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Nonlinear cascade scattering of intense, tightly focused laser pulses by relativistic electrons is studied
numerically in the classical approximation including radiation damping for the quantum parameter
hℏωx rayi=ε < 1 and an arbitrary radiation parameter χ. The electron’s energy loss, along with its being
scattered to the side by the ponderomotive force, makes scattering in the vicinity of a high laser field nearly
impossible at high electron energies. The use of a second, copropagating laser pulse as a booster is shown to
partially solve this problem.
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I. INTRODUCTION

The scattering of intense laser light by relativistic
electrons, especially in cascade regimes where an electron
scatters more than one x-ray photon, is one of the most
important mechanisms of radiation production from plasma
produced by intense femtosecond laser pulses [1].
Presently, laser intensities are approaching a threshold
where the radiation becomes dominant [2]. Therefore, this
radiation dominant regime has become an object of detailed
study both experimentally and theoretically. So far, ab initio
simulations of the radiation even from a classical relativistic
plasma standpoint are impossible due to the requirements
of extremely high spatial and temporal resolution.
Understanding radiation processes in relativistic systems
in high laser fields is a pressing issue for the derivation of
proper empirical approaches to calculate radiation damping
and spectra for such plasma. Nonlinear and quantum
radiation effects in the interaction of relativistic electron
beams and intense laser pulses occur at relatively smaller,
accessible laser intensities. Their experimental and numeri-
cal study could result in the development of the necessary
radiation models.
In contrast to cyclotron radiation [3], the laser light

scattering process is always a free-free electron transition
and may proceed differently depending on the field and
electron energies. At low laser pulse intensities and high
electron energies there is the well-known Compton

scattering that is determined only by the quantum param-
eter: ν ¼ 2γ0ℏω0=mc2, where γ0 is the electron relativistic
factor taken to be γ0 ≫ 1 and ω0 is the frequency of a laser
photon (see details in Ref. [4]). If the parameter ν exceeds
unity, the maximum energy of the x-ray photon must be
less than 4γ20ω0, and the photon is emitted at an angle
smaller than π in the propagation direction of the elec-
tron. The scattering cross section decreases with further
increase in γ0 [4]. At high intensities the “quantum”
scattering is usually characterized by the parameter:

χ¼ðℏω0γ=mc2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~~Eþ ~v×

~~B=cÞ2−ð~v · ~~E=cÞ2
q

[5,6], where

~E and ~B are normalized:
~~E ¼ e~E=mcω ¼ ~a0. For

a0 ≫ 1∶ χ ∼ ℏω0γa0=mc2. For χ ≫ 1 the scattering
probability, P, differs from the classical one as
∼PclassicalðχÞχ−1=3 [5]. However for a0 ≪ 1, this parameter
differs from the quantum parameter, ν, used for Compton
scattering [4]. Moreover, the parameter χ2 fits amazingly
well with the largest part of the classical radiation force
responsible for scattering when γ0 ≫ 1 [7]. If the parameter
χ is large, the approximation of a “fixed” electron trajectory
as in Ref. [8] is no longer valid; radiation damping becomes
essential. Depending on the pulse duration τ, it may be a
single event resulting in the electron retardation or a
cascade of scattering events with the same result. The
simplest estimation of the number of scattered photons
nph ¼ πðmc2=eÞ2ðIτ=ℏω0Þ, where I is the laser pulse
intensity, gives nph ∼ 2–3, or the cascade, already for an
E ∼ 1 J energy laser pulse focused in a w0 ∼ 10 μm
focus spot.
In a strong laser field, when a0 ≥ 1, harmonics appear

and the quantum parameter is different from the standard
one. Its definition is not simple. In the fixed trajectory,
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classical approximation the spectrum is flat till the energy is
less than the critical energy [8]:

ℏωc ¼
3a30ℏω0

4
ffiffiffi
2

p
�
γ20ð1þ v=cÞ2
1þ a20=2

þ 1

�
;

where v is the electron velocity. At high frequencies the
spectrum exponentially decreases, SðωÞ ∼ expð−2ω=ωcÞ.
The simplest definition of the quantum condition might be
as follows: ℏωc ≫ mc2ðγ0 − 1Þ, or for large a0 and γ0 as
a0 ≫ ð ffiffiffi

2
p

mc2=6ℏω0Þ=γ0 (for an x-ray free electron laser
this condition is achieved for approximately 104 times
lower a0), when most of the radiation energy should be
emitted with an essential recoil: parametrically for large a0
this condition coincides with χ ≫ 1. However, radiation
damping may change the spectra and result in softer
quantum conditions for the total radiation power.
The interaction of an electron with an intense laser pulse

is not always a stationary process, which can be charac-
terized by a cross section or a probability. For example, a
typical quantum consideration of the problem [5,6,9,10]
assumes that the electron instantly appears in a strong plane
wave propagating contrary to the wave with momentum p0.
This approach is built on a relatively simple basis of
Volkov’s functions, ψV

p ¼ AeiS=ℏ, where A is an amplitude
and S is the classical action [4,5]. The calculated proba-
bility naturally includes radiation reaction. However, in a
strong field an electron will lose its energy rapidly and,
then, the electron will be trapped and move along the wave.
Therefore, the equations for the scattering matrix

∂Cp=∂t¼−
Z

dp0ψV
peα̂ÂRadψ̄

V
p0Cp0 ; Cpðt¼−∞Þ¼δpp0

;

where ARad is the vacuum radiation potential [4], have no
small parameter; their solution, Cpðt ≫ τÞ, restricted by the
pulse duration, may have a quite broad distribution over
momentum, p, making the exact solution not achievable
in the cascade regime. Moreover, a relativistic electron is a
classical particle with a certain trajectory undergoing
ponderomotive scattering, which is missing in the quantum
approach. The classical consideration including radiation
damping, therefore, may help in determining the physical
model necessary for an advanced quantum consideration.
In this paper, the scattering of intense focused laser light

and its effects on the electron motion is analyzed in the
framework of the classical approximation [11] including
radiation damping and ponderomotive effects.

II. RADIATION DAMPING FORCE AND SPECTRA

A sixth-order Runge-Kutta method [12] is used to solve
the equations of motion for an electron written in the form

d~p
dt

¼ −e½~Eþ ~p × ~B=ðmcγÞ� − ~fRD;

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~p2=ðmcÞ2

q
;

d~r
dt

¼ ~p=ðmγÞ;

where ~p; ~r are the electron momentum and coordinate, fRD
is the radiation force in the form of Ref [4] with the main
part responsible for the light scattering given as

~fscatt ¼ − 2e4

3m2c5
γ2v

��
~Eþ 1

c
~v × ~H

�
2 − 1

c2
ð~v · ~EÞ2

�
;

with ~E and ~B the electric and magnetic fields, respectively,
and ~v is the electron velocity. To correctly include the
ponderomotive force, we use the parabolic approximation
for the focused laser field [13]. The transverse components
have the following forms:

E⊥ ðr; tÞ ¼ exp½−ðz=c − tÞ2=τ2�
X�

ReE0
l;mHl

� ffiffiffi
2

p
x

wðzÞ
�

×Hm

� ffiffiffi
2

p
y

wðzÞ
�

w0

wðzÞ × expf−ðx2 þ y2Þ=wðzÞ2

þ i½kz − ωt − ðlþmþ 1ÞϕðzÞ

þ kðx2 þ y2Þ=2RðzÞ�g
�
;

where the transverse component of the magnetic field
equals ~B⊥ ¼ �~E⊥ depending on the propagation direction,

wðzÞ¼w0

ffiffiffiffiffiffiffiffiffiffiffi
1þ z2

L2
R

q
, RðzÞ¼zð1þL2

R
z2 Þ, φðzÞ ¼ tan−1ðz=LRÞ,

and LR ¼ πw2
0=λ is the Rayleigh length, w0 ¼ πfλ=2D (f,

D, and λ are the focal length, beam diameter, and the pulse
wavelength), and Hl is a Hermite polynomial. The longi-

tudinal components satisfy the equations div~E ¼ 0 and
div~B ¼ 0. In particular, for the pair fEx; Byg∶
Ez − x½QðzÞ=LR�Ex, Bz ¼ −y½QðzÞ=LR�Ex, and QðzÞ ¼
−i w2

0

wðzÞ2 þ LR
RðzÞ. Calculations are performed for l ¼ m ¼ 0

and w0 ¼ 5 μm. To calculate the spectrum (for the
intensity), we exploit the well-known equation for the
Lienard-Wiechert potential [7,8]

d2Sðωx ray; ~ΩÞ
dωx rayd~Ω

¼ e2

π2m2c3

����
X

½~n × ð~n × ~vjÞ�eiωx ray½t−~n~rj=c�

×
sinð0.5ωx rayΔtð1 − ~n~vj=cÞ

ð1 − ~n~vj=cÞ
����
2

;

where rj, vj are the electron coordinate and velocity,
respectively, at t ¼ tj0 , and Δt is the integration time step
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(∼10−5ω−1
0 ). The spectral resolution is given by the number

of spectral points, M, where M ¼ 2000 with the maximum
frequency ωx ray

max ¼ ð5=10Þa0ω0ð4γ20Þ. This choice can-
not provide enough resolution at lower frequencies.
However, it is good enough to describe the spectra of
the highest harmonics, which are necessary to estimate the
contribution of quantum effects to the total amount of
radiation losses.

III. SIMULATION RESULTS

In Fig. 1 the typical spectra of backward scattering with
respect to the laser propagation direction (θ ¼ π) are
presented for a0 ¼ 1 for Gaussian pulses of duration 20,
90, and 200 fs with a0 ¼ 1 for a head-on collision with
γ0 ¼ 200. These spectra, as expected, demonstrate the
proportional increase of intensity of the scattered x rays
with the pulse duration. However, even in this weakly
nonlinear case, the spectra depend on the pulse duration.
For the long laser pulse the spectrum is very similar to that
which follows from the fixed trajectory approximation as in
Ref. [8]. For shorter pulses, a certainly stronger red shift is
clearly seen in the spectrum. This means that the cascade
regime is not simply a sum of independent events of
Compton scattering. The study of this effect is out of the
scope of this paper. We also refer the readers to
Refs. [11,14] where this dynamic mass shift effect is
discussed.
The backward spectra for the high intensity laser pulses

a0 ¼ 200 are presented in Figs. 2(a) and 2(c) also for

head-on collisions with and without radiation damping.
There is a clear dependency on the pulse duration; the
number of scattered photons not only increases, but there
also is a clear difference in the spectral distribution. The
radiation damping (RD) drastically changes the resulting
spectra. The intensity decreases by an order of magnitude
when RD is included. Since the radiation of a single
electron is considered for a nonuniform laser field with
a limited spectral resolution, the spectrum shape is not
smooth. However this is not noise; calculations with very
different temporal resolution (ω0Δt ranging from 10−7 to
10−4) give exactly the same results. The corresponding
evolution of electron momenta for these cases are shown in
Figs. 2(b) and 2(d). One can see that the radiation in the
vicinity of the highest field occurs at electron energies
much lower than its initial.
Grey squares exhibit the spectral area where the recoil

effect is very strong. Even without RD the integral energy
in the quantum range shown in the figure is essentially less
than that from the lower frequencies emitted indicating no
serious recoil effect. With RD the scattered photons lie far
from the quantum area making the quantum contribution
softer and, therefore, making the classical approach more
accurate. In Fig. 3 the parameter χ is calculated for a
relatively high electron energy ε ∼ 1 GeV and strong field
with and without RD. One can see that the parameter χ
reaches ∼1 in the absence of RD and a considerable part
of the spectra could require a quantum approach. However
according to Ref [5], the ratio P=Pclassical ≈ χ−1=3 decreases
slowly with χ, and, therefore, the total radiated power
should essentially not differ from the classical one even in
this case. Moreover, RD results in a much lower χ (the
maximum value of χ ∼ 0.35 is reached for a very short time,
while hχi ∼ 0.2) by almost an order of magnitude making
the classical calculation for the total radiated power quite
correct. The spectrum for ε ∼ 1 GeV and different pulse
durations are given in Fig. 4 for a0 ¼ 100 including RD.
The difference in the spectrum cannot be expressed by
simple probability approaches; while the nonlinear part
does not change much, the linear part of the spectrum
changes dramatically. The increase of a0 up to 500
amazingly results in a smaller number of scattering photons
because the main interaction zone occurs at lower pulse
intensities even though the parameter χ would reach ∼10
without RD.
The ponderomotive side scattering is an important effect

that cannot be easily incorporated within the quantum
approach. Moreover, the Volkov solution cannot in prin-
ciple describe this process, since an electron has no
trajectory in this approach. However, the ponderomotive
scattering is an important process in the laser-particle
interaction. Figure 5 illustrates the trajectory of an electron
scattered by an intense laser pulse. The calculation is
performed for w0 ¼ 5 μm; however, even a small shift
of the electron 2 μm in the transverse direction certainly
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FIG. 1. Spectra of backward scattering (θ ¼ π) at a0 ¼ 1 for
Gaussian pulses of duration 20, 90, and 200 fs; head-on collision
at γ ¼ 200. (I) are the fundamental harmonics, and (II) the third
harmonics (even harmonics for the linear polarized laser pulse
vanish). Radiation damping is included.
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results in a change of its trajectory and resulting spectrum:
the total spectral power decreases by more than a factor
of 2. The most dense electron beams are generated by laser
wake field acceleration [15]. However, even these beams
have a typical diameter∼10 μm. This means the calculation
of the scattered spectrum without the side scattering of the
electron during the interaction will result in an incorrect
spectrum and total radiated power. We anticipate that the
classical calculations may provide reasonable spectral data
even for very high energy electron beams. In Fig. 6 the
backward spectrum is given for an electron with an initial
energy of ε ∼ 8 GeV. One can see the “quantum” area
indicated by the grey color contains a relatively low amount
of energy and that the classical approximation is suitable
for electron motion calculations.
The results of the calculation show that efficient

Compton scattering in high fields is impossible due to
the classical radiation damping and/or side scattering by the

ponderomotive force. A partial solution of the problem lies
in the use of two colliding laser pulses. In conventional
accelerators the radiation losses are compensated by extra
acceleration of electron beams [3]. In vacuum, an electron can
be accelerated shortly by a copropagating laser pulse [16]
(see also [17]). This acceleration undulates having a period,
which increases with γ and a0. A proper choice is to make
the copropagating laser pulse as the electron booster and
compensate the energy losses for the radiation during the
scattering of the counter-propagating laser pulse. The maxi-
mum momentum of an electron driven by a copropagating
plane wave with a0D could exceed the initial momentum,

pZ ¼ 0.5mc

�
1 −

�
γ0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ20 − 1

q �

þ a2oDsin
2½ωðt − z=cÞ�

�
=
�
γ0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ20 − 1

q �
;
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FIG. 2. Spectra of backward scattering (θ ¼ π) with a0 ¼ 200 Gaussian pulses of duration 60 fs (a) and 150 fs (c) for a head-on
collision, γ ¼ 700, with (red line) and without (black line) radiation damping. (b), (d) show the pulse field, a0ðtÞ (red line), seen by the
electron during the interaction and the longitudinal momentum (black line), Pz0 , of that electron.
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and, therefore, enhance the Compton scattering. The maxi-
mum value pZ max ≈mcγ0a20D can be achieved when
Tmaxð1 − hvi=cÞ ≈ π=2 where hvi is the average velocity
of the electron [7]. In a focused laser pulse, the maximum
electron momentum, being restricted by the pulse Rayleigh
length, LR (which is typically less than cTmax), still exceeds
the initial momentum [16]. However, the aim of a booster is
not to increase the electron energy but to compensate the
friction force. The maximum driving force of a pulse is
jfDj ¼ j~v × ~B=cj ≈ B. Therefore, the radiation friction can
be overcome if the ratio of the forces κ ≈ 1.2 ×
10−8ðγ0a0CÞ2=a0D is less than unity (here a0C is the intensity
of the scattered laser pulse). Because of a small numerical

factor, the parameter is small for a wide range of electron
energies and intensities of scattered laser pulses. In Fig. 7, a
sample of the evolution of the electron longitudinal momen-
tum in the two pulse scheme is presented. Both pulses have
the same intensity a0 ¼ 100 and duration τ ¼ 10 fs, and
both are focused to w0 ¼ 5 μm. One can see that the
radiation damping is compensated by the copropagating
pulse acceleration and that Compton scattering in the vicinity

0 100 200 300
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0.4

0.8

1.2

χ(t)

ω0t

γ =2000

a0=100

τ=20 fs

1

2

FIG. 3. Time evolution of the χ parameter for an electron
γ ¼ 2000 without (1) (red curve) and with (2) (black curve)
radiation damping in a 20 fs Gaussian pulse with a0 ¼ 100;
head-on collision.
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FIG. 4. Spectra of backward scattering (θ ¼ π) with a0 ¼ 100
Gaussian pulses of duration 10 fs (black curve) and 40 fs (blue
curve) for a head-on collision, γ ¼ 2000, with radiation damping,
and (red curve) 10 fs laser pulse with a0 ¼ 500.

FIG. 5. Trajectory and backward spectra (insert) for a0 ¼ 100
and τ ¼ 200 fs for a collision with a 2 μm transverse shift (black
curves) and for a head-on collision (red curves). Since the
trajectory for the head-on collision is a straight line we give
instead the pulse field evolution for this case (red curve).
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FIG. 6. Spectra of backward scattering (θ ¼ π) with a0 ¼ 100
(red curve) and a0 ¼ 200 (black curve) Gaussian pulses of
duration 20 fs for a head-on collision with γ ¼ 16000
(ε ∼ 8 GeV) with radiation damping. The number of spectral
points is the same in both cases, M ¼ 2000, while the maximum
frequency is different resulting in poorer resolution for a0 ¼ 200
at lower frequencies.
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of the maximum laser intensity occurs at high electron energy
even exceeding the initial energy. In Fig. 8 the spectra of
backward scattering with respect to the laser propagation
direction (θ ¼ π) are presented for this case. However, if the
scattered laser pulse is focused to w0 ¼ 5 μm, the driving
pulse is a plane wave with a0D ¼ 100 and duration 10 fs. The
plane wave is chosen to allow a comparison for back-
scattering: a focused driving laser pulse changes the trajectory

of a boosted electron and, therefore, changes the angle of
Compton scattering.
One can see that the spectrum of a 100 MeV electron

with the booster is similar to that without the radiation
damping. However for 10 GeV level electrons, efficient
boosting requires a very large intensity for the driving
pulses, of the order of I ¼ 1026 W=cm2, which is not
achievable nowadays. The realization of this method for
GeV electrons is difficult from not only a practical stand-
point; the applicability of the classical approach for this
case requires special analysis including the quantum
approach. However, the conventional quantum approach
based on the Volkov’s solution is not correct for this case.
The proper theory of the strong radiation regime for two
pulses has yet to be developed. Nevertheless, since the
quantum effects reduce the particle radiation, a laser pulse
can be a particle booster in the strong, and even the
quantum, radiation regime with the cascade scattering.
This will allow the interaction of relativistic electrons with
the main body of high intensity, a0 > 50, laser pulses. The
scheme can be organized similarly to that proposed in
Ref. [18]. We consider here only head-on collisions. At
finite collision angle the booster method is still efficient.
However, getting to the quantum regime in this case
becomes more problematic.

IV. CONCLUSION

In conclusion, we have analyzed the cascade scattering
of intense laser light by a relativistic electron in the regime
of strong radiation damping in the framework of the
classical approach. We have restricted our calculations to
the regime where the radiation is strong, but the emission
is located in the classical part of radiation spectrum,
hhΩx rayi < mc2ðγ − 1Þ. Our results have shown that,
nowadays, the classical method still allows a self-consistent
analysis of the interaction of relativistic particles with an
intense laser field including the ponderomotive side scat-
tering and electron vacuum acceleration. It has been shown
that the classical approach remains valid at much higher
laser intensities and particle energies due to the effect of the
radiation damping resulting in much lower frequencies
of emitted x rays. The parameter χ remains much less than
unity due to the radiation damping even for GeV level
electrons with laser intensities ∼1023–1024 W=cm2. In the
case of plasma produced by intense short laser pulses, the
quantum condition is even softer, because plasma electrons
acquire their energy from the laser pulses starting from the
classical regime.
It has been demonstrated that an experimental realization

of the scattering by relativistic electrons at a0C ≥ 100 is
impossible due to the radiation damping and ponderomo-
tive sidescattering. Even high energy electrons lose their
energy far before the maximum of the laser field is reached.
The “two pulse scheme” with a copropagating laser pulse
as an electron booster is proposed to solve the problem of

FIG. 7. Evolution of the electron longitudinal momentum in the
two pulse scheme: both pulses have a0 ¼ 100, τ ¼ 10 fs, and are
focused to w0 ¼ 5 μm, head-on collision; (1), (2), (3) are given
for different delays between the pulses: 0, 45, and 90 fs.
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FIG. 8. Spectra of backward scattering (θ ¼ π) in the two pulse
scheme (1) (red curve) for the time delay 45 fs as in Fig. 7
(2) (both pulses have a0 ¼ 100, τ ¼ 10 fs, the scattered pulse is
focused to w0 ¼ 5 μm, the driving pulse is a plane wave) and
with only the scattered pulse (2) (black curve).
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nonlinear Compton scattering at high a0C. The ponder-
omotive acceleration of electrons can overcome the radi-
ation damping of electrons with energy lower than 1 GeV
with a practical intensity of the boosting laser pulse and an
intensity of the scattered laser pulse exceeding a0C ¼ 100.
At higher energies the necessary intensities increase as
a0D ∼ γ20. Moreover for this case, a comprehensive quantum
analysis requires more sophisticated approaches that have
yet to be developed.
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