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Photonic crystal (PhC) defect cavities that support an accelerating mode tend to trap unwanted higher-
order modes (HOMs) corresponding to zero-group-velocity PhC lattice modes at frequencies near the
top of bandgaps. The effect is explained quite generally by photonic band and perturbation theoretical
arguments. Transverse wakefields resulting from this effect are observed (via simulation) in a 12 GHz
hybrid dielectric PhC accelerating cavity based on a triangular lattice of sapphire rods. These wakefields
are, on average, an order of magnitude higher than those in the 12 GHz waveguide-damped Compact
Linear Collider copper cavities. The avoidance of translational symmetry (and, thus, the bandgap concept)
can dramatically improve HOM damping in PhC-based structures.
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I. INTRODUCTION

Photonic crystals (PhCs) have recently attracted interest
from the accelerator community [1–12] for the following
reasons: (1) PhCs enable the construction of accelerator
cavities using dielectric materials. (2) PhC cavities intrinsi-
cally provide a wakefield damping mechanism. These
features suggest an alternative to traditional (super)con-
ducting cavity design, and therefore could result in higher
gradients [13–17], lower power losses, and/or lower
wakefields.
A simple argument from photonic band theory gives

reason to believe that PhC cavities will have low wake-
fields. It says that, given a PhC with a band gap, a defect
cavity will confine only one (ideally accelerating) mode to
the defect; all other higher-frequency modes will propagate
through the crystal and contribute minimally to the wake-
fields. This basic concept has led to the design of many
defect cavity PhC acceleration schemes, a sample of which
can be seen in the list of references above.
To date, only a handful of computational and exper-

imental studies dedicated to wakefield damping in PhC
cavities have been performed. In general, they have shown
that the Q factors of higher-order modes (HOMs) are much
lower than that of the accelerating mode, indicating some
wakefield damping [18–20]. These studies were performed
on so-called hybrid PhC cavities (at GHz frequencies),
where “hybrid” indicates the incorporation of both PhC and
traditional (metal disc-loaded waveguide) design concepts
(look ahead to Fig. 4 for an example of a hybrid PhC
cavity) [2,3,8].

This work looks in more detail at wakefield suppression
in PhC cavities and reveals subtleties that can undermine
the benefits implied by the simple band gap argument.
These subtleties were uncovered in a thorough comparison
between wakefield damping in a 12 GHz hybrid PhC cavity
based on a triangular lattice of sapphire rods (Fig. 4) and a
12 GHz cavity from the main linac of the Compact Linear
Collider, (CLIC) which uses side-coupled waveguides to
damp HOMs (see Fig. 1) [21–24].
We find that, in the case of the hybrid PhC cavity (with

sapphire rods) based on the triangular lattice, transverse
wakefields are on average higher than those in the CLIC
waveguide-damped cavity. A simple Fourier analysis of the
transverse wake potential compared with the triangular
lattice band diagram shows that the band edges (where the

Cavity axis

Damping 
waveguides

FIG. 1. In the above CLIC accelerating cell, [25] the four radial
rectangular waveguides (terminated by electromagnetic absorb-
ers) strongly damp HOMs; the cutoff frequency of each wave-
guide is slightly above the accelerating mode frequency and well
below the lowest dipole frequency.
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dispersion curves flatten) are highly correlated with
troublesome peaks in the transverse wake impedance.
We attribute this correlation to the slow rate at which
low-group-velocity PhC modes transport energy through
the lattice.
The main result of this paper shows that the band gap

property of PhC-based cavities does not necessarily predict
strong wakefield suppression. In fact, for defect cavities, it
may suggest the opposite. In a previous work, we discov-
ered a 2D PhC-based cavity that strongly confines an
accelerating mode without relying on the band gap prin-
ciple [10]. In this paper, we simulate a 3D multicell
adaptation of the 2D optimized cavity in Ref. [10] and
compare wakefields with the CLIC cavity. While wake-
fields in the optimized (no-band-gap) cavity are lower than
those in the lattice-based PhC cavity and similar to those in
CLIC, we observe a significant reduction in the confine-
ment of the accelerating mode, induced by the presence of
the irises. Nevertheless, the result presents an interesting
case in favor of nonlattice structures for wakefield
suppression.
The following two sections review waveguide and PhC

wakefield damping techniques. Section IV describes our
simulation methods and results, comparing wakefields in
the CLIC and lattice-based hybrid dielectric PhC cavities.
Section V discusses the poor damping found in the
triangular-lattice-based PhC cavity using photonic band
theory. Finally, Sec. VI repeats the simulations of Sec. IV
with an optimized cavity (from Ref. [10]) and compares
these results with CLIC. Appendix A analyzes the perfor-
mance of our numerical absorbers used in wakefield
simulations. Appendix B discusses accelerating mode
figures of merit (peak surface fields, accelerating efficiency,
etc.) for each cavity type considered in this work.

II. WAVEGUIDE DAMPING AND CLIC

In the waveguide damping technique, wakefields are
reduced by coupling HOMs out through waveguides
terminated by electromagnetic absorbers. The CLIC
design includes four radially directed waveguides in every
cell, optimized to damp the TM110 cavity mode (since the
TM110 mode, or lowest dipole mode, is the largest
contributor to transverse wakefields). Figure 1 shows the
second cell of the 26-cell constant-gradient CLIC cavity,
TD26_vg1.8_R05_CC [24] (the second cell is the first
“regular” cell, i.e., the first cell without power input
couplers). The multicell cavity is formed by stacking pieces
similar to that shown in Fig. 1.
The waveguides of the CLIC cavity effectively damp the

lowest dipole mode (and other HOMs) without damping the
accelerating mode. This desired behavior was obtained by
carefully selecting the waveguide cross section such that
the lowest waveguide cutoff frequency is between the
accelerating mode and (undamped) dipole mode frequen-
cies. For the CLIC cell in Fig. 1, the lowest waveguide

cutoff frequency is c=2Ly ¼ 13.6 GHz (Ly ¼ 11 mm), the
accelerating mode frequency is 12 GHz, and the frequency
of an undamped dipole mode (i.e., dipole mode in a CLIC
cell without damping waveguides) is approximately
21 GHz. Since the frequency of the accelerating mode is
below waveguide cutoff, the mode remains confined to the
cavity; the dipole mode, however, is free to propagate down
the waveguides. The cutoff frequency is chosen far below
the undamped dipole frequency because damping is less
effective near cutoff where the group velocity (and thus
speed of energy transport) of the waveguide mode van-
ishes [26,27].

III. INTRINSIC DAMPING IN PhCs

Photonic crystals offer an alternative approach to wake-
field damping: confine only the accelerating mode. This
approach is made possible by the band gap property of
some PhCs, and the resulting defect-mode phenomenon.
A brief overview follows.
A band diagram succinctly summarizes the electromag-

netic properties of PhCs. It is well known from Bloch
theory that electromagnetic eigenmodes in periodic struc-
tures take the form

Eðx; tÞ ¼ ~EnðxÞeik·x−iωnðkÞt; (1)

where the reciprocal lattice vector k runs over a reduced
region of k space called the first Brillouin zone, n is an
integer indexing “bands” of solutions, and ~En has the
periodicity of the lattice. A band diagram traditionally plots
the resonant frequencies ωn in each band along a repre-
sentative k-space path within the first Brillouin zone.
Figure 2(c) shows the TM band diagram for the PhC of
interest to this paper [2D triangular lattice of sapphire
discs—shown in Fig. 2(a)] along the k-space path shown in
Fig. 2(b).
Of central importance in Fig. 2(c) is the wide range of

frequencies between the first and second band in which
there are no solutions. This feature is called a band gap,
and is the basis for the formation of PhC resonant cavities
that are of interest to the accelerator community. For a PhC
with a band gap, a resonant cavity can often be formed by
removing a single element from the lattice (creating a
defect). This introduces a mode that oscillates at a fre-
quency within the band gap and is necessarily localized to
the defect. The defect TM mode for the sapphire triangular
lattice is shown in Fig. 3 and oscillates at a frequency of
f ¼ 0.41c=a—the center of the band gap; this mode can
accelerate particles in/out of the page.
A single cell of a hybrid PhC cavity (Fig. 4) is formed

from a 2D PhC of sapphire rods (in this case a triangular
lattice) sandwiched between two copper iris plates. As with
the CLIC cavity, a multicell version would be assembled by
stacking the element shown in Fig. 4.
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The dielectric constant of sapphire is anisotropic; in the
case of Fig. 4, the c axis of the sapphire is oriented along z.
This means the dielectric tensor used in our calculations
took the form ε ¼ 9.4ε0ðx̂ x̂þŷ ŷÞ þ 11.6ε0ẑ ẑ where ε0 is
the vacuum permittivity.
This structure intrinsically damps HOMs because

frequencies above the band gap can propagate through
the crystal (assuming no higher-frequency band gaps).
However, as with waveguide damping, one must be wary

of flat portions of the dispersion curves, where group
velocity (and thus energy transport) vanishes [29]. In the
following results and analysis, we find that for the 2D
triangular lattice PhC, dipole resonances in the defect are
damped poorly by the surrounding PhC. The cause is the
coincidence of the dipole resonant frequency with the upper
edge of the band gap, where the second band flattens.

IV. COMPARISON OF WAKEFIELD IN CLIC
AND THE TRUNCATED PhC CAVITY

We performed time-domain wakefield simulations for
8-cell versions of the CLIC (Fig. 1) and Tri-4-Sapphire
(Fig. 4) cavities [30]. The 8 cells were identical in each
cavity type (approximating the behavior of an infinitely
periodic single cell). The iris geometry of the Tri-4-
Sapphire cavity was matched with the second cell of the
TD26_vg1.8_R05_CC cavity, defined by the iris radius
a ¼ 3.15 mm and iris thickness d ¼ 1.67 mm; as a result,
short-range wakefields (those wakefields affecting the drive
bunch) are identical in both cavities.
Each cavity was driven by a highly relativistic electron

bunch with a Gaussian profile in z, and a delta-function
profile in x and y. The Gaussian half-width of the bunch
was σz ¼ 1 mm; therefore, HOMs up to frequencies of
≈ 90 GHz were excited significantly. To excite transverse
wakefields, the bunch was offset (from the cavity axis) by
1 mm in the x direction. Wakefields were absorbed by
normally conducting layers at the simulation domain
boundaries (for further discussion on the performance of
these absorbers, see Appendix A).
All simulations were implemented in the VORPAL frame-

work which uses the finite-difference time-domain method
for electromagnetics and the particle-in-cell technique for
simulating the electron bunch and test particles [31]. In all

FIG. 3. Resonant TM defect cavity mode in a triangular lattice
of lossless sapphire discs (r ¼ 0.17a). The lattice is truncated at 4
layers (60 discs), giving a radiative Q factor of Qrad ¼ 24; 000.
Qrad increases exponentially with the number of layers.

(a)

(c)

(b)

FIG. 2. Propagation in the 2D triangular lattice of sapphire
discs (a) is forbidden for TM electromagnetic waves with
frequencies near 0.4c=a because of the band gap (c). Lattice
vectors R1 and R2, interdisc spacing a, and disc radius r are
defined in (a). The first Brillouin zone of the reciprocal lattice is
identified in (b) by the hexagon; the irreducible Brillouin zone is
shaded and represents the entire Brillouin zone by symmetry. The
dispersion curves for the lowest-frequency bands along the path
outlining the shaded region in (b) are shown in (c) for r ¼ 0.17a.
Calculations were performed using the MIT Photonic Bands
simulation code [28].

Cavity axis

FIG. 4. The triangular lattice PhC of sapphire rods confines the
accelerating mode to the cavity axis while damping HOMs.
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simulations, grid cells were cubic with Δz ¼ 0.3 mm so
that the excitation bunch cutoff frequency was simulated
with ≈10% error. Lower frequencies were therefore simu-
lated with error < 10%.

A. Wake potential and impedance

The wake potential is the net momentum change
(normalized by charge) of a point charge trailing the
wakefield excitation bunch. The longitudinal wake poten-
tial is defined as

Wzðs; r; r0Þ ¼ −
1

qe

Z
L

0

Ezðz; r; r0; t ¼ ðsþ zÞ=vÞdz; (2)

where s is the point charge’s distance (along z) behind the
density peak of the Gaussian excitation bunch, r is the
transverse position of the point charge (the cavity axis is
the transverse origin), r0 is the transverse position of the
excitation bunch, v is the bunch/point charge velocity
(basically c), L is the total length of the multicell cavity,
and qe is the excitation bunch charge. Similarly, the
transverse wake potential is defined as

W⊥ðs;r;r0Þ¼
1

qe

Z
ðE⊥þvẑ×B⊥Þðz;r;r0;t¼ðsþzÞ=vÞdz:

(3)

In the theoretical case of a cylindrically symmetric cavity
with infinitely long beam tubes, the form of the mth-order
azimuthal multipole of the wake potential (for jrj < a) is
particularly simple [32]:

Wz;mðr; r0;ϕ; sÞ ¼ XmðsÞrmr0m cosmϕ; (4)

W⊥;mðr; r0;ϕ; sÞ ¼ mYmðsÞrm−1r0m

× ðcosmϕr̂ − sinmϕϕ̂Þ; (5)

where XmðsÞ and YmðsÞ become the quantities of interest,
independent of transverse coordinates [30,33]. The value of
ϕ0 has been set to zero in the above since only the difference
in azimuth (ϕ − ϕ0) appears in the above expressions. The
transverse wake potential [Eq. (5)] is zero when m ¼ 0;
only modes with m > 0 mediate transverse kicks [32].
The longitudinal and transverse wake potentials are

dominated by monopole and dipole wakefields, respec-
tively. The expressions for these contributions are simpler
still:

Wz;0 ¼ X0ðsÞ; (6)

W⊥;1 ¼ r0Y1ðsÞ: (7)

Both expressions are uniform throughout the beam tube
region (independent of r and ϕ) and the dipole transverse

wake potential is proportional to and in the direction of the
drive beam’s transverse offset.
The structures under consideration are not cylindrically

symmetric; nevertheless, the above forms are assumed
in our calculations since the forms hold well for wake
potentials near the cavity axis [18,32]. Our numerical
calculations produce Wzðr; r0; sÞ and W⊥ðr; r0; sÞ; we plot
the normalized wake potentials, XmðsÞ and YmðsÞ, by
extracting multipole contributions and dividing by the
radial offsets of the drive bunch and wakefield sample
points (details in next paragraph). We are mainly interested
in the monopole and dipole contributions (i.e., the largest
longitudinal and transverse kicks) per unit length of the
multicell cavity, and therefore plot X0ðsÞ=L and X1ðsÞ=L,
in units of V=½pCm� and V=½pCmmm�, respectively.
The wake potential was calculated by chasing the drive

electron bunch with test particles of very low charge (so
that wakefields were not induced by the test particles), but
equally diminished mass to retain the electron charge-mass
ratio. The net momentum change of the test particles gives
the wake potential after division by the excitation bunch
charge and test particle charge. The test particles were
organized in rings so that the multipole contributions to
the wake potential could be extracted. One ring of 6 test
particles was emitted from the −z domain boundary at every
time step following emission of the drive bunch. The nth test
particle in each ring was given the transverse position:

r ¼ 1 mm; (8)

ϕ ¼ 2πn
6

: (9)

The wake impedance is simply the Fourier transform of
the wake potential. Under the approximation of cylindrical
symmetry, we focus on the core multipole contributions to
the wake impedance, ~XmðfÞ and ~YmðfÞ, defined by

~XmðfÞ ¼
1

c

Z
∞

0

XðsÞe−i2πfs=cds; (10)

~YmðfÞ ¼
1

c

Z
∞

0

YðsÞe−i2πfs=cds; (11)

where f is frequency. The above relations are approximated
by the discrete Fourier transform in our time-domain
simulations. The monopole-longitudinal and dipole-
transverse wake impedances are ~X0ðfÞ and ~Y1ðfÞ,
respectively.

B. Results

The envelopes (lines connecting local maxima/minima)
of the longitudinal monopole wake potentials are shown in
Fig. 5 with the corresponding wake impedances shown in
Fig. 6. Fluctuations of the envelope give a qualitative
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picture of the presence of HOMs (showing the full wake
potential only serves to confuse the plot). The impedances
in Fig. 6 show lower peaks for the Tri-4-Sapphire cavity,
indicating stronger monopole HOM damping and/or
weaker monopole HOM excitation. The mode density is
significantly higher in Tri-4-Sapphire.
Amplitudes of the transverse dipole wake potentials are

shown in Fig. 7 with the corresponding impedances shown
in Fig. 8. As a reference, we have included in each plot the
transverse dipole wake potentials in the empty cavity—
defined most easily as an 8-cell hybrid PhC cavity without
any rods. The empty cavity represents ideal wakefield
damping but does not confine an accelerating mode. Dipole
wakes are relatively high in the Tri-4-Sapphire cavity; the
frequencies of the troublesome HOMs are indicated by the
sharp peaks around 15 GHz in Fig. 8. This result motivates

a more careful analysis of the intrinsic PhC damping
mechanism and prompts the following discussion.

V. ORIGIN OF WAKEFIELDS IN THE
TRUNCATED PhC CAVITY

The transverse dipole impedance in the Tri-4-Sapphire
cavity shows that the dipole wake potential mostly com-
prises a cluster of modes near 15 GHz. In this section, we
explain the presence of these modes using the properties
of the triangular-lattice band structure: flat regions of the
dispersion diagram imply low-group-velocity PhC modes
which sluggishly transport energy and thus cannot effec-
tively damp cavity modes to which they are strongly
coupled. This issue was addressed briefly in Ref. [29]

CLIC
Tri-4-Sapphire

FIG. 5. Oscillations in the envelope of the monopole wake
potential indicate the presence of monopole HOMs. The rf period
is Trf ¼ ð12 GHzÞ−1 ¼ 83.3 ps.

CLIC
Tri-4-Sapphire

FIG. 6. Monopole HOMs are relatively numerous in the Tri-4-
Sapphire cavity, but occur at lower amplitudes.

Empty
CLIC
Tri-4-Sapphire

FIG. 7. Transverse dipole wake potentials in the Tri-4-
Sapphire cavity are (on average) an order of magnitude higher
than those in CLIC.

Empty
CLIC
Tri-4-Sapphire

FIG. 8. The higher transverse wake in the Tri-4-Sapphire cavity
is due to the cluster of “high”-Q modes around 15 GHz.
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within a study of a square-lattice-based metal-rod accel-
erating structure.
We have discussed how waveguide damping is effective

for coupling out frequencies only above cutoff (the further
above cutoff the better). This is because waveguide modes
with frequencies near cutoff have vanishing group veloc-
ities (because of the flattened dispersion at cutoff) and thus
propagate slowly down the waveguide— effectively, they
are trapped. In PhCs, the dispersion tends to flatten where
the spatial variation of the modes matches the spatial
variation of the dielectric, introducing PhC modes with
vanishing group velocities.
Figure 9 shows the transverse dipole impedance of the

Tri-4-Sapphire cavity in the frequency range 0–25 GHz (a
zoom view of Fig. 8) and matches it with the 2D TM band
diagram for the triangular lattice of sapphire discs. The two
most prominent peaks in the impedance clearly line up with
the flat portions of the second band (the third peak can be
matched with another flat band in the fully 3D band
diagram). The annotated impedance peak (second largest)
was investigated further using the time-domain mode
extraction technique. Figure 10 shows the field pattern
of the extracted mode (from a periodic single-cell simu-
lation at phase advance ϕ ≈ 3π=4) and compares it with
the 2D PhC lattice mode at theM point of the second band.
The field patterns clearly match.

Both the damping waveguides and the triangular PhC
suffer from low-group-velocity modes. Why then is the
damping worse in the Tri-4-Sapphire cavity? The answer
lies in the combined characteristics of the damping struc-
ture and the central cavity region. Consider the lowest
dipole mode in the CLIC cavity. Section II showed that
waveguide damping is more effective when the undamped
resonant frequency is further above the cutoff frequency.
The central cavity dimensions in the CLIC cavity determine
a dipole resonant frequency; thus, the waveguide

FIG. 10. Analagous modes in (a) the Tri-4-Sapphire periodic
single-cell cavity and (b) an infinite 2D PhC [the mode pattern in
(b) is uniform in z]. The propagating PhC mode in (b) has a
vanishing group velocity; thus, its counterpart in (a) is “trapped”
and contributes significantly to the dipole wakefield. Computa-
tions used (a) VORPAL [31] and (b) MIT Photonic Bands [28].

FIG. 9. The left plot shows a zoomed-in view of the troublesome
part of the transverse dipole impedance (from Fig. 8). The right
plot is the 2D TM band diagram for the triangular lattice of
sapphire discs. The annotated peak in the impedance is at the same
frequency as the M point of the second band (also see the mode
patterns in Fig. 10). This correlation supports the idea that low-vg
modes pose a problem for wakefields.
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dimensions are selected such that cutoff is as far below that
frequency as possible (without affecting the accelerating
mode too much). The gap between the accelerating
frequency and the dipole frequency is large enough such
that this scheme results in effective dipole damping.
In contrast, the defect region of the Tri-4-Sapphire cavity

is (by definition) highly commensurate with the geometry
of the surrounding lattice. Furthermore, the mode patterns
in Fig. 10 show little electric field energy inside the
dielectric, indicating that the removal of the central rod
has a small, perturbative effect (compared to modes at the
top of the first band, which have most of their field energy
concentrated in dielectric). (For an introduction to electro-
magnetic perturbation theory, see Ref. [34].) As a result, the
dipolar defect resonance is at the same frequency as the
low-group-velocity lattice mode (or the “cutoff” mode),
and is thus poorly damped. Put another way, the creation of
the defect weakly perturbs the band-edge lattice mode;
therefore, the mode retains a strong presence in the defect.
This argument suggests pushing the inner layer of rods
closer to the cavity axis, which is likely to increase the
dipole resonance frequency in the defect above the flat
portion of the lattice band and thus increase coupling to
higher-group-velocity lattice modes.
The situation may be exacerbated by the impedance

mismatch at the outer layer of rods. Because of its low-
group-velocity, the lattice mode shown in Fig. 10 may be
highly susceptible to reflections off of the transition
between lattice and vacuum, effectively increasing its
confinement. This transition could be made smoother by
slowly decreasing the radii of the rods in outer layers but
would add significantly to the transverse size of the
structure.

VI. WAKEFIELDS IN OPTIMIZED
HYBRID PhC CAVITIES

In a previous work, 2D simulations showed that some
rod arrangements lacking any lattice symmetry (but retain-
ing some rotational symmetry) dramatically reduce the
radiative losses of the accelerating mode as compared to
lattice arrangements of equal rod count [10]. Subsequent
3D simulations indicated lower wakefields in these opti-
mized structures [18]; however, the simulations in that
study were of single-cell closed cavities (no irises or beam
tubes) and made comparisons with only the pillbox. In this
section, we investigate the wakefield-damping performance
of a 12 GHz multicell optimized PhC cavity with irises and
compare with the CLIC cavity.
A single cell of the multicell optimized cavity that we

simulate (henceforth referred to as Opt-18-Sapphire—rods
are sapphire) is pictured in Fig. 11. The transverse positions
and radii of the rods were calculated from their 2D values in
Ref. [10] using a uniform transverse coordinate scaling
(relative to the cavity axis) that resulted in an accelerating
mode frequency of 12 GHz for the desired iris dimensions.

Irises perturb the frequency, Q factor, and field pattern
of the accelerating mode away from their closed-cavity
(essentially 2D) values. The Q factor of metal cavities and
PhC cavities with a band gap is robust to slight perturba-
tions; for example, a perturbation of the frequency in a PhC
cavity should not affect the Q factor too much if the
frequency remains in the band gap. In contrast, Ref. [10]
showed that the Q factor of an optimized cavity can be
quite sensitive to perturbations. Indeed, we find that the
irises in the multicell cavity of this paper significantly
reduce the Q factor below its 2D value (by roughly 85%).

Cavity axis

FIG. 11. An optimized hybrid PhC cavity (Opt-18-Sapphire)
reduces the number of rods required to confine the accelerat-
ing mode.

CLIC
Opt-18-Sapphire

FIG. 12. The monopole wake potential envelope is smoother
for the Opt-18-Sapphire cavity. However, the amplitude of the
accelerating mode is lower, indicating weaker coupling to the
beam (see Appendix B).
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It is possible that a corrective perturbation to the rod
positions would return the Q factor to its 2D value.
However, such an optimization in 3D would require
significant additional computational effort. Without a clear
connection between the Q factor of the accelerating mode
and the damping of higher-order modes in the optimized
cavity, we compare wakefields in Opt-18-Sapphire with
wakefields in CLIC as a preliminary study of damping in
nonlattice-based (optimized) hybrid PhC cavities.
Figures 12–15 detail the wake potentials of an 8-cell

Opt-18-Sapphire cavity and compare with CLIC.
Monopole HOMs are more numerous but less prominent
in the Opt-18-Sapphire cavity. Transverse wakes in Opt-18-
Sapphire are similar to CLIC on average but greatly
reduced in comparison with Tri-4-Sapphire (cf. Fig. 7).
Unfortunately, the analysis of Sec. V cannot be applied to
Opt-18-Sapphire because of the lack of any band structure;
however, these results suggest that nonlattice structures

could avoid the inherently poor damping characteristics
found in PhC defect cavities.

VII. CONCLUDING REMARKS

Low wakefields require that the energy in HOMs be
dissipated as quickly as possible. Therefore, a damping
mechanism (or structure) should have a mode spectrum
without any low group velocities. In principle, the CLIC
cavity suffers from low-vg HOMs near the cutoff frequency
of its damping waveguides; however, the sparse mode
density of the conducting cavity allowed the placement of
the cutoff frequency within an empty region of the
spectrum, producing effective damping. PhC cavities suffer
from low-vg-confined HOMs due to the flattening of bands
near k points of strong lattice symmetry. Specifically, in the
Tri-4-Sapphire design, the defect-based cavity supports
dipolar resonances that strongly couple to band-edge PhC
modes with low vg.
Future work should focus on reducing wakefields in

lattice-based PhC cavities because the lattice structure has
the potential to reduce surface magnetic fields and increase
accelerating efficiencies (see Appendix B) and PhC band
theory provides an explanation for the existence of trouble-
some HOMs. Possible routes to reducing wakes in Tri-4-
Sapphire cavities includeperturbing the central defect region
to eliminate low-vg resonances and/or reducing impedance
mismatch at the truncation of the lattice. Given the low
wakefields in the Opt-18-Sapphire cavity (and its high Qrad
to rod-count ratio), brute-force optimization of rod positions
to lower wakefields is also recommended.
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Empty
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conducting absorbers.
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APPENDIX A: ABSORBERS

To absorb wakefields, the ends of each damping wave-
guide and the transverse edges of the PhC simulations were
filled with blocks of conducting material with a special
conductivity profile aimed at minimizing reflections off of
the cavity-facing surface. The profile is given by

σðwÞ ¼ σmax

�
w
W

�
2

; (A1)

where w is depth in the conductor andW is the entire depth
of the conducting block. The quadratic form resembles
damping techniques used in practice [35], where a cone of
absorbing material is placed at the end of a damping
waveguide. Our calculations used W ¼ 25 mm and
σmax=ε0 ¼ 4.7ωacc where ωacc ¼ 2π12 GHz.
We have found that the additional contribution to the

wake potentials due to reflections off of the conducting
absorbers are higher in the CLIC cavity than in the hybrid
PhC cavities. These findings were obtained from simu-
lations with large transverse extents—125 mm from cavity
axis to simulation edge in both x and y (simulations in
Sec. IV had approximately 40 mm between the cavity axis
and the start of the absorbers). Wakefield reflections off of
the absorbers at 40 mm show up in the wake potential at
s≳ 80 mm, whereas reflections from 125 mm simulation
edges show up at s≳ 250 mm. Transverse dipole wake
potential results were compared at distances of 80 mm <
s < 250 mm (see Fig. 16). Differences in this region were
significant for the CLIC cavity and minor in all hybrid
PhC cavities. This means wakefield damping can be
improved by reducing the impedance mismatch of the
absorber in the CLIC waveguides, whereas improving
absorption in the PhC cavities will have little impact on the
wake potentials.

APPENDIX B: ACCELERATING
MODE COMPARISON

Accelerator cavity design is a complex multidimensional
optimization process that tries (in no particular order) (1) to
maximize the accelerating electric field (or gradient) so that
high energies are reached over short distances, (2) to

maximize the transfer of electromagnetic power to the
beam, and (3) to minimize wakefields to avoid beam
instabilities and breakup. The main body of this paper
focused on wakefields in hybrid PhC cavities [i.e., goal
(3)]. This appendix addresses some aspects of goals (1) and
(2) so that a more complete comparison between the CLIC
and hybrid PhC cavities may be drawn.

Conducting absorbers
Extended domain

Conducting absorbers
Extended domain

Conducting absorbers
Extended domain

FIG. 16. Reflections off of the conducting absorbers cause
differences in the wake potentials between the two vertical lines
(more so in the CLIC cavity). Beyond the second line, reflections
from the extended domain boundaries reach the cavity axis.
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Using VORPAL, figures of merit for the accelerating mode
in each cavity type were calculated and compared for a
periodic single cell with iris radius a ¼ 3.15 mm, iris
thickness d ¼ 1.67 mm, and phase advance ϕ ¼ 2π=3
and are summarized in Table I. The quality factors quantify
power losses due to various physical mechanisms: (i) Qrad:
losses due to radiation leaking through the truncated PhC
structures (confinement of the accelerating mode is not
perfect). Applies to hybrid PhC cavities only. (ii) Qmetal:
losses due to rf heating of copper surfaces. (iii)Qdiel: losses
due to rf heating of sapphire rods. Applies to hybrid PhC
cavities only. We use a conservative value for the sapphire
loss tangent: 10−4.
The shunt impedance per unit length is

rshunt ¼
V2

PL
; (B1)

where V is the accelerating voltage across a single cell, P is
the total power loss per cell, and L is the length of a single

cell (L ¼ 8.33 mm based on the synchronicity condition).
The accelerating gradient is simply Eacc ¼ V=L. The loss
factor per unit length is k ¼ V2=4UL where U is the
accelerating mode stored energy. The group velocity of the
accelerating mode is vg, obtained from two simulations at
different phase advances.

1. Surface fields

Figures 17 and 18 show the absolute values of Ez andB⊥
on the z midplane of the relevant periodic single cell
cavities. The z dependences of the fields are very similar
amongst the different cavity types, as expected based on the
common iris geometry in each structure. The maximum
surface electric field occurs on the iris in all cases,
explaining the uniformity of Emetal;surf;max=Eacc across all
cavity types. The maximum surface magnetic field occurs
on the innermost radial walls of the CLIC cavity; the
elliptic curvature of this feature was carefully chosen to
minimize cBsurf=Eacc.
In the hybrid PhC cavities, Bmetal;surf;max occurs where the

innermost rods abut the conducting endplates. Since the
maximum occurs at the interface between dielectric and
conductor, the method used to hold the rods in place
will require careful consideration. For example, brazing
material could be more prone to breakdown or suffer
greater heating losses than copper. The experiment in
Ref. [4] successfully secured the rods simply by endplate
pressure. On the other hand, covering the region of
conductor suffering the maximum magnetic field with
dielectric could suppress the breakdown mechanism. Of
course, only experiment will tell.

2. Power losses/accelerating efficiency

The reduced copper surface area in the hybrid PhC
cavities lowers copper heating losses compared to CLIC
and the pillbox; however (unlike the all-copper cavities),
dielectric heating and radiative losses play a role. The shunt
impedance is a strong indicator of accelerating efficiency,

TABLE I. Figures of merit for the accelerating mode in periodic
single cell cavities. a ¼ 3.15 mm, d ¼ 1.67 mm, ϕ ¼ 2π=3. All
simulations performed at Δz=d ¼ 8.

Pillbox CLIC
Tri-4-

Sapphire
Opt-18-
Sapphire

vg=c (%) 1.83 1.65 1.16 0.78
Qmetal 6,700 5,900 11,400 11,400
Qrad ∞ ∞ 26,600 3,800
Qdiel ∞ ∞ 67,000 39,000
Qtotal 6,700 5,900 7,100 2,700
rshunt (MΩ=m) 106 82 70 18
k (V=pC=m) 298 260 187 125
Esurf;metal;max=Eacc 1.93 1.96 1.93 1.93
cBsurf;metal;max=Eacc 1.0 1.54 1.49 1.73
Esurf;diel;max=Eacc � � � � � � 0.54 0.64
cBsurf;diel;max=Eacc � � � � � � 1.26 1.79
Ediel;max=Eacc � � � � � � 0.60 0.79

FIG. 17. Absolute value of Ez on the midplane (in z) of periodic single cell cavities.
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and is higher in the CLIC cavity. However, shunt imped-
ances in the hybrid PhC cavities could be increased by
reducing radiative losses (e.g., by adding more layers of
rods to the Tri-4-Sapphire cavity, or performing optimiza-
tions in 3D on the Opt-18-Sapphire cavity as dis-
cussed below).
In the optimized cavity, Qrad is very sensitive to

structural perturbations (cf. Ref. [10]). We find that the
beam tubes in the 3D Opt-18-Sapphire cavity drop Qrad by
nearly an order of magnitude relative to the 2D value
reported in Ref. [10] (from 25,000 in 2D to 3,800 in 3D
with beam tubes). It remains to be seen whether further
optimization in 3D can regain the original 2D Qrad. The
Qrad of the Tri-4-Sapphire cavity is the same in 2D,
indicating some robustness of the confinement to structural
perturbations, likely due to the band gap trapping
mechanism.
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