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The dynamics of charged particles in general linear focusing lattices with quadrupole, skew-quadrupole,
dipole, and solenoidal components, as well as torsion of the fiducial orbit and variation of beam energy is
parametrized using a generalized Courant-Snyder (CS) theory, which extends the original CS theory for
one degree of freedom to higher dimensions. The envelope function is generalized into an envelope matrix,
and the phase advance is generalized into a 4D symplectic rotation, or a Uð2Þ element. The 1D envelope
equation, also known as the Ermakov-Milne-Pinney equation in quantum mechanics, is generalized to an
envelope matrix equation in higher dimensions. Other components of the original CS theory, such as the
transfer matrix, Twiss functions, and CS invariant (also known as the Lewis invariant) all have their
counterparts, with remarkably similar expressions, in the generalized theory. The gauge group structure of
the generalized theory is analyzed. By fixing the gauge freedom with a desired symmetry, the generalized
CS parametrization assumes the form of the modified Iwasawa decomposition, whose importance in phase
space optics and phase space quantum mechanics has been recently realized. This gauge fixing also
symmetrizes the generalized envelope equation and expresses the theory using only the generalized Twiss
function β. The generalized phase advance completely determines the spectral and structural stability
properties of a general focusing lattice. For structural stability, the generalized CS theory enables
application of the Krein-Moser theory to greatly simplify the stability analysis. The generalized CS theory
provides an effective tool to study coupled dynamics and to discover more optimized lattice designs in the
larger parameter space of general focusing lattices.
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I. INTRODUCTION

In accelerators and storage rings, charged particles are
confined transversely by electromagnetic focusing lattices.
Many different kinds of focusing lattices have been
successfully designed and implemented. The fundamental
theoretical tool in designing an uncoupled quadrupole
lattice is the Courant-Snyder (CS) theory [1], which can
be summarized as follows. For a given set of focusing
lattices in the x- and y-directions κxðtÞ and κyðtÞ, a particle’s
dynamics is governed by the oscillation equation

q̈þ κqðtÞq ¼ 0; (1)

where q represents one of the transverse coordinates, either
x or y. The solution of Eq. (1) can be expressed as a
symplectic linear map MðtÞ that advances the phase space
coordinates

�
q
_q

�
¼ MðtÞ

�
q0
_q0

�
: (2)

In CS theory, the linear map MðtÞ is given as

MðtÞ¼

0
B@

ffiffiffiffi
β
β0
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½cosϕþα0 sinϕ�

ffiffiffiffiffiffiffi
ββ0

p
sinϕ
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ββ0

p cosϕ
ffiffiffiffi
β0
β

q
½cosϕ−αsinϕ�

1
CA;

(3)

where αðtÞ and βðtÞ are two of the so-called Twiss
parameters, and ϕðtÞ is the phase advance. They are defined
by the envelope function wðtÞ as

βðtÞ ¼ w2ðtÞ; (4)

αðtÞ ¼ −w _w; (5)

ϕðtÞ ¼
Z

t

0

dt
βðtÞ ; (6)
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and the envelope function wðtÞ is determined by the
envelope equation

ẅþ κqðtÞw ¼ w−3: (7)

In Eq. (3), q0 ¼ qðt ¼ 0Þ, _q0 ¼ _qðt ¼ 0Þ, β0 ¼ βðt ¼ 0Þ,
and α0 ¼ αðt ¼ 0Þ are the initial conditions at t ¼ 0.
Associated with the dynamics of Eq. (1), there exists a

constant of the motion, ICS, known as the Courant-Synder
invariant

ICS¼
q2

w2
þðw _q− _wqÞ2¼ðq; _qÞ

�
γ α

α β

��
q

_q

�
; (8)

γðtÞ≡ w−2 þ _w2: (9)

Here γðtÞ is the third Twiss parameter. It turns out that the
transfer matrix MðtÞ can be decomposed into the elegant
form [2]

MðtÞ ¼
�
w 0

_w 1
w

��
cosϕ sinϕ

− sinϕ cosϕ

��
w−1
0 0

− _w0 w0

�
; (10)

which seems to indicate a certain structure for MðtÞ.
The CS theory can be viewed as a parametrization

method of the time-dependent 2 × 2 symplectic matrix
MðtÞ for a standard uncoupled lattice. Not surprisingly,
there exist other parametrization schemes mathematically.
Why is the CS parametrization preferable? This is because
it describes the physics of charged particle dynamics. The
main components of the CS theory, i.e., the phase advance,
the envelope equation, the transfer matrix, and the CS
invariant are physical quantities describing the dynamics of
the particles. For example, the CS invariant defines the
emittance in phase space, and the envelope function
describes the transverse dimensions in configuration space.
This theoretical framework also makes it possible to
investigate collective effects associated with high-intensity
beams, such as in the construction of the Kapchinskij-
Vladimirskij distribution [3–5].
However, the CS theory can only be applied to the x- or

y-dynamics separately for the ideal case of uncoupled
quadrupole focusing lattices. In realistic accelerators, there
exist bending magnets, torsion of the design orbit (fiducial
orbit), and skew-quadrupole components, which are intro-
duced intentionally or by misalignment [6,7]. Solenoidal
magnets are also used in certain applications [8]. When
these additional components are included, the transverse
dynamics in the x- and y-directions are coupled, and the
focusing force depends on the transverse momentum as
well. In this most general case, the transfer matrixMðtÞ is a
time-dependent 4 × 4 symplectic matrix, which has 10
time-dependent parameters and admits many different
schemes for parametrization. The first set of parametriza-
tion schemes forMðtÞwas developed by Teng and Edwards

[9–11] and Ripken [12–14], some of which have been
adopted in lattice design and particle tracking codes, such
as the MAD code [15,16]. A class of different parametriza-
tions by directly generalizing the Twiss parameters to
higher dimensions has also been developed by Dattoli
et al. [17–19]. However, in contrast to the original CS
theory, these parametrization schemes are designed from
mathematical considerations, and fail to connect with
physical parameters of the beam. The elegant and much-
needed connection with the physics of beam dynamics in
the original CS theory for one degree of freedom is not
transparent in these parametrization schemes. This is
probably why there is no de facto standard yet adopted
by the accelerator community. Another main reason is that,
for most present-day accelerators and rings, the transverse
dynamics are so nearly decoupled that perturbative treat-
ments often work satisfactorily. Even for lattices with
strong coupling, elementary methods can be used to
analyze the dynamics, even though the calculation often
becomes rather involved and requires diligence and
patience.
In a recent Letter [20], we reported on the development of

a generalized CS theory for focusing lattices with the most
general form in Eq. (11), including bending magnets,
torsion of the design orbit, and solenoidal magnets, in
addition to quadrupole and skew-quadrupole components.
In this generalized theory, the physics elements of the
original CS theory, i.e., the phase advance, the envelope
equation, the transfer matrix, and the CS invariant are all
generalized to the 2D coupled case with identical structure.
This new development also generalizes our previous results
for coupled dynamics including only a skew-quadrupole
lattice component [21–24]. In this paper, we give a detailed
derivation of the generalizedCS theory reported inRef. [20],
describe the theoretical structure of the theory in terms of
gauge freedoms and group decomposition, and demonstrate
the application of the theory in a stability analysis.

II. THEORETICAL MODEL
AND SUMMARY OF RESULTS

In this section, we outline the theoretical methods used
and summarize the main results obtained in this paper. As
discussed in Sec. I, when realistic components such as
skew-quadrupoles, bending magnets, torsion of the design
orbit, solenoidal magnets are included, in addition to the
standard quadrupole components, the transverse dynamics
in the x- and y-directions are coupled, and the focusing
force depends on the transverse momentum. In this case,
the linear dynamics of a charged particle relative to the
fiducial orbit are governed by a general time-dependent
Hamiltonian [25] of the form

H ¼ 1

2
zTAz; A ¼

�
κðtÞ RðtÞ
RðtÞT m−1ðtÞ

�
: (11)
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Here, the components of z ¼ ðx; y; px; pyÞT are the trans-
verse phase space coordinates, and κðtÞ, RðtÞ, and m−1ðtÞ
are time-dependent 2 × 2 matrices. The matrices A, κðtÞ,
and m−1ðtÞ are also symmetric. In this most general
Hamiltonian, the skew-quadrupole and dipole components
are included in the off-diagonal terms of the κðtÞ matrix,
and the solenoidal component and the torsion of the fiducial
orbit are included in the RðtÞ matrix. There are several
different methods to include the effect of torsion, which
were reviewed by Hoffstaetter [26]. Typically, Frenet-Serret
coordinates along the fiducial orbit are used. When the
fiducial orbit is straight, the Frenet-Serret coordinates are
not uniquely defined. In this case, we can choose any
particular set of Frenet-Serret coordinates in the straight
section, as long it is smoothly connected to those in the
curved sections. The variation of beam energy along
the fiducial orbit is reflected in the mass matrix m−1ðtÞ,
which is allowed to be any real symmetric matrix for
complete generality. The transfer matrix MðtÞ correspond-
ing to H is a time-dependent 4 × 4 symplectic matrix,
which has 10 time-dependent parameters. Our goal is to
develop a generalized Courant-Snyder parametrization
method for MðtÞ, which has the same elegant structure
and direct connection to beam dynamics as the original
Courant-Snyder theory for one degree of freedom.
We will use a time-dependent symplectic transformation

technique [21,24,27] to analyze the charged particle dynam-
ics governed by the Hamiltonian given in Eq. (11). This
technique is described in Sec. III. The concept of scalar
envelope function is generalized to a 2 × 2 envelope matrix,
and the envelope equation in 2 × 2matrix form is developed
[see Eq. (36)] in Sec. IV. In the original CS theory, the
envelope equation (7) is one dimensional and plays a central
role. It also has been discovered or rediscovered many times
[28–32] in other branches of physics. In quantum physics, it
is known as the Ermakov-Milne-Pinney equation [28–30],
which has been utilized to study 1D time-dependent
quantum systems [33,34] and associated nonadiabatic
Berry phases [35]. A brief account of the history of the
1D envelope equation can be found in Ref. [36]. We expect
the generalization of the envelope equation to higher
dimensions for the most general Hamiltonian to have
applications in areas other than beam physics as well.
The 1D CS invariant given by Eq. (8), also known as the
Lewis invariant [31,32] in quantum physics, is generalized
to higher dimensions in Eqs. (44) and (45).
Also in Sec. IV, the 1D phase advance is generalized to a

time-dependent matrix P, which belongs to the symplectic
rotation group Spð4Þ⋂SOð4Þ ¼ Uð2Þ. Here, Spð4Þ,
SOð4Þ, and Uð2Þ denote the groups of 4 × 4 symplectic
matrices, 4 × 4 rotation matrices, and 2 × 2 unitary matri-
ces, respectively. For dynamics with one degree of freedom,
the phase advance is naturally an angle [an element of
SOð2Þ] in the 2D phase space. For dynamics with two
degrees of freedom, the phase space is 4D, and it is

tempting to represent the phase advance by two angles.
This is what has been adopted in previous parametrization
schemes. From the viewpoint of theoretical physics and
geometry, however, it is more natural to represent the phase
advance for dynamics with two degrees of freedom by a 4D
rotation [an element of SOð4Þ], which is not equivalent to a
pair of 2D rotations. Because of the symplectic nature of
the Hamiltonian dynamics, generalized phase advance in
higher dimensions thus belongs to the symplectic rotation
group. Of course, one can adopt different views on this. In
the normal-form analysis of accelerator rings, the 4D
transfer matrix is reduced to a 2D rotation after block
diagonalization. In a sense, we can compare coupled
betatron motion to the Dirac equation. In a fully quantum
mechanical limit, the only correct approach is to treat
electrons and positrons as inextricably coupled; only the
4D approach is permissible in this limit. But in accelerator
physics, we routinely treat electrons and positrons as
completely separate entities, and two 2D descriptions are
adopted without much hesitation.
The generalized decomposition for the symplectic map

MðtÞ is given by Eq. (43), which has exactly the same
structure as the original 1D CS theory given by Eq. (10). In
addition to its aesthetic elegance, the generalized CS theory
provides an effective tool to describe the beam dynamics
governed by the most general Hamiltonian. The 2 × 2
envelope matrix w defines the transverse dimension of the
beam, and the generalized CS invariant defines the
emittance. These components of the generalized CS theory
are derived in detail in Sec. IV. For the present application
to beam transverse dynamics, there are two degrees of
freedom. But the theory developed is valid for any degree
of freedom. For a system with n degrees of freedom, the
time-dependent matrix AðtÞ specifying the Hamiltonian in
Eq. (11) will be 2n × 2n, the envelope matrix will be n × n,
and the phase advance will belong to Spð2nÞ⋂
SOð2nÞ ¼ UðnÞ.
In Sec. V, we investigate the group structure of the

generalized CS theory, which is built on the decomposition
of the time-dependent symplectic coordinate transforma-
tion G in the form of Eq. (42). There exists a gauge free-
dom in this decomposition specified by a 2D rotation
element c ∈ SOð2Þ for every t. The transfer map MðtÞ is
independent of this gauge. By fixing the gauge freedom
with a desired symmetry, the decomposition of G as PS
assumes the form of the modified Iwasawa decomposition
(or pre-Iwasawa decomposition), whose importance in
phase space optics [37,38] and phase space quantum
mechanics [39] has been recently realized. This specific
gauge fixing also symmetrizes the generalized envelope
equation and expresses the theory using only the general-
ized Twiss function β. For a symplectic matrix, the
modified Iwasawa decomposition is equivalent to the
well-known Iwasawa decomposition for a semisimple
Lie group [40]. However, the unique feature of the theory
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described here is that the decomposition is constructed as a
function of time, and from the viewpoint of dynamics using
the generalized envelope equation. Nevertheless, it is a
pleasant surprise to find the deep connection between the
original CS theory for charged particle dynamics [1] and
the Iwasawa decomposition for Lie groups [40], two
theoretical formalisms developed concurrently. This con-
nection also demonstrates that beam dynamics, phase space
optics, and quantum dynamics have a similar theoretical
structure at the fundamental level. In order to satisfy the
symmetry requirement of the modified Iwasawa decom-
position, the gauge freedom needs to be selected locally as
a function of time, which is characteristic of gauge theories
in theoretical physics. This procedure also results in a
symmetrized envelope equation in terms of the generalized
Twiss parameter β, which is a symmetric, positive-definite
matrix. The beam dimensions and emittance can be
expressed using the β matrix only.
We show in Sec. VI how the generalized CS theory can

be used to analyze the stability of charge particle dynamics
in realistic accelerators with quadrupole, skew-quadrupole,
dipole, and solenoidal components, as well as torsion of the
fiducial orbit and variation of beam energy. It turns out that
the generalized phase advance as a symplectic rotation
completely determines the spectral and structural stability
properties of the general lattice after a matched solution of
the envelope equation is found. For structural stability, the
generalized CS theory enables us to apply the Krein-Moser
theory [41–45] to greatly simplify the stability analysis.
This general result includes the well-known stability
criterion for sum/difference resonances for uncoupled
quadrupole lattices as a special case.

III. METHOD OF TIME-DEPENDENT
CANONICAL TRANSFORMATION

We will construct the generalized Courant-Snyder
theory for the general focusing lattice given by Eq. (11)
using a time-dependent canonical coordinate transforma-
tion technique. Let us consider a linear, time-dependent
Hamiltonian system with n degrees of freedom

H¼ 1

2
zTAðtÞz; z¼ðx1;x2;…;xn;p1;p2;…;pnÞT: (12)

Here, AðtÞ is a 2n × 2n time-dependent, symmetric matrix.
The Hamiltonian in Eq. (11) has this form with n ¼ 2.
The basic idea is to introduce a time-dependent linear
canonical transformation [27]

z̄ ¼ SðtÞz; (13)

such that in the new coordinates z̄, the transformed
Hamiltonian has the desired form

H̄ ¼ 1

2
z̄TĀðtÞz̄; (14)

where ĀðtÞ is a targeted symmetric matrix. Because the
transformation (13) is canonical, it requires that

SJST ¼ J: (15)

Here, J the 2n × 2n unit symplectic matrix of order 2n,

J ¼
�

0 I

−I 0

�
; (16)

and I is the n × n unit matrix. Equation (15) implies that S
is a symplectic matrix. In addition, it needs to satisfy a
differential equation, which can be derived as follows.
Hamilton’s equation for z is given by

_z ¼ J∇H; (17)

Using index notation, Eq. (17) becomes

_zj ¼ Jij
∂H
∂zj ¼

1

2
JijðδljAlmzm þ zlAlkδkjÞ

¼ 1

2
JijðAjm þ AmjÞzm ¼ JAjmzm: (18)

Switching back to matrix notation, Eq. (18) can be
expressed as

_z ¼ JAz: (19)

Similarly,

_̄z ¼ JĀ z̄ ¼ JĀSz: (20)

Meanwhile, _̄z can be directly calculated from Eq. (13) by
taking a time-derivative, which gives

_̄z ¼ _Szþ S_z ¼ ð _Sþ SJAÞz: (21)

Combining Eqs. (20) and (21) gives the differential
equation for S

_S ¼ ðJĀS − SJAÞ: (22)

The remarkable feature of the canonical transformation S
is that it is always symplectic if S is symplectic at t ¼ 0.
This assertion can be proved by two methods. For the first
proof, we follow Leach [27] and consider the dynamics of
the matrix K ¼ SJST ,

_K ¼ _SJST þ SJ _ST

¼ ½ðJĀS − SJAÞJST þ SJð−SĀJ þ AJSTÞ�
¼ ½JĀSJST − SJSTĀJ� ¼ ½JĀK − KĀJ�: (23)

Equation (23) has a fixed point at K ¼ J. If Sðt ¼ 0Þ is
symplectic, i.e., Kðt ¼ 0Þ ¼ J, then _K ¼ 0 and K ¼ J
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for all t, and S is symplectic for all t. A more geometric
proof can be given from the viewpoint of the flow of S.
Because A is symmetric, we have JJĀ − ĀTJJ ¼ 0, which
indicates that JĀ belongs to the Lie algebra spð2nÞ. We
now show that if S is symplectic at a given t, then JĀS
belongs to the tangent space of Spð2nÞ at S, i.e.,
JĀS ∈ TSSPð2nÞ. Let us examine the Lie group right
action: S: a↦aS for any a in Spð2nÞ, and the associated
tangent map

TS∶ TaSpð2nÞ → TaSSpð2nÞ: (24)

It is evident that JĀS is the image of the Lie algebra
element JĀ under the tangential map TS. This means that
JĀS is a vector tangential to Spð2nÞ at S, if S is on Spð2nÞ.
By the same argument SJA ∈ TSSPð2nÞ as well. Thus, the
right-hand side of Eq. (22) is a vector in Spð2nÞ, and the S
dynamics will stay in Spð2nÞ. We can always choose initial
conditions such that S is symplectic at t ¼ 0, and this will
guarantee that the time-dependent transformation specified
by Eq. (22) is symplectic for all t.

IV. GENERALIZED COURANT-SNYDER THEORY

We now apply the technique developed in Sec. III to the
Hamiltonian system in Eq. (11). Our goal is to find a new
coordinate system where the transformed Hamiltonian
vanishes. This idea is identical to that in Hamilton-
Jacobi theory. Applications of Hamilton-Jacobi theory
include the construction of action-angle variables for
periodic systems [46] and finding geodesic curves on an
ellipsoid [47]. It is often required that the variables in the
Hamilton-Jacobi equation can be separated in order for the
technique to be effective for practical problems. This limits
its application. Since our dynamics is linear, the new
coordinate system can be more easily constructed using
the method developed in Sec. III. We will accomplish this
goal in two steps. First, we seek a coordinate transforma-
tion z̄ ¼ Sz such that, in the z̄ coordinates, the Hamiltonian
assumes the form

H̄ ¼ 1

2
z̄TĀ z̄; Ā ¼

�
μðtÞ 0

0 μðtÞ

�
; (25)

where μðtÞ is a 2 × 2 matrix to be determined. To write
Eq. (22) in the format of 2 × 2 blocks, we let

S ¼
�
S1 S2
S3 S4

�
;

and split the differential equation for S, i.e., Eq. (22), into
four matrix equations,

_S1 ¼ μS3 − S1RT þ S2κ; (26)

_S2 ¼ μS4 − S1m−1 þ S2R; (27)

_S3 ¼ −μS1 − S3RT þ S4κ; (28)

_S4 ¼ −μS2 − S3m−1 þ S4R: (29)

Including μðtÞ, we have five 2 × 2 matrices unknown. The
extra freedom is introduced by the to-be-determined μðtÞ.
Based on the analogy with Eq. (10), we choose S2 ≡ 0 to
remove the freedom. We rename S4 to be w, i.e., w≡ S4,
because it will be clear later that S4 is the envelope matrix.
Equations (26)–(29) become

_S1 ¼ μS3 − S1RT; (30)

S1 ¼ μwm; (31)

_S3 ¼ −μS1 − S3RT þ wκ; (32)

S3 ¼ − _wmþ wRm; (33)

for matrices S1, S3, w, and μ. Because ðS1; S2 ¼ 0; S3; S4 ¼
wÞ describes a curve in Spð4Þ, they are consistent with the
symplectic condition S1ST4 − S2ST3 ¼ I, i.e., S1wT ¼ I,
which implies

S1 ¼ w−T: (34)

From Eq. (31), we obtain

μ ¼ ðwmwTÞ−1: (35)

It is straightforward to verify that Eq. (30) is equivalent to
another symplectic condition S3ST4 ¼ S4ST3 . Substituting
Eqs. (32)–(35) into Eq. (32), we immediately obtain the
following matrix differential equation for the envelope
matrix w,

d
dt

�
dw
dt

m − wRm

�
þ dw

dt
mRT þ wðκ − RmRTÞ

− ðwTwmwTÞ−1 ¼ 0: (36)

This is the desired generalized envelope equation. It
generalizes the 1D envelope equation (7), or the
Ermakov-Milne-Pinney equation [28–30], as well as the
previous matrix envelope equation for cases with only
quadrupole and skew-quadrupole magnets, i.e., R ¼ 0
[21–24]. For n degrees of freedom, the envelope matrix
w will be n × n, and the generalized envelope equation has
the same form as Eq. (36).
Once w is solved for from the envelope equation, we can

determine S1 from Eq. (34) and S3 from Eq. (33). In terms
of the envelope matrix w, the symplectic transformation S
and its inverse are given by
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S ¼
�

w−T 0

ðwR − _wÞm w

�
; (37)

S−1 ¼
�

wT 0

ðw−1 _w − RÞmwT w−1

�
: (38)

The second step is to use another coordinate trans-
formation ¯̄z ¼ PðtÞz̄ to transform H̄ into a vanishing
Hamiltonian ¯̄H ≡ 0 at all time, thereby rendering the
dynamics trivial in the new coordinates. The governing
equation for the transformation PðtÞ is

_P ¼ −PJĀ ¼ P

�
0 −μ
μ 0

�
: (39)

As explained in Sec. III, the P matrix satisfying Eq. (39) is
symplectic because JĀ ∈ spð4Þ. From μ ¼ μT , we know
that JĀ is also antisymmetric, i.e., JĀ belongs to the Lie
algebra soð4Þ of the 4D rotation group SOð4Þ. Thus
JĀ ∈ spð4Þ⋂soð4Þ, and PðtÞ is a curve in the group of
4D symplectic rotations, i.e., PðtÞ ∈ Spð4Þ⋂SOð4Þ ¼
Uð2Þ, provided the initial condition for PðtÞ is chosen such
that Pð0Þ ∈ Spð4Þ⋂SOð4Þ ¼ Uð2Þ. We call PðtÞ the
generalized phase advance, an appropriate descriptor in
light of the fact that PðtÞ is a symplectic rotation. The Lie
algebra element (infinitesimal generator)

−JĀ ¼
�
0 −μ
μ 0

�

is the phase advance rate, and it is determined by the
envelope matrix through Eq. (35). Since Spð4Þ⋂
SOð4Þ ¼ Uð2Þ, P and its inverse must have the forms

P ¼
�

P1 P2

−P2 P1

�
; (40)

P−1 ¼ PT ¼
�
PT
1 −PT

2

PT
2 PT

1

�
: (41)

Combining the two symplectic coordinate transforma-
tions, we obtain the transformation

¯̄z ¼ GðtÞz ¼ PðtÞSðtÞz: (42)

In the ¯̄z coordinate representation, because ¯̄H ≡ 0, the
dynamics is trivial, i.e., ¯̄z ¼ const. This enables us to
construct the symplectic matrix specifying the map
between z0 and z ¼ MðtÞz0 as

MðtÞ ¼ S−1P−1P0S0

¼
�

wT 0

ðw−1 _w − RÞmwT w−1

�
PT

�
w−T 0

ðwR − _wÞm w

�
0

;

(43)

where subscript “0” denotes initial conditions at t ¼ 0, and
P0 is taken to be I without loss of generality. This
expression for MðtÞ generalizes the decomposition of the
symplectic map for the original 1D CS theory given by
Eq. (10). The first and the third matrices in Eq. (10)
obviously have the same construction as their counterparts
in Eq. (43). The phase advance, as a 4D symplectic
rotation PT in Eq. (43), generalizes the 2D rotation
matrix, which is also symplectic, in Eq. (10). The phase
advance P is generated by its infinitesimal generator JĀ,
which is determined by the envelope matrix through
μ ¼ ðwmwTÞ−1. This mechanism for phase advance in
4D phase space is identical to the original 1D CS theory
where the infinitesimal generator of the phase advance is
w−2 for a scalar envelope w. The importance of the
decomposition in Eqs. (43) and (10) can be appreciated
from both physical and mathematical points of view. We
explain the physical meaning of the decomposition here,
and leave the mathematical analysis to Sec. V. The first
matrix from the right is a matching transformation of the
initial conditions to an equivalent focusing system where
the phase space dynamics can be characterized by a time-
dependent rotation. The second matrix from the right is a
transformation along the time axis in this equivalent
focusing system, with the phase advance playing the role
of a timelike evolution parameter. The third matrix from the
right is a back-transformation to the original coordinate
system at t > 0.
The coordinate transformation can also be used to

construct invariants of the dynamics. A general description
of linear symplectic invariants can be found in
Refs. [48,49]. For any constant 4 × 4 positive-definite
matrix ξ, the quantity

Iξ ¼ zTSTPTξPSz (44)

is a constant of the motion, since ¯̄z ¼ PSz is a constant of
motion. The subscript “ξ” in Iξ is used to indicate that it is
an invariant associated with ξ. For the special case of ξ ¼ I,
the phase advance P in Eq. (44) drops out, and

ICS ≡ zTSTSz ¼ zT
�

γ α

αT β

�
z; (45)

where α, β, and γ are 2 × 2 matrices defined by

α≡ wTS3; (46)

β≡ wTw; (47)
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γ ≡ ST3S3 þ w−1w−T: (48)

Here, we have used ICS to denote this special invariant
because it is the invariant that generalizes the CS invariant
[1] (or Lewis invariant [31,32]) for one degree of freedom
in Eq. (8). The matrices, α, β, and γ are the generalized
Twiss parameters in higher dimensions. It is straightfor-
ward to verify that they satisfy

βγ ¼ I þ α2; (49)

which is a familiar relationship in the original CS theory
between the scalar Twiss parameters defined by Eqs. (4),
(5), and (9). The symplectic condition wST3 ¼ S3wT has
been used in obtaining Eq. (49).
It has been demonstrated that the envelope matrix w and

the invariant Iξ define the beam dimensions and emittance
for both low intensity beams and high intensity beams with
strong space-charge potential [4,5].
Note that we have “overloaded” the symbols “M, w, α, β,

γ, ICS” to represent the same physical quantities in both the
original CS theory for one degree of freedom and the
generalizedCS theory in higher dimensionswithout causing
any confusion. It is actually more appropriate to do so than
not, because the quantities in higher dimensions recover
their counterparts for one degree of freedom as special
cases, and the correspondence between them is exact.

V. GROUP STRUCTURE OF THE GENERALIZED
COURANT-SNYDER THEORY—ROTATION

GAUGE AND MODIFIED IWASAWA
DECOMPOSITION

In Sec. IV, we noted that initial conditions for the
envelope matrix w need to satisfy the symplectic condition;
otherwise they can be arbitrary. There are freedoms in the
initial conditions and thus the solutions for w. But the
transfer matrix M is independent from these freedoms,
which are thus gauge freedoms. A subset of the gauge
freedoms has the structure of the orthogonal group OðnÞ.
For a time-independent element c ∈ OðnÞ, we define the
gauge transformation c∶ ðw;PÞ↦ð ~w; ~PÞ as

~w ¼ cw; (50)

~P ¼ P

�
c−1 0

0 c−1

�
: (51)

Let us show that the transformed ~w and ~P also satisfy
Eqs. (36) and (39), respectively, and M is gauge invariant.
Multiplying Eq. (36) by c from the left to obtain the
governing equation for ~w,

d
dt

�
d ~w
dt

m − ~wRm

�
þ d ~w

dt
mRT þ ~wðκ − RmRTÞ

− ð ~wT ~wm ~wTÞ−1 ¼ 0; (52)

which is the same as Eq. (36) with w replaced by ~w.
According to Eq. (35), the μ matrix transforms as

~μ ¼ cμc−1:

Equation (39) thus can be reexpressed in the same form
using ~P and ~μ as

d
dt

~P ¼ ~P

�
0 −~μ

~μ 0

�
: (53)

From Eqs. (37) and (38), the S matrix and its inverse
transform as

~S ¼
�
c 0

0 c

�
S; (54)

~S−1 ¼ S−1
�
c−1 0

0 c−1

�
: (55)

Combining Eqs. (50) and (51), (54) and (55), we conclude
that M is invariant under the gauge transformation
c∶ ðw;PÞ↦ð ~w; ~PÞ, i.e., ~M ¼ M.
The OðnÞ gauge group introduces an equivalent class

½ðw;PÞ� for the decomposition of M using ðw;PÞ. The
dimension of this equivalent class is the dimension ofM as
a Spð2nÞ group. To specify S by w and _w, 2n2 numbers are
needed. To specify P ∈ UðnÞ, additional n2 numbers are
needed. The symplectic condition for S, ST3S1 ¼ ST1S3
brings ðn2 − nÞ=2 constrains on w and _w, and the OðnÞ
gauge freedom for the equivalent class is also ðn2 − nÞ=2.
The dimension of the decomposition is therefore

2n2 þ n2 −
�
n2 − n

2
þ n2 − n

2

�
¼ nð2nþ 1Þ; (56)

the same as the dimension of Spð2nÞ.
According to the polar decomposition theorem, any

nondegenerate square matrix X can be uniquely factored
into an orthogonal matrix O and a symmetric, positive-
definite matrix Q, i.e., X ¼ OQ. As a matter of fact, Q ¼ffiffiffiffiffiffiffiffiffi
XTX

p
and O ¼ XQ−1. Using this fact, at a fixed time t ¼

t1 we can always choose c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wTðt1Þwðt1Þ

p
w−1ðt1Þ such

that ~wðt1Þ ¼ cwðt1Þ is symmetric. With this gauge, the
canonical coordinate transformation at t ¼ t1 becomes

G ¼ ~P

�
~w−1 0

ð ~wR − _~wÞm ~w

�
; (57)
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which is in the form of a modified Iwasawa decomposition
(or pre-Iwasawa decomposition), whose importance in
phase space optics [37,38] and phase space quantum
mechanics [39] has been recently realized. The modified
Iwasawa decomposition is the unique decomposition of a
2n × 2n symplectic matrix G into the form

G ¼ P

�
Y 0

QY Y−1

�
; (58)

where P ∈ Spð2nÞ⋂SOð2nÞ ¼ UðnÞ and Y is symmetric.
The matrix Q is also symmetric, which is equivalent to the
condition YTQY ¼ ðQYÞTY for

�
Y 0

QY Y−1

�

to be symplectic. These facts are also true if the decom-
position is alternatively defined to be

G ¼
�

Y 0

QY Y−1

�
P: (59)

For a symplectic matrix, the modified Iwasawa
decomposition is equivalent to the well-known Iwasawa
decomposition for a semisimple Lie group [40].
Making ~w symmetric at t ¼ t1 fixes the OðnÞ gauge

because ~wðt1Þ is unique according to the polar decom-
position theorem. However, such a choice only makes ~w
symmetric at t ¼ t1. As in general gauge theories, we
would like to pick a gauge such that the envelope matrix
is symmetric for all t. To accommodate this desired
symmetry, we need to modify the governing equations,
especially the envelope equation. Let

wðtÞ ¼ c−1ðtÞuðtÞ;
uðtÞ ¼

ffiffiffiffiffiffiffiffi
βðtÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wTðtÞwðtÞ

q
;

c−1ðtÞ ¼ wðtÞu−1ðtÞ;

be the time-dependent polar decomposition of wðtÞ. Here
we use uðtÞ to denote this special ~wðtÞ, which is symmetric
and positive-definite for all t. The matrix uðtÞ is the
“symmetrized” wðtÞ and equals the square-root of the
generalized β function. We will recast the envelope
equation (36) in terms of β, as in the original Courant-
Snyder theory for one degree of freedom [1]. The difference
is that the procedure here has to be carried out in
matrix form.
We rewrite Eq. (36) as

ẅþ _wgþ wh ¼ w−Tm−1w−1w−Tm−1; (60)

g≡ ð _m − RmþmRTÞm−1; (61)

h≡ ðκ − RmRT − _Rm − R _mÞm−1: (62)

We symmetrize Eq. (60) by taking wT ½Eq:ð60Þ� þ
½Eq:ð60Þ�Tw to obtain a second order ordinary differential
equation for β,

β̈ − 2 _wT _wþ wT _wþ gT _wTwþ βhþ hTβ ¼ 2m−1β−1m−1:

(63)

It is a second-order equation for β because _wT _w and wT _w
can be expressed in terms of β and _β as follows. First note
that

_wT _w ¼ _uDuþ _u2 − uD2u − uD _u; (64)

wT _w ¼ uDuþ u _u; (65)

D≡ −_cc−1: (66)

Both _u and D in Eqs. (64) and (65) can be expressed as
functions of β and _β. For _u, from the definition of u we
obtain

_uuþ u _u ¼ _β; (67)

whose left-hand side can be viewed as a linear operator on _u
associated with u,

Luð _uÞ≡ _uuþ u _u: (68)

The properties of the linear operator L is discussed in
the Appendix. Since u ¼ ffiffiffi

β
p

is symmetric and positive-
definite, Lu can be invertible to give

_u ¼ L−1ffiffi
β

p ð_βÞ; (69)

where L−1 is the inverse of L defined in Eq. (A3).
To express D in terms of β and _β, we examine the

symplectic condition

wST3 ¼ S3wT; (70)

S3 ≡ − _wmþ wRm: (71)

Substituting in the polar decomposition w ¼ c−1u gives

LumuðDÞ ¼ umuDþDumu

¼ ðum _u − _umuÞ þ uðRm −mRTÞu: (72)

Therefore,

D ¼ L−1
umu½ðum _u − _umuÞ þ uðRm −mRTÞu�; (73)

where u ¼ ffiffiffi
β

p
and _u ¼ L−1

u ð _βÞ.
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Equation (63) is a second equation for β. Its solutions do
not uniquely determine the envelope matrix w, which is not
surprising considering that β ¼ wTw is a “symmetric”
version of w. However, due to the OðnÞ gauge freedom,
β contains enough information to determine the transfer
map M. In terms of u and c−1,

S ¼
�
c−1 0

0 c−1

�
Su; (74)

Su ≡
�

u−1 0

ðuR −Du − _uÞm u

�
: (75)

Even though the rotation matrix cðtÞ here is a function of t,
the transformed phase advance is defined the same way as
in the case of a global gauge, i.e.,

Pu ¼ P

�
c−1 0

0 c−1

�
: (76)

What is modified is the governing equation for Pu,

_Pu ¼ −Pu

��
0 μu

−μu 0

�
−
�
D 0

0 D

��
; (77)

μu ≡ ðumuTÞ−1: (78)

The second term on the right-hand side of Eq. (77) is due to
the dependence on t of the local gauge. At last, the
canonical coordinate transformation between z and ¯̄z is

¯̄z ¼ Gz ¼ PuSuz; (79)

and the transfer map is

Mðt0; tÞ ¼ S−1u P−1
u Su0: (80)

The symmetric decomposition furnished by Eqs. (75), (76),
and (80) is equivalent to the decomposition described in
Sec. IV, but it has three desirable features by comparison.
The canonical coordinate transformation PuSu in Eq. (79)
has the modified Iwasawa format for all t. It comprises a
curve of the modified Iwasawa decomposition, developed
from a dynamical point of view. The gauge freedom is
removed, and the dimension of the symplectic transfer map
is directly reflected by the dimension of the decomposition.
At every t, MðtÞ is specified by two n × n symmetric
matrices β and _β, and a UðnÞ matrix Pu. The dimension of
MðtÞ is thus ðn2 þ nÞ=2þ ðn2 þ nÞ=2þ n2 ¼ nð2nþ 1Þ.
Before ending this section, we emphasize that the

purpose of studying the gauge freedom is to simplify the
calculation of the symplectic map M and other lattice
functions and beam parameters. By investigating the gauge
freedom in the matrix envelope equation for w, we have
found that we can actually bypass this gauge freedom and

solve for the β matrix instead, which is symmetric and does
not have the gauge freedom. From Eqs. (46), (48), and (49),
the generalized Twiss parameters α and γ can also be
expressed in terms of β and _β. One important advantage of
using the β matrix is that the symmetric matrices β and _β
form a linear space, which makes the numerical algorithms
of searching for matched solutions for β much more
efficient than for matched solutions for w.

VI. STABILITY ANALYSIS—SPECTRAL
STABILITY AND STRUCTURAL STABILITY

The classical analysis by Courant and Snyder [1] on the
instability induced by sum resonance for uncoupled trans-
verse dynamics may give a wrong impression that coupling
effects are always deleterious. The coupled dynamics can
be stable or unstable depending on the specific configu-
ration of the lattice, but certainly not more unstable than the
uncoupled dynamics. The parameter space for a stable
coupled lattice is probably much larger than that of a stable
uncoupled lattice. In the conceptual design of the Möbius
accelerator [50] and N-rolling lattice [24,51], it was argued
that strongly coupled lattices are more preferable for high-
intensity beams. Strongly coupled systems have been
implemented in the spiral line induction accelerator
(SLIA) [52–58], which reached up to 10KA electron
current at 5 MeV beam energy. Our understanding of
the stability properties of coupled dynamics has been
limited by the theoretical tools available. In this section,
we demonstrate how the generalized Courant-Snyder
theory can be applied to study the stability of the most
general focusing lattice given by Eq. (11) with weak and
strong coupling components in realistic accelerators.
For a thorough understanding, it is necessary to distin-

guish two types of linear stability (or instability). The first
type is spectral stability, which means the linear dynamics
is stable for all initial perturbations. The system is spec-
trally unstable if there exists an initial condition that grows
without bond. In most contexts, the meaning of stability is
that of spectral stability. The second type is the so-called
structural stability (or strong stability). It mostly applies to
systems that are spectrally stable. A spectrally stable
system is structurally unstable if there is a spectrally
unstable system infinitesimally close by. Otherwise, the
spectrally stable system is also structurally stable. The well-
known result with respect to the stability properties of sum/
difference resonances for uncoupled lattices refers to the
structural stability under the influence of an infinitesimal
coupling component [1].
The spectral and structural stability of the transverse

dynamics in a periodic focusing lattice is determined by its
one-turn (or one-period) mapMðTÞ. The fact thatMðTÞ is a
symplectic matrix regulates the stability properties in a
significant way [41–45]. We list here the relevant results
without presenting details of the proof.

ANALYTICAL METHODS FOR DESCRIBING … Phys. Rev. ST Accel. Beams 17, 044001 (2014)

044001-9



The spectral property is determined by the eigenvalues
and their multiplicities. There are four possibilities:

(i) All eigenvalues are distinct and on the unit circle of
the complex plane.

(ii) All eigenvalues are on the unit circle. There are
repeated eigenvalues. But the geometric multiplicity
for all eigenvalues is the same as the algebraic
multiplicity.

(iii) All eigenvalues are on the unit circle. There are
repeated eigenvalues with algebraic multiplicity
greater than the geometric multiplicity.

(iv) There exists at least one eigenvalue not on the unit
circle.

Cases (iii) and (iv) are spectrally unstable, and Cases (i) and
(ii) are spectrally stable. For Cases (i) and (ii), we would
like to know whether they are also structurally stable. It has
been shown that Case (i) is structurally stable using the
symplectic nature of MðTÞ [41–45]. Case (ii) needs to be
subdivided into two categories:
(iia) For all repeated eigenvalues, the corresponding

eigenvectors have the same signatures.
(iib) There is at least one repeated eigenvalue whose

eigenvectors have different signatures.
According to the Krein-Moser theorem [41–45], Case (iia)
is structurally stable and (iib) is structurally unstable. For an
eigenvector ψ of MðTÞ, its signature is defined to be the
sign of its self-product hψ ;ψi ¼ ψ�iJψ . The product
between two eigenvectors ψ and ϕ in general is defined
to be hψ ;ϕi≡ ψ�iJϕ, where ψ�denotes the complex
conjugate of ψT .
To design a coupled lattice, it is desirable to be in Case

(i), which is both spectrally and structurally stable. As
mentioned previously, for the general Hamiltonian given by
Eq. (11), the parameter space satisfying this condition is
large enough for most applications. Given a periodic lattice,
we can search for a matched solution for β, as in the original
Courant-Snyder theory for one degree of freedom [1]. After
a matched β is found, the one-turn map is

MðTÞ ¼ S−10 PðTÞ−1S0;

which implies that MðTÞ is similar to PðTÞ−1. Their
eigenvalues and multiplicity are identical. Because PðTÞ
is a symplectic rotation, all of its eigenvalues are on the unit
circle, automatically ruling out the unstable situation in (iv).
The phase advance PðTÞ also determines the structural

stability of the system. To prove this assertion, let ψ and ϕ
be the eigenvectors of MðTÞ. Then S0ψ and S0ϕ are the
eigenvectors of PðTÞ−1, and

hS0ψ ; S0ϕi ¼ ψ�ST0 iJS0ϕ ¼ ψ�iJϕ ¼ hψ ;ϕi; (81)

where use had been made of the fact S0 is symmetric, i.e.,
ST0JS0 ¼ J. Equation (81) states that the signatures of
eigenvectors of PðTÞ−1 and thus its structural stability are
identical to that of MðTÞ.

These analyses lead to the important conclusion that the
phase advance matrix PðTÞ completely determines both the
spectral and structural stability of the general focusing
lattices. This fact can significantly simplify the stability
analysis in lattice design. For example, if the system is in
Case (ii), we only need to look at the signatures of the
eigenvectors of PðTÞ−1 to know if it is structurally stable.
According the Krein-Moser theorem, if the eigenvectors for
all repeated eigenvalues of PðTÞ−1 have the same signa-
tures, then the system is structurally stable. Otherwise, it is
structurally unstable. Let us show that this conclusion
recovers the classical results on the stability properties of
sum/difference resonances for uncoupled quadrupole latti-
ces as special cases. In this case, the phase advance matrix
is calculated to be [21,22]

PðTÞ−1 ¼

0
BBB@

cosϕx 0 sinϕx 0

0 cosϕy 0 sinϕy

− sinϕx 0 cosϕx 0

0 − sinϕy 0 cosϕy

1
CCCA;

where ϕx and ϕy are the one-turn phase advance in the
x− and y−directions. Its four sets of eigenvalues, eigen-
vectors, and signatures are

λxþ ¼ cosϕxþ isinϕx; ψxþ ¼ ð1;0; i;0ÞT; σxþ ¼−1;

(82)

λx−¼ cosϕx− isinϕx; ψx−¼ð1;0;−i;0ÞT; σx−¼ 1;

(83)

λyþ ¼ cosϕyþ isinϕy; ψyþ ¼ ð0;1;0; iÞT; σyþ ¼−1;

(84)

λy−¼ cosϕy− isinϕy; ψy−¼ð0;1;0;−iÞT; σy−¼ 1:

(85)

Resonance occurs when two or more eigenvalues collide,
which has four possibilities:
(a) Self-resonance in the x-direction. ϕx ¼ nπ

and λxþ ¼ λx− ¼ �1.
(b) Self-resonance in the y-direction. ϕy ¼ nπ

and λyþ ¼ λy− ¼ �1.
(c) Sum resonance. ϕx þ ϕy ¼ nπ, λxþ ¼ λy−

and λx− ¼ λyþ.
(d) Difference resonance. ϕx − ϕy ¼ nπ, λxþ ¼ λyþ,

and λx− ¼ λy−.
Case (a) is structurally unstable because σxþ and σx− are
different. Case (b) is structurally unstable for the same
reason.
For the sum resonance at the repeated eigenvalue

λxþ ¼ λy−, the signatures σxþ and σy− of the corresponding
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eigenvectors have different signs. The sum resonance is
thus structurally unstable. For the difference resonance at
the first repeated eigenvalue λxþ ¼ λyþ, the corresponding
eigenvectors ψxþ and ψyþ have the same signature. This is
also true at the second repeated eigenvalue λx− ¼ λy−.
The difference resonance is thus structurally stable. These
results are well-known previously [1], but recovered here as
a special case of a more general criterion based on the
generalized phase advance and the Krein-Moser theorem
[41–45]. We expect that the more general stability criterion
expressed in terms of the phase advance matrix PðTÞ
to be a powerful tool for future lattice design with strong
coupling.

VII. CONCLUSIONS AND FUTURE WORK

We have presented in this paper a detailed derivation of
the generalized Courant-Snyder theory for the most
general linear focusing lattices with quadrupole, skew-
quadrupole, dipole, and solenoidal components, as well
as torsion of the fiducial orbit and variation of beam
energy. The theoretical structure of the theory in terms of
gauge freedoms and group decomposition were described.
We have also demonstrated the application of the theory
in stability analysis for strongly and weakly coupled
lattices. In addition to being more realistic, the most
general Hamiltonian in Eq. (11) enables a much larger
parameter space for designing strongly coupled lattices
that are spectrally and structurally stable. The generalized
Courant-Snyder parametrization scheme developed here
provides an effective tool to study the coupled dynamics
and to discover more optimized lattice design in the
larger parameter space of general focusing lattices. The
formalism also sets the theoretical foundation for inves-
tigating collective phenomena in high-intensity beams,
such as the self-consistent solutions of the Vlasov-
Maxwell equations in phase space including strong
self-field effects that can couple the transverse dynamics
[59–63].
As mentioned in Sec. IV, the theoretical framework

developed here is valid for a linear system with any number
of degrees of freedom. In particular, we can apply it to the
3D coupled dynamics, which includes the sychrotron
oscillation in RF cavities, and the linear coupling between
transverse and longitudinal dynamics as in the recent
investigations of emittance change [64–66]. In this case,
n ¼ 3 and the focusing matrix κðtÞ in Eq. (11) becomes a
3 × 3 matrix which describes both sychrotron and betatron
oscillations as well as possible coupling between them. The
envelope matrix w is 3 × 3 and satisfies Eq. (36) with R, m
and κ being 3 × 3 matrices. The Twiss parameters α, β, and
γ are 3 × 3 matrices, the symplectic matrix M is 6 × 6, and
all the equations they satisfy are the same as in the case of
2-degrees of freedom. Studies in these directions will be
reported in future publications.
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APPENDIX: LxðyÞ
In this Appendix, we derive the mathematical properties

of the linear transformation used in Eqs. (68) and (72). Let
A and X denote n × n matrices. For a symmetric, positive-
definite matrix A, define the linear function associated with
A on X as

LAðXÞ≡ AX þ XA:

We prove that LA is invertible. It is enough to show that LA
is injective, i.e., LAðXÞ ¼ 0 only if X ¼ 0. Let X be in the
kernel of LA, i.e.,

LAðXÞ ¼ 0: (A1)

Since A is symmetric, the eigenvectors of A form a basis for
vectors in Rn. Expressed in this basis, Eq. (A1) is

λuvTXuþ λvvTXu ¼ 0; (A2)

where u and v are any pairs of vectors in the basis, and λu
and λv are the corresponding eigenvalues, respectively.
Because the eigenvalues of a positive-definite matrix are
positive, Eq. (A2) is possible only when vTXu ¼ 0. This
proves that LA is invertible. In terms of its components in
this basis, L−1

A is given as

uTXv ¼ uTYv
λu þ λv

; (A3)

where Y ¼ LAðXÞ.
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