wigner function, which is useful to
describe the propagation of radiation based on the wave
optics.
It should be mentioned that the Wigner function is not

positive definite. This can be problematic for the ray-trace
simulation because the meaning of the negative phase-
space density is not clear. One solution is to transfer all the
photons to the target position based on the geometrical
optics, then sum up them with an adequate weight reflect-
ing the phase-space density, which is not necessarily
positive. Another solution is to compute the cross-spectral
density and transfer it according to wave optics.
Finally we note that all the methods presented in this

paper have been implemented in the SR calculation code

SPECTRA [15], which has been developed and maintained in
SPring-8, and is freely available.

APPENDIX: ELECTRON DISTRIBUTION
FUNCTION EXPRESSED IN THE
NORMALIZED COORDINATES

The distribution function of the electron beam at the
nonzero dispersion section is given here in terms of the
normalized coordinates.
The distribution function of the Gaussian beam in the

horizontal phase space ðx; θxÞ without energy spread is in
general given as

F0ðx; θxÞ ¼
1

2πεx
exp

�
−
γxx2 þ 2αxxθx þ βxθ

2
x

2εx

�
;

where αx, βx, and γx are the so-called Twiss parameters, and
εx denotes the beam emittance. In order to take into account
the finite energy spread, the above function should be
convoluted with

Eðx; θxÞ ¼
1

2πσeσe0
exp

�
−

x2

2σ2e
−

θ2x
2σ2e0

�
;

with

σe ¼ ηxσγ; σe0 ¼ ηx
0σγ;

where ηx and ηx
0 are the dispersion functions, and σγ

denotes the energy spread of the electron beam. The

FIG. 7. Optimization of betatron functions. The projected Wigner functions Ŵh;vð0; 0Þ are computed as a function of the betatron
functions and photon energy. The results at the fixed photon energy of 10 keV are plotted in (a) and (b), while the contour plots are
shown in (c) and (d).
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convolution can be done analytically to give the distribution
function

Fðx;θxÞ

¼ 1

2πΓ
exp

�
−
ðγxεxþσ2e0 Þx2þ2αxεxxθxþðβxεxþσ2eÞθ2x

2Γ2

�
;

with

Γ2 ¼ ðεxγ−1x þ σ2eÞðεxγx þ σ2e0 Þ:
Introducing the normalization factors χ and χ0, the distri-
bution function can be modified to Eq. (15), with param-
eters given as follows

σU ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εxγ

−1
x þ σ2e

p
χ

;

σu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εxγx þ σ2e0

q
χ0

;

α̂u ¼
αxεx

εxγx þ σ2e0

χ0

χ
:

Note that derivation of another Eq. (16) for the vertical
direction and definitions of the related parameters are
straightforward.
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