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The emittance of high brightness electron sources, particularly field emitters and photocathodes but also
thermionic sources, is increased by surface roughness on the emitter. Such structure causes local field
enhancement and complicates both the prediction of emittance and the underlying emission models on
which such predictions depend. In the present work, a method to find the emission trajectories near regions
of high field enhancement is given and applied to emittance predictions for field, photo, and thermal
emission for an analytically tractable hemispherical model. The dependence of the emittance on current
density, spatial variation, and acceleration close to the emission site is identified and the impact of space
charge discussed. The methodology is extensible to field emission from close-spaced wirelike structures, in
particular, and extensions to that configuration are discussed. The models have application to electron
sources for high frequency vacuum electronics, high power microwave devices, and free-electron lasers.
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I. INTRODUCTION

For accelerators and electron devices, the usefulness of a
high brightness electron beam is constrained by its emit-
tance [1], of which that portion due to the cathode, also
known as “intrinsic emittance,” is of increasing importance.
Its quantification and prediction, particularly for field and
photoemission sources, is complicated by emission non-
uniformity and geometric effects. Applications for which
the reduction of intrinsic emittance is paramount include,
but are not limited to, high frequency vacuum electro-
nics (VE) [2–5], high power microwave devices [6–8],
free-electron lasers (FELs) [9–11], and electron beam
lithography [12–14]. Particularly for field and photo-
emission, emittance is strongly coupled to space charge
effects.
The present work analyzes a simple geometrical model

to identify how roughness and field enhancement increases

emittance, and to vet methods designed for the future
incorporation of space charge modifications. The organi-
zation of the present study is as follows. First, the
importance of emittance is assessed. Second, a formulation
of emittance valid near the cathode surface tailored to
identifying the impact of geometry using a simple analyti-
cal model of a hemisphere is presented. Third, the impact of
field enhancement on the initial (or “launch”) velocities
from which subsequent trajectories are determined is
estimated. Fourth, numerical estimates of a geometrical
array of emitters is considered, as is the manner in which
the methodology may be extended to wirelike (carbon
fiber) field emitters. Finally, a discussion of how the
methodology may be modified to treat the consequences
of space charge forces due to the emitted current, particu-
larly with respect to beam optics codes, is given.

II. EMITTANCE AND APPLICATIONS

The role of emittance depends strongly on the physics of
the device to which the beam is coupled. The challenges of
linear beam devices exemplify present concerns.
Improvements in high power and high frequency

vacuum electronics are associated with a reduction in

*kevin.jensen@nrl.navy.mil

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 17, 043402 (2014)

1098-4402=14=17(4)=043402(19) 043402-1 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevSTAB.17.043402
http://dx.doi.org/10.1103/PhysRevSTAB.17.043402
http://dx.doi.org/10.1103/PhysRevSTAB.17.043402
http://dx.doi.org/10.1103/PhysRevSTAB.17.043402
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


physical dimensions [15,16]. Very high power devices
require very large current densities, but thermionic cath-
odes are run < 1 A=cm2 because their lifetime shortens
[17]. Consequently convergence of the electron beam by
factors of 100 or greater are necessitated to achieve high
beam tunnel current densities if thermionic cathodes are
used, motivating interest in nonthermionic sources, for
which an understanding of the fundamental impact of
emittance on the beam dynamics is essential [18]. The
cross-sectional radius RðzÞ of the beam is governed by the
beam envelope equation [1,19]
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where B is the magnetic field, Ia is the beam current, and ε
is the emittance. The factors in which they appear are
referred to as the magnetic term, the space charge term, and
the emittance term, respectively. The other terms are: Io ¼
qmc2=αℏ ¼ 17.045 kA is a characteristic current [20]; the
relativistic factors β ¼ v=c and γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
are related

to the beam acceleration potential φb ≡ Vb=q by
γmc2 ¼ mc2 þ Vb, or

ðβγÞ2 ¼ Vb

mc2

�
2þ Vb

mc2

�
; (2)

so that βγ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vb=mc2

p
; if f is the frequency, then

2πfnR=c ¼ a zero of the Bessel function, with n an integer
related to mode, entailing that frequency is inversely
proportional to beam radius (higher order modes may be
sought for higher frequency VE applications [15]); and
lastly, the remaining factors have their usual interpretation
as in Table I. Brillouin flow entails the sum of the magnetic,
space charge, and emittance terms vanishing, and so the
“smooth flow” condition is

Ia
πR2

¼ Io
8π

�
2Vb

mc2

�
1=2

�
qB
mc

�
2
�
1 −

8mVbε
2

q2B2R4

�
; (3)

which is expressed as

JbeamðεÞ ¼ Jbeamð0Þf1 − δðεÞg. (4)

Consequently, emittance reduces Jbeam by δðεÞ ¼
ð8mVb=q2B2Þðε2=R4Þ. Because technology constrains
the magnetic field B magnitude, and Vb depends on the
platform, the pursuit of higher frequency and therefore
lower beam radius R makes emittance reduction increas-
ingly important as a consequence of δ ∝ ε2=R4, given that
circuit interception by high current density beams is
damaging to the small circuits of high power mmw-to-
THz VE devices [2].
For short wavelength [21,22] and high average power

[23,24] FELs, good gain requires the beam emittance to be
smaller than the photon beam emittance λ=4π [25]. The

importance of modeling the cathode emission physics and
electron dynamics to understanding the interplay between
emittance and space charge has therefore been advocated
for cathode research and development [22], particularly in
simulation codes [26]. The intrinsic emittance of the
photocathodes are emerging as the primary limitation to
realizing the short wavelengths and energy recovering linac
sources of x rays and makes describing the causes of
cathode emittance important [22,27], with surface rough-
ness emerging as a probable contributor [28–32].
Modeling emission and emittance at the cathode in

particle-in-cell (PIC) simulation codes entails needs.
First, a model of how emittance scales with feature
geometry would be advantageous but is generally absent
except for stylized geometries. Second, field emission
structures can have dimensions and apex shapes that
require a generalization of the point charge model
(PCM) for conical emitters [33,34], such as the carbon
fiber wires shown in Fig. 1. Third, space charge close to the
emitters, be they conical or fiberlike, affects trajectories in a
complex manner and necessitates a methodology that can
account for it. The present work treats the first complication
and does so in a manner that allows for the consideration of
the second, deferring the third to a separate study. The
present methodology has bearing on several emission
mechanisms from spherical and conical as well as wirelike

TABLE I. Fundamental constants. Units are characteristic of
emission phenomena: elementary charge [q], length [nm], time
[fs], energy [eV], and temperature [K] (for Kelvin).

Symbol Definition Value Unit

q Unit charge 1 q
c Speed of light 299.792 nm=fs
m Electron rest mass 5.68563 eV=c2

kB Boltzmann’s constant ð11604.5Þ−1 eV=K
ℏ Planck’s constant 0.658212 eV=fs
α Fine structure constant 1=137.036 � � �
Q αℏc=4 0.36 eV-nm

FIG. 1. Two single carbon fiber field emitters 35 μm diameter
and hundreds of μm in length.
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shapes, and therefore, the impact of surface structure on
emittance for field emission and photoemission cathodes of
VE and FELs can be addressed as well.
Apart from serving as an analytical model for emittance

predictions, the hemispherical, or “boss,” model that forms
the basis of the present study is additionally used to test
expectations arising from PIC simulations on the boss
geometry that are intended to vet the trajectory and impulse
models developed in Sec. IV. In particular, for boss
parameters designed to evoke similar conditions of the
wires of Fig. 1 (boss diameter of 35 μm emitting on the
order of a μA per wire with an apex field of roughly
3 GV=m and a work function of 4.9 eV), simulations using
MICHELLE [26,35] for a boss on a plane conductor using a
Fowler-Nordheim emission model [equivalent to Eq. (A9)]
are shown in Figs. 2 and 3. The equipotential contour lines,
field magnitudes, and trajectory shapes predicted by the
analytical model must be comparable (and will be shown to
be so). The PIC simulations reveal the importance of the
space charge modification: although the emission currents
from the wires result in a space-charge field reduction of
less than 0.4%, the resulting change in current is from
1.12 μA to 1.04 μA, or a reduction of 7%. A fuller account
of the modeling of the wires will be taken up in a separate
study, although a discussion of the connection to it will be
given here.
Related prior treatments of surface roughness are as

follows. Martinelli [36] considers an analytical 2D potential
variation: his concern with the launch directions and the
impact on the velocities is very similar to the approach here,
particularly with regards to the “impulse approximation”
discussed in Sec. IV B. Bradley et al. [28] theoretically

examined the mean transverse emission energy of a negative
electron affinity GaAs surface for which roughness was
treated as a sinusoidal variation. They drew a distinction
between a “field distortion effect” and a “slope effect,” the
former attributed to Martinelli and the later associated with
electron emission normal to the surface. The normal launch is
much like the “Ballistic approximation” considered in
Sec. IVA.Graves et al. [37] observe that roughness increases
the emittance of a copper photocathode by approximately a
factor of 2. For GaAs photocathodes, Karkare and Bazarov
[31] find that nanoscale roughness can increase emittance by
almost an order of magnitude, and their simulations reveal
that the inclusion of scattered electrons in the yield
affects agreement with their experimental measurements.
Krasilnikov [38] generalizes the 2D sinusoidal variation of a
surface to 3D, as well as examines the Lorenztian model of
Lau [39], to conclude that the increased electric field on the
surface can lead to an increase in thermal emittance com-
parable to 30%, and argues that space charge effects increase
it; his conclusions are supported by the present work. He
considers both “normal emission” (as done in the present
analysis) in which the electron is launched perpendicular
to the surface and the effects of an emission distribution
rather than a perpendicular to the surface launch for, in
particular, Cs2Te photocathodes for a rf photoinjector for the
European XFEL.
A hemispherical representation of a protrusion, analo-

gous to the hemispherical boss model here, was developed
by Zhang, Lau, and Gilgenbach [40]. Qian et al. [32]
consider a variation of the 2D sinusoidal surface roughness
model (the analysis was expanded upon by Dowell et al.

FIG. 2. Cross section of PIC simulation of field emission from
hemispherical boss including space charge for 1 μA currents.
Apex field is 3 GV=m, diameter is 35 μm. Space charge effects
cause small field reductions of < 0.4% but have a strong impact
on current (−7%). Red trajectories have currents 2 orders of
magnitude smaller than dark blue trajectories (visible from
on-axis emission).

FIG. 3. Same as Fig. 2 inset but showing larger side view with
overlaid equipotentials (thin dark blue lines) and field magnitudes
(thin light blue lines). The “notional” emission angle introduced
in Sec. III C and defined by Eq. (15) is comparable to the launch
origin of the yellow lines.

EMITTANCE, SURFACE STRUCTURE, AND ELECTRON … Phys. Rev. ST Accel. Beams 17, 043402 (2014)

043402-3



[41]). They argue that for photoemission, the planar
emittance should be augmented by a roughness term
according to ε2total ¼ ε2smooth þ ε2rough, where εsmooth is the

planar (Dowell-Schmerge) formula of Eq. (C3) and εrough ≈

ðρc=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XgF=3mc2

q
where Xg is a geometrical factor due

to surface roughness the sinusoidal model suggests is given
by Xg ≈ 2π2a2=3λp in the terms and units of the present
work. The ratio ðεrough=εsmoothÞ2 ≈ XgF=ðℏω − ϕÞ ¼
45.2% for F ¼ 50 eV=μm, a ¼ 100 nm, λp ¼ 10 μm,
λ ¼ 250 nm, and Φ ¼ 4.5 eV and ϕ ¼ 4.232 eV, numbers
that are compatible with the present analysis.
The emittance of a single tip and an array of Spindt-type

field emitters predicted by Jensen et al. [42,43] relied on a
combination of analytical (prolate spheroidal) geometries
and the point charge model to follow electrons to an
evaluation plane where the emittance was calculated by
numerically finding the trajectories. The present work
builds on those methods and endeavors to provide analytic
models from which dependencies can be ascertained.

III. EMITTANCE FOR A CURVED SURFACE

A. Moments and normalized emittance

Emittance is a measure of the ability to focus a beam as
well as its tendency to diverge as it propagates [44]. The
rms emittance εx is defined by [1]

εx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ihx02i − hxx0i2

q
; (5)

where the moments h…i are evaluated with respect to a
distribution of particles: if emission is cylindrically sym-
metric, then εx ¼ εy, and this assumption shall be made.
The factor x0 is the ratio of an electron’s transverse
deviation Δx after moving longitudinally forward Δz, or
x0 ¼ Δx=Δz ≈ vx=vz, where vx ¼ ℏkx=m and vz ¼ ℏkz=m
are the velocities in the x̂ and ẑ directions, respectively.
The emission distribution can be affected by how the

cathode is employed such that emission is not a priori
uniform (the beam can have density gradients at the edge),
resulting in other distributions having greater fidelity.
Examples of various distributions are Kapchinsky-
Vladimirsky (K-V), waterbag, parabolic, and Gaussian
profiles, and their consideration will result in total emittances
εtot that are larger than εx, or εtot ¼ Kεx where K can range
from 4 (K-V) to > 10 (Gaussian) [18,44]. Here, however,
complexities associated with the distribution are subsidiary.
A relatively standard account is as follows. For beams

that are rapidly accelerated at the cathode in high fields
(of the order MV=m for thermal emission, 20 MV=m
for photoemission, and > 1 GV=m for field emission),
vz ≈ v≡ βc. Beams are accelerated rapidly so that
vz ≫ vx, vy, or βz ≈ β, so that the “normalized” emittance
εn;rms ¼ βγεx is given by [45]

εn;rms ≡ ℏ
mc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ihk2xi − hxkxi2

q
(6)

and is invariant for linear forces. For uniform and rota-
tionally symmetric emission from a flat surface, hxkxi
vanishes, resulting in the emittance becoming a product of
the rms radius of the cathode ρc and the square root of the
beam’s energy spread: for thermionic emission, the energy
of a gas of electrons is 3kBT=2, or kBT=2 in each
orthogonal direction, so that for thermal emission from a
uniform, flat, circular area [compare Eq. (C1)]

εn;rms ¼
ρc
2

ffiffiffiffiffiffiffiffi
kBT
mc2

r
; (7)

a consequence of the Maxwell-Boltzmann distribution of
emitted (thermal) electrons and the basis for referring to the
“temperature” of an electron beam.
A similar expression is obtainable for photocathodes

if the energy spread of the beam is taken as a reason-
able approximation for the ratio of the transverse to
longitudinal energy spread: Lee et al. [46] find, using
vx=βγc ≈ ðβγÞ−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hExi=mc2

p
, that for photocathodes,

εn ≈ ρc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hExi=mc2

p
. As with an ideal gas, if

hExi ¼ hEi=3 ≈ ðℏω − ϕÞ=3, then the equation of Lee et al.
is similar to (but larger than) the more careful treatment of
Dowell and Schmerge [47] used here and given by
Eq. (C3).
Difficulties arise in this account near the surface of the

cathode where vz is comparable to vx and a range of vz
velocities exist. A curved surface entails that the field
enhancement varies over the surface, so the acceleration the
electrons experience depends on their emission location. It
is therefore desirable to bring the electrons from the
emission surface to a region (here termed the “virtual
anode”) where the usual emittance narrative is approxi-
mately valid. To do so, we shall begin with the simplest
potential profile that allows an analytical solution, then
demonstrate how to generalize it to treat emitters of far
more relevant shapes.

B. Potential and field for a hemisphere

The potential associated with metallic hemispherical
dome, or boss, is one of the simplest analytical models
of a surface feature that an emitted electron may experi-
ence, and is defined in spherical coordinates ðr; θÞ by

Vðr; θÞ ¼ Vo − Fr cos θ

�
1 −

�
a
r

�
3
�
−

2Qa
r2 − a2

; (8)

where Vo ¼ μþ Φ is the sum of the Fermi level μ and work
function Φ, F is the product of the electric field in the ẑ
direction and the unit (electron) charge q at the surface, and
the term containing Q ¼ αℏc=4 ¼ 0.36 eV-nm is the
image charge for a sphere of radius a. On axis, with
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r ¼ aþ z, a Taylor expansion of the image charge term
reveals 2aQ=ðr2 − a2Þ ≈ Q=z −Q=ð2aÞ þQz=ð2aÞ2 to
leading order; consequently, the usual image charge poten-
tial ViðzÞ≡ μþ Φ − Fz −Q=z can be retained with the
replacements

Φ → Φa ≡ Φþ Q
2a

; (9)

F → Fa ≡ F −
Q

ð2aÞ2 : (10)

The changes to the image charge potential are small: it is
therefore useful to assume the radii-modified work function
Φa and field Fa are implicit in the current density equations
(via the various emission models associated with thermal,
field, and photoemission [48]) from which the emission
probability factors shall be evaluated below. With that
assumption in mind, the “a” subscript will be suppressed.
The radial gradient of the potential evaluated at the

surface tracks the variation in field down the side of the
boss and is evaluated from Eq. (8) without the image charge
term, or

Fðr; θÞ ¼ −∂rVðr; θÞ ¼ Fo cos θ

�
1þ 2

�
a
r

�
3
�
; (11)

where Fo is taken to be the asymptotic, or far, field.
A peculiar feature of the boss potential is that the field
enhancement along the surface, Fða; θÞ ¼ 3Fo cos θ, is
independent of the radius of the boss, in contrast to conical
and ellipsoidal emitters for which the field enhancement
varies as the inverse radius of the apex of the emitter.
Importantly, the radial field component approaches its

asymptotic form of Fo cos θ as ða=rÞ3, so that when the
electron reaches r → 2a the field guiding the electron’s
path is within 25% of its asymptotic value, that is, the field
enhancement near the boss operates only for a short time
before the electron experiences a constant field Fo in the ẑ
direction. Therefore, the physics of the electron’s trajectory
may be accounted for by assessing the impulse contribution
to the electron’s initial velocity vo, and subsequently
following the trajectory in a constant field F → Foẑ, a
trivial problem in kinematics resulting in the coordinates
for trajectory being

xðtÞ ¼ a sin θ cosφþ vot sin θ cosφ; (12)

zðtÞ ¼ a cos θ þ vot cos θ þ
Fo

2m
t2; (13)

from which the velocities are easily found [yðtÞ is neglected
for brevity], from which it follows

x0ðtÞ ¼ vxðtÞ
vzðtÞ

¼ vo sin θ
vo cos θ þ ðFt=mÞ cosφ: (14)

The moments of Eq. (5) may now be assessed.

C. Notional and emission parameters

When comparing the thermal, photo, and field emission
mechanisms, using scales characteristic of each process
allows for their direct comparison, a theme that will
reappear in Sec. V. A natural scale is given by Eq. (14).
Therefore, distances shall be scaled compared to a and time
to τ≡mvo=Fo such that t ¼ pτ, in terms of which
βz ¼ ðpþ 1Þvo=c. This will entail forming estimates of
the launch velocity vo.
Electrons will not be uniformly emitted down the side of

the boss if the probability of emission P depends on surface
field P½FðθÞ�≡ PðθÞ. To develop a relation that relates the
variation of emittance to changes in the underlying param-
eters, usage of an emission angle that captures the variation
is required. Here, the concept of “notional emission area”
from field emission studies [49] is used: by defining the
total current from the boss as a product of the apex current
density and an area factor, the angle describing the area
factor gives a measure of the active, or emitting, region of
the boss, even though the notional area is smaller than the
actual or active area. Thus, the “notional” angle θo will
allow scaling relations to be established, although a more
refined estimate of emittance requires knowledge of the
actual change of emission across the boss using an emission
probability approach.
The notional emission angle θo is defined by equating

the area of a uniformly emitting cap characterized by θo to
the actual or integrated emission:Z

θo

0

2πa2 sin θdθ ¼
Z

π=2

0

2πa2PðθÞ sin θdθ; (15)

where PðθÞ is the probability of emission and is given by
the ratio of the current density at θ compared to the apex
value, or PðθÞ≡ J½F cosðθÞ�=J½F�where F is the apex field
and J is an emission equation [Eq. (A2)]. The related factor
η≡ cos θo is notationally more convenient than working
with θo. The product of the notional emission area with
the apex current density results in the total current from
a protrusion. Each emission process depends on field
differently, and so the related notional emission angle
parameter η≡ cosðθoÞ will differ for thermal, photo, and
field emission.
The initial, or launch, velocity vo of the electrons will be

taken as the average velocity hvi obtained from J ¼ qρhvi
where

vo ¼ hvi≡
R∞
0 ðℏk=mÞDðkÞfðkÞdkR∞

0 DðkÞfðkÞdk (16)
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in which DðkÞ is the transmission probability and fðkÞ is
the supply function in a one-dimensional treatment leading
to, for example, Eq. (A2). An analogous equation holds for
hv2i, needed to evaluate the standard deviation, and is
obtained by the replacement ℏk=m → ðℏk=mÞ2 in the
numerator of Eq. (16), such that the rms velocity is
vrms ¼

ffiffiffiffiffiffiffiffiffi
hv2i

p
¼ ðℏ=mÞ

ffiffiffiffiffiffiffiffi
hk2i

p
. The proportionality

between vo and hvi is developed in Sec. IV for a curved
surface; for a flat surface, they would be equal.
From the definition of PðθÞ, it is seen that Eq. (15) is the

ratio of a total current Iboss with its apex current density
JðFÞ: the integrand therefore indicates how much of the
emitted current comes from each differential ribbon of area
2πa2 sin θdθ, which, when integrated, gives the current
emitted within the polar angle θ, or

ΔðθÞ≡ IðθÞ
Iboss

¼ 1

1 − η

Z
θ

0

sin θ0Pðθ0Þdθ0 (17)

for which ΔðθÞ → 1 as θ → π=2, and is shown, along with
dΔ=dθ, for all three processes in Figs. 4 and 5.
Expressions for η, ΔðθÞ, hvi and vrms are now developed

for the thermal, field, and photoemission processes using
the emission equations for JFN, JRLD, and QEFD given by
Eqs. (A9), (A6), and (A12), respectively, for parameters
based on Table III (see Sec. V for more discussion of
parameters chosen).

1. Thermal emission

The field dependence resides in the Schottky factor
reduction of the work function ϕ ¼ Φ −

ffiffiffiffiffiffiffiffiffiffi
4QF

p
. Using

Eq. (A6) and letting b represent the characteristic energy
ratio, then

PTðθÞ ¼ exp½bð
ffiffiffiffiffiffiffiffiffiffi
cos θ

p
− 1Þ�; (18)

b ¼ β
ffiffiffiffiffiffiffiffiffiffi
4QF

p
; (19)

resulting in

ηt ¼ 1 −
2

b
þ 2

b2
ð1 − e−bÞ: (20)

The integrated current fraction is

ΔTðθÞ ¼ 1 −
1þ ðb ffiffiffiffiffiffiffiffiffiffi

cos θ
p

− 1Þeb
ffiffiffiffiffiffiffi
cos θ

p

1þ ðb − 1Þeb : (21)

The launch velocity and rms velocity are given by

vo ¼ hvi ¼ ð2kBT=πmÞ1=2; (22)

vrms ¼
ffiffiffiffiffiffiffiffiffi
hv2i

q
¼ ðkBT=mÞ1=2: (23)

2. Field emission

The field dependence is explicit in the current density.
Using Eq. (A9), then

PfðθÞ ¼ ðcos θÞ2−ν exp
�
b −

b
cos θ

�
; (24)

b ¼ BΦ3=2=F; (25)

resulting in, to a good approximation,

ηf ¼ bþ 3 − ν

bþ 4 − ν
: (26)

The integrated current fraction is, to a good approximation

ΔFðθÞ ¼ 1 − exp

�
−ðbþ 4 − νÞ

�
1

cos θ
− 1

��
: (27)
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FIG. 4. Integrated current ratio ΔðθÞ [Eqs. (21), (27), (33)]
evaluated for parameters of Table III. Dashed gray vertical lines
correspond to θo for each process, labeled “T,” “ω,” and “F,” for
circle (red line), square (green line), and diamond (blue line),
respectively.
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FIG. 5. Same as Fig. 4 but for dΔ=dθ.
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The launch velocity and rms velocity are approximately
given by

vo ¼ hvi ¼ ℏkF
m

�
1 −

Φ
3tobμ

�
2

; (28)

vrms ¼
ffiffiffiffiffiffiffiffiffi
hv2i

q
¼ ℏkF

m

�
3tobμ − Φ
3tobμþ Φ

�
2

; (29)

where ℏkF is recognized as the Fermi momentum.

3. Photoemission

The field dependence resides in the Schottky factor
reduction of the work function ϕ ¼ Φ −

ffiffiffiffiffiffiffiffiffiffi
4QF

p
. Using

Eq. (A12), then

PωðθÞ ¼ b−2ðb − 1þ
ffiffiffiffiffiffiffiffiffiffi
cos θ

p
Þ2; (30)

b ¼ ℏω − ϕffiffiffiffiffiffiffiffiffiffi
4QF

p ; (31)

resulting in

ηω ¼ 4b − 1

6b2
: (32)

The integrated current fraction is

ΔωðθÞ ¼ 1 − cos θ
6ðb − 1Þ2 þ 8ðb − 1Þ ffiffiffiffiffiffiffiffiffiffi

cos θ
p þ 3 cos θ

6ðb − 1Þ2 þ 8ðb − 1Þ þ 3
:

(33)

Evaluation of the launch and rms velocities is compli-
cated by the change in energy as the electron passes from
bulk to vacuum. As is commonly done (e.g., Ref. [47]), the
difference between the vacuum level and the conduction
band minimum, being the height of the barrier μþ ϕ, is
removed from the energy of the emitted electrons: the
velocities are calculated with the prescription of
E0 ¼ Eþ ℏω − ðμþ ϕÞ. Another complication is that
the photon energy ℏω appears in addition to the ener-
gies represented in b: consequently, it is convenient to
perform expansions in terms of the small quantity
ybðΦ=μÞ ¼ ðℏω − ϕÞ=μ and it is found that on the vacuum
(primed) side

v0o ¼ hvi0 ¼ ℏkF
m

�
ℏω − ϕ

3μ

�
1 −

ℏω − ϕ

8μ

��
1=2

; (34)

v0rms ¼
ℏkF
m

�
ℏω − ϕ

3μ

�
1 −

ℏω − ϕ

12μ

��
1=2

: (35)

The values of the initial velocity hvi, notional angle
factor η, and b factors are shown for typical values in

Table III; here and below, the more convenient notation vo
will be used in place of hvi.

D. Single boss emittance

For a quantity O defined on the surface of the boss, the
evaluation of hOi is obtained by

hOi ≈ 1

4π

Z
θo

0

�Z
2π

0

Oðθ;φÞdφ
�
sin θdθ; (36)

where θ is the polar angle and φ the azimuthal angle. From
the forms of xðtÞ and x0ðtÞ in Eqs. (12) and (14), we find

hxðtÞ2i ¼ 1

12
ð2þ ηÞð1 − ηÞ2ðpτvoÞ2; (37)

hx0ðtÞ2i ¼ 1

4
SðηÞ; (38)

hxðtÞx0ðtÞi ¼ 1

4
pτvoRðηÞ; (39)

where

SðxÞ ¼
�
pþ x
pþ 1

�
ð2pþ x − 1Þ − 2p ln

�
pþ x
pþ 1

�
; (40)

RðxÞ¼1

2
½ðp−xÞ2−ðp−1Þ2�þðp2−1Þ ln

�
pþx
pþ1

�
: (41)

For the nonrelativistic case (γ ≈ 1) the emittance is then

εx ¼
1

4
ffiffiffi
3

p βτpvo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ηÞ2ð2þ ηÞ2SðηÞ − 3RðηÞ2

q
: (42)

Although Eq. (42) is analytic, it is not computationally
useful: identifying the asymptotic (large p) behavior is
difficult and, more importantly, calculations are problem-
atic because both terms in the radical are separately very
large but close in value, introducing a possibility for round-
off error. A formulation that clearly gives the asymptotic
behavior is as follows. Introduce f and g such that

hx2i ¼ 1

4
NðvopτÞ2

Z
θo

0

gðθÞdθ; (43)

hx02i ¼ N
4p2

ðvopτÞ2
Z

θo

0

fðθÞ2gðθÞdθ; (44)

hxx0i ¼ 1

4
Nvopτ

Z
θo

0

fðθÞgðθÞdθ; (45)

where fðθÞ ¼ p=ðpþ cos θÞ, gðθÞ ¼ ðsin θÞ3=N, and N ¼
ð1 − ηÞ2ð2þ ηÞ=3 such that f ≤ 1 and g is normalized. It
follows hf2i − hfi2 ¼ hf − hfii2. Define hfi≡ fo. Then
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ε2x ¼
�
Nvoτ
4

�
2
Z

θo

0

ðfðθÞ − foÞ2gðθÞdθ; (46)

fo ¼
Z

θo

0

fðθÞgðθÞdθ: (47)

An approximation of fo makes use of a Taylor expansion
of fðθÞ about cos θ ¼ s ≈ 1: each term in the expansion
can be analytically integrated given the form of gðθÞ.
Retention of only the first term in the expansion yields
the approximation

1 − fo ¼
p
N

Z
1

η

1 − s2

pþ s
ds ≈

3ð1þ ηÞ2
4ðpþ 1Þð2þ ηÞ : (48)

Employing the same approach in the consideration of
Eq. (46) results in

hðf − foÞ2i ¼
f2o
N

Z
1

η

ð1 − s2Þðs − saÞ2
ðpþ sÞ2 ds (49)

≈
f2oð1 − ηÞ2ð3η2 þ 18ηþ 19Þ

80ðpþ 1Þ2ð2þ ηÞ2 ; (50)

where

sa ¼ p

�
1 − fo
fo

�
≈
3

4

�
1þ η

2þ η

�
2

(51)

marks the location (other than s ¼ 1) where the integrand
vanishes. Assembling the components gives the leading
approximation to εn;rms as

εn;rms ¼
1

4
βτvoN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
θo

0

ðfðθÞ − foÞ2gðθÞdθ
s

(52)

≈ Cofoð1 − ηÞ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3η2 þ 18ηþ 19

q
; (53)

where

Co ≡
ffiffiffi
5

p

240

�
τv2o
c

�
: (54)

Observe that fo → 1 as p → ∞, which is important, as it
shows that εn;rms is asymptotically independent of p and
therefore time.
The form of Eq. (53) allows three observations to be

immediately made. First, because τ ¼ mvo=F, the emit-
tance scales as v3o=F. Second, because the emittance varies
as ð1 − ηÞ3 and η is near unity for field emission, field
emission sources have small emittance which decreases
rapidly as the field decreases, and as a consequence, field
emission sources are very bright. Third, for emission from a
single boss emitter, the emittance is independent of the boss

radius—rather, the length scale is set by mc2=F—and
dependent on the product of two factors: the first is a
coefficient Co ∝ v3o=F and the second is a factor depen-
dent only on η. The behavior of the latter is indicated in
Figs. 6, 7, and 8 for thermal, photo, and field emission
parameters, respectively, in which the ratio εn;rms=Cofo,
calculated directly fromEq. (52), is shown as a function ofF
for fields representative of each technology; although
Eq. (52) is well approximated by Eq. (53) (as shown in
Fig. 9 for representative fields of each emissionmechanism),
the red line also shown is the ratio of Eq. (53) with Cofo to
show the approach to the asymptotic limit. The representa-
tive fields are ½F�T ¼ 0.1 eV=μm, ½F�ω ¼ 10 eV=μm, and
½F�F ¼ 1 eV=nm, for thermal, photo, and field emission,
respectively, as indicated by the subscript: the use of
representative fields allows the x axis in the figures to be
standardized, as in F ¼ χ½F�x for “x” representing the
emission mechanism and χ ranging from 1 to 10.
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FIG. 6. Behavior of the ratio εn;rms as calculated using Eq. (52)
with Cofo as calculated using Eq. (54) for parameters typical of
thermal emission in Table III. The (red) solid line labeled
“Leading Order” refers to the ratio of Eq. (53) with Eq. (54),
or ½ð1 − ηÞ3
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FIG. 7. Same as Fig. 6 but for parameters typical of photo-
emission in Table III.
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In terms of χ ¼ F=½F�x, the magnitude of Co for each
emission mechanism is considered for energies (e.g., kBT,
μ, and Φ) measured in [eV], and using the launch velocity
vo for each process, it is found

Co½T� ¼ 6.62 × 10−5
ðkBTÞ3=2

χ
; (55)

Co½ω� ¼ 7.095 × 10−5
ðℏω − ΦÞ3=2

χ
; (56)

Co½F� ≈ 3.686 × 10−8
μ3=2

χ
; (57)

where Co is measured in [mm-mrad] and, for field emission
½F�, only the leading order term is shown, being ∼100 times
larger than the next order term. These three equations

coupled with Figs. 6, 7, and 8, specify the single boss
emittance for the T, F, and ω mechanisms.

E. Array of bosses emittance

Although realistic thermionic and photoemission surfa-
ces have surface features varying in size and randomly
placed, and field emitters can be made in triangular arrays
rather than on a square lattice, for the analytic model,
assume that first, the M2 protrusions are uniformly sized;
second, that the protrusions are located on a square array
with a pitch of l (distance from boss to boss) so that the area
of the array is ½ðM − 1Þl�2 ≡ L2; and third, that l is
sufficiently large that to a good approximation, the trajec-
tories of a single boss are unaffected by its neighbors. The
consequences of not making the third approximation will
be the subject of a separate study.
The x location of the bosses Xij is obtained by appending

the location of the center to xðtÞ and so

xðtÞ → XijðtÞ ¼ xij þ xðtÞ; (58)

xij ¼ ð2i −M − 1Þl; (59)

such that ðM − 1Þl ¼ L=2 and the manner in which h…i is
evaluated is now taken to be

hXijðtÞ2i ¼
1

4πM2

XM
i¼1

XM
j¼1

Z
XijðtÞ2dΩ; (60)

where the dΩ integration is as in Eq. (15). Finally, assume
that L2 ≫ hxðtÞ2i, leading to the independence of Xij on j.
As a consequence of hxiji ¼ 0 we have

hXijðtÞ2i ¼ hx2iji þ hxðtÞ2i (61)

¼ 1

3
ðM2 − 1Þl2 þ hxðtÞ2i; (62)

where ðM2 − 1Þl2=3 ¼ ðM þ 1ÞL2=12ðM − 1Þ ≈ L2=12, a
result anticipated from similar field emitter array evalua-
tions [33]. The first term dominates, and therefore hXijðtÞ2i
is independent of p to leading order and is of the size
L2=12. As with the single boss emittance, it is seen that the
array emittance is the product of a coefficient Lvo=12c and
a factor only dependent on η.
In the case of thermionic emission, the form of εarray

harkens to Eq. (7). Insofar as ρc ≈ L=
ffiffiffi
π

p
and

vo ¼
ffiffiffiffiffiffiffiffi
2=π

p
vrms, then

εTarray
εT1D

¼ 1 − η

6

ffiffiffiffiffiffiffiffiffiffiffi
2þ η

p ffiffiffi
2

p
; (63)

where εT1D is given by Eq. (C1). The ratio is approximately
0.32 over the range of fields characteristic of thermionic
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FIG. 8. Same as Fig. 6 but for parameters typical of field
emission in Table III.
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FIG. 9. Behavior of the ratio εn;rms as calculated using Eq. (52)
with Co as a function of the time parameter p ¼ t=τ for the
representative fields ½F�x of each mechanism (x ¼ T, F, ω). The
(red) solid line labeled “Leading Order” refers to the ratio of
Eq. (53) with Co of Eq. (54).
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emission. This finding emphasizes an important distinction:
intrinsic emittance in the presence of surface roughness has
two components, the first due to the well-known transverse
velocity spread in the emission process itself which gives
rise to εtherm, and the second due to surface curvature and
the launching of electrons normal to a curved surface giving
rise to εarray. Curvature therefore increases emittance as
total emittance is the square root of the sum of the squares.
The effect will be magnified below, where vo shall be
altered to account for surface fields providing acceleration
near the boss apart from the background field.
In the case of field emission, for which the flat surface

emittance is given by Eq. (C2), and simplifying by
neglecting small terms, it is found

εFarray
εF1D

≈
1 − η

6

ffiffiffiffiffiffiffiffiffiffiffi
2þ η

p �
3πtobμ
4Φ

�
1=2

; (64)

where b is given in Eq. (25). For the field emission
parameters of Table III, the ratio is 0.1408. Observe,
however, that unlike either thermal emission or photoemis-
sion, the emission will appear as an array of emission sites
smaller in size than either the hemispherical bosses or their
pitch, which may allow for advantageous alterations of the
emittance phase space [50], in addition to the other
opportunities that field emission cathodes present [51] that
are precluded for both thermionic and photoemission.
In the case of photoemission, for which the flat surface

emittance is given by Eq. (C3), it is seen that

εωarray
εω1D

¼ 1 − η

6

ffiffiffiffiffiffiffiffiffiffiffi
2þ η

p �
2π

ℏω − Φ
ℏω − ϕ

�
1=2

: (65)

For the photoemission parameters of Table III, the ratio is
0.3384. For a cesiated surface (Φ ¼ 1.8 eV) in the green
(λ ¼ 532 nm), the ratio becomes 0.3638. Curvature there-
fore contributes to the larger experimentally measured
emittance found by Dowell et al. [47] to be roughly a
factor of 2 larger than the theoretical value, other causes of
the increase being space charge forces [52] and sources of
nonuniform emission. For multialkali antimonide photo-
cathodes, simple roughness models have been used with
success to model emittance data [53] and have been
invoked in explaining experimentally larger emittance
values measured after cleaning processes thought to
increase surface roughness for copper [32].
It is seen that compared to the 1D emittance equations,

each process is the product of a factor ð1 − ηÞ ffiffiffiffiffiffiffiffiffiffiffi
2þ η

p
=6

(smallest for field emission because η is close to unity) with
a process-dependent term varying between

ffiffiffi
2

p
(thermal)

and > 5 (field). For Table III parameters, the values of
104 × ðε1D=ρcÞ are 2.25, 8.34, and 2.14 for thermal, field,
and photoemission, respectively. The final contribution that
affects the emittance, considered next, is the impulse
contribution to the launch velocity.

IV. SURFACE LAUNCH VELOCITIES

A. Integration of trajectories

The “ballistic” trajectories entailed by Eq. (12) presume
that the field is constant and in the ẑ direction; the field on
the surface of the boss given by Eq. (11) shows that a field
in the ρ̂ direction Fρ is strong and present, and that Fz near
the apex is 3× background, as shown in Figs. 10 and 11,
compared to the surface field, as the radial distance r
increases, Fðr; θÞ=Fða; θÞ ¼ 1þ 2ða=rÞ3, so that the field
has declined to within 10% of background by r ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p
¼ 2.7 as suggested by the flattening of the gray

equipotential lines indicated in Figs. 12, 13 and 14. The
effects of fields at the surface of the boss can therefore be
approximated by providing an impulse to the initial, or
launch, velocity of the electron and making the replacement
vo → σvo in the calculation of emittance.
The method to approximate σ is best determined rewrit-

ing the ballistic equations of Eq. (12), but work with
ρðtÞ2 ¼ xðtÞ2 þ yðtÞ2, so that the positions are calculated
according to a variant of Simpson’s rule given by

~rðtþ δtÞ ¼ ~rðtÞ þ aδt
2voτ

½~vðtþ δtÞ þ ~vðtÞ�; (66)

where ~rðtÞ ¼ ½ρðtÞ; zðtÞ� and where the velocities are
updated according to

~vðtþ δtÞ ¼ ~vðtÞ þ δt
m

~F½ρðtÞ; zðtÞ�: (67)

Observe that Eqs. (66) and (67) are standard methods for
finding trajectories for small δt when ~Fðρ; zÞ varies.
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FIG. 10. Transverse field Fρ for a boss normalized with respect
to the background field Fo. On the surface of the boss,
Fρ=Fo ¼ 3 sin θ cos θ. The boss is the green hemisphere in the
lower left.
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B. Impulse approximation

In the case of constant forces, the approximation behind
Eqs. (66) and (67) are exact, allowing a useful representa-
tion of the ballistic approximation to be obtained by
replacing t → 0 and tþ δt → pða=voÞ≡ pδ; when
coupled with the initial positions and velocities on the
surface of the boss and ~F → Foẑ we find

ρðpδÞ
a

¼ ð1þ p cos θÞ sin θ; (68)

zðpδÞ
a

¼ ð1þ p cos θÞ cos θ þ 1

2
κp2; (69)

where

κ ≡ Foa
mv2o

¼ Foδ

mvo
(70)

is a ratio of the energy scale associated with the field and
that associated with the initial kinetic energy. The “impulse
approximation” is then tantamount to finding σ such that

1

2
mv2oðσ2 − 1Þ ¼ Vð0; aÞ − Vð0; naÞ; (71)
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 / a

FIG. 12. Trajectories associated with thermal emission from a
hemispherical boss without (dashed lines) and with (solid lines)
the impulse approximation, compared to numerically evaluated
trajectories (solid dots) for thermal emission using Table III
parameters. The (purple) last line is launched from the notional
angle θo. Gray lines correspond to equipotentials equally spaced
in energy.
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FIG. 13. Same as Fig. 12 but for photoemission.
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FIG. 14. Same as Fig. 12 but for field emission.
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FIG. 11. Longitudinal field Fz for a boss normalized with
respect to the background field Fo. On the surface of the boss,
Fz=Fo ¼ 3 cos2 θ. The boss is the green hemisphere in the
lower left.
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where Vðx; aÞ is the potential energy, and z ¼ na is
sufficiently far above the boss apex that the potential is
reasonably flat there. We find

σ2 ¼ 1þ 2κ

n2
ðn3 − 1Þ: (72)

Taking n ¼ 2 as suggested by Figs. 13 and 14 gives
σ2 ¼ 1þ 7

2
κ. Including the impulse approximation

into the ballistic equations then amounts to making the
replacement

1þ p cos θ → 1þ σp cos θ (73)

in Eqs. (68) and (69) to account for the increased launch
velocity associated with a curved surface. The procedure is
general: although applied to a boss here for analytical
convenience, the method can be extended to equipotentials
associated with more complex geometries, as shall be the
subject of a separate study. The values of η, σ, and κ for the
emission mechanisms are shown in Table III for typical
parameters using the aforementioned approximations.

C. Performance of impulse approximation

The impulse approximation assumes that the trajectories
are given by the ballistic equations of Eqs. (68) and (69)
where the initial velocities are augmented as prescribed by
Eq. (73). The performance of this approximation is com-
pared to solving the equations of motion numerically
through an iterated use of Eqs. (66) and (67) for small
values of δt for thermal (Fig. 12), photo (Fig. 13), and field
emission (Fig. 14) conditions with parameters as specified
by Table III.
In each figure, the ballistic equations without (dashed

lines) and with (solid lines) the impulse approximation are
compared to the numerically calculated trajectories (solid
black dots) such that the last trajectory (purple line with the
largest initial θ) is launched from θ ¼ θo for each process.
Clearly, the impulse approximation significantly corrects
the error that would otherwise be associated with the
ballistic approach. The fields associated with field emission
are so large that seeing the differences on the same scales of
the thermal and photo trajectories is difficult: a longer view
is shown in Fig. 15 but is such that the vertical and
horizontal axes are using different scales which also causes
the hemispherical boss to appear flattened. In all cases the
impulse approximation performs reasonably well for tra-
jectories whose launch θ < 60°, which is all the trajectories
for field emission, but approximately half the current for
thermal and photoemission, as suggested by Fig. 4.
Moreover, the findings compare well with the PIC simu-
lations of Figs. 2 and 3.
Because the outer impulse approximation lines

have smaller transverse velocities (vρ) than the numeri-
cally evaluated trajectories, it is seen that the impulse

approximation serves as a lower limit to the estimation of
emittance from a hemispherical structure. Therefore,
Eq. (63) allows for the conclusion

ε≳ εarray ≡
ffiffiffiffiffiffiffiffiffiffiffi
2þ η

p
ð1 − ηÞLσvo

12c
: (74)

V. NUMERICAL RESULTS

A. Characteristic array emittances

Emission mechanisms are varied and so therefore will be
the parameters associated with them, making comparisons
challenging. Comparisons will consequently be based on
characteristic operating conditions for representative con-
figurations of each technology for an array of hemispheri-
cal bosses. Three quantities shall be evaluated for each case
using a representative value of L and the remaining
parameters as given in Tables II and III: (i) the numerical
value of the array emittance εarray evaluated according to
Eq. (74), (ii) a comparison of εarray the corresponding 1D
equations of Appendix C, and lastly, (iii) a comparison of
εarray to a reference flat thermionic emitter 0.2 cm in radius
operated at T ¼ 1273 Kelvin as evaluated by Eq. (C1), for
which the emittance is approximately 0.463 mm-mrad.

1. Thermal emission

For thermionic emission characteristic of dispenser
cathodes used in high frequency microwave amplifiers,
an extraction grid at hundreds of volts is positioned a
fraction of a millimeter above the cathode surface. If a
space charge limited current [see Eq. (B1)] of JCL ¼
2 A=cm2 for an anode-cathode gap of D ¼ 250 μm, then
Va=D ¼ 0.2638 eV=μm [54]. A background field of Fo ¼
0.333 eV=μm is therefore away from the space charge limit
but comparable to extraction grid technology. If the cathode
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FIG. 15. Same as Fig. 14 but with the axes adjusted to see
trajectories well away from the boss structure.
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radius is 0.2 cm, then the current is 250 mA. A square of
size L ¼ 0.3536 cm has the same area. Machining of the
cathode surface produces feature sizes comparable to a few
μm and larger [55].
For a thermionic emitter 0.3536 cm on a side,

εarray ¼ 17.0 mm-mrad, which is 21.34 times larger than
the 1D emittance, and 36.6 times larger than the reference
emittance.

2. Field emission

A field emitter array used for a 100 W traveling-wave
tube produced a current of 100 mA from a cathode diameter
of 1 mm using 50,000 emitters spaced 4 μm apart [16]. If
more than 40% of the emitters are responsible for all of the
current from tips 5 nm in apex radius, then the apex fields
are comparable to F ¼ 8 eV=nm, a third of which is
Fo ¼ 2.67 eV=nm. A square of size L ¼ 886 μm has
the same area.
For an array of field emitter protrusions 886 μm on a

side, εarray ¼ 2.30 mm-mrad, which is 3.11 times larger
than the 1D emittance, and 1.60 times larger than the
reference emittance.

3. Photoemission

The first operation of a photoinjector at high average
power [56] used a multialkali antimonide photocathode
illuminated by a 527 nm laser in a field of 26 MV=m,
suggesting Fo ¼ 26 eV=μm, and the laser spot size on the
cathode was 3–5 mm FWHM at that time. Such fields are
similar to surface fields in more recent photoinjectors for
x-ray FELs of 24 MV=m [57]. Contemporary studies of
metal photocathodes using a 1 mm diameter beam suggest
surface roughness on the order of a μm [58] [59]. A square
of size L ¼ 886 μm has a comparable area.
For a photoemitter 886 μm on a side, εarray ¼

16.0 mm-mrad, which is 50.4 times larger than the 1D
emittance, and 0.685 times smaller than the reference
emittance.

B. Variations on characteristic conditions

As a consequence of the dependences implicit in the
notional angles, the imparted impulses, and the launch
velocities, the array emittance will change as conditions on
the cathode change. The dependence of the various
processes on their respective emission mechanisms (e.g.,
field for field emission) can be compared as follows.
The reference emittances will be taken as those found

above, namely, 17.0 mm-mrad (thermal), 2.30 mm-mrad
(field), and 16.0 mm-mrad (photo). Changes to those
reference values are considered as a function of the
variation of its characteristic parameter x where x is the
parameter with relation to a reference value. For thermal
emission, x ¼ T=ð1200 KÞ and x ¼ 1 is the reference case.
For field emission, x ¼ F=ð6 eV=μmÞ, and x ¼ 1.33 is the
reference case. For photoemission, x ¼ λ=ð180 nmÞ, and
x ¼ 1.38 is the reference case. Because the reference cases
were typical cases, the scale factors for field emission and
photoemission (6 eV=μm and 180 nm, respectively) were
adjusted so that the intended range of x values would not
become unphysical or result in disallowed values. With the
chosen scalings, values of x ¼ 0.5, 0.75, 1.0, 1.25, and 1.50
were considered to show the variations to be expected in
εarray; the results are shown in Fig. 16.

TABLE II. Emission parameters. Terms on which current
density depends. Ry is the Rydberg energy and characteristic
of atomic scales.

Symbol Definition Relation Unit

kF Fermi wave number � � � 1=nm
μ Chemical potential ℏ2k2F=2m eV
ρo Number density k3F=3π

2 #=cm3

V q× potential qφ eV
F q× E field qE eV=nm
β Inverse temperature 1=kBT eV−1
Φ Work function 4.5 (Cu) eV
ϕ Schottky lowered Φ Φ −

ffiffiffiffiffiffiffiffiffiffi
4QF

p
eV

vo Launch velocity Eq. (16) � � �
τ Characteristic time mvo=F � � �
a Boss radius � � � nm
η Notional cosine cosðθoÞ � � �
Ry ð1=2ÞmðαcÞ2 13.606 eV
A q=16π2ℏ 1.5414 × 10−6 Amp=eV
B 4

ffiffiffiffiffiffiffi
2m

p
=3ℏ 6.8309 1=nm-eV1=2

ARLD 2qmðkB=2πℏÞ2 120.17 Amp=K2 cm2

ζð2Þ Riemann ζ function π2=12 � � �

TABLE III. Parameters and values. Representative metallic
parameters (nominally based on copper). Numbers in the “Units”
column reference equations in the text. A dash “� � �” denotes term
not needed for η, σ, κ, or Δ.

Term Unit Thermal Field Photo

a nm 2000 5 200
F eV=nm 0.001 8 0.075
T K 1200 � � � � � �
μ eV � � � 7 7
Φ eV � � � 4.5 4.5
λ nm � � � � � � 250
ν A10 � � � 0.77282 � � �
b 19, 25, 31 0.36696 8.1509 2.3978
η 20, 26, 32 0.1119 0.9121 0.2491
θo arccosðηÞ 83.6° 24.2° 75.6°
ϕ eV � � � 1.1059 4.1714
ℏkF=m nm=fs � � � 1.569 1.569
vo ¼ hvi nm=fs 0.1076 1.492 0.3018
τ fs 18590 3.350 1657
σ 72 10.36 3.472 15.95
κ 70 30.38 3.159 72.40
ΔðθoÞ 21, 27, 33 90.5% 66.6% 82.6%
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C. Extension to wire field emitters

The methodology developed above (though applied to
hemispherical bosses because emittance due to surface
roughness was the focus) can be extended to treat the
carbon fiber wires shown in Fig. 1, as the techniques used
are not beholden to the form of Eq. (8) for the potential.
From PIC simulations of a hemispherical cap atop a tall
cylindrical emitter of dimensions comparable to the carbon
fiber wires, the total current increases by a factor of 4 times
even as the current density at the apex is the same: more
current is drawn from the sides of the hemispherical cap
because the field falloff is slower. More can now be said
about requirements on PIC and beam optics codes that
may otherwise have difficulty in resolving length scales
associated with realistic emission sites.
Consider simulations of field emission from amodel of the

fibers of Fig. 1 using the particle-in-cell code MICHELLE

[26,35] shown in Fig. 18. By comparison to the hemisphere
on plane of the surface roughness model, parallel wire
emitters will introduce two significant modifications that
increase the emittance, and can be reasonably well under-
stood by attaching a cylindrical base to the hemispherical cap,
as seen in Fig. 17. First, the equipotential lines are pulled
down alongside the cylinder, causing the notional angle θo to
increase. If θo for the hemispherical cap on post geometry of
Fig. 17 has increased from 24° to 45°, then (as simulated) the
total emitted current will increase by a factor of 4, and the
emittance, as per Eq. (53) (assuming Cofo is unchanged,
although it, too, shall increase), will increase by a factor of
36.4 times for the same on axis current density JðFÞ. Second,
the launch velocities vo down the side of the emitter shall
also increase, but estimating their contribution requires
knowledge of the behavior of the equipotential lines.
A third increase which the hemispherical boss on

cylinder does not capture (at present) is a consequence

of the flatness of the apex. A close view of the trajectories
and the contour lines for that case are shown in Fig. 19. As
seen, the equipotential lines nevertheless show a behavior
analogous to that identified in the hemispherical boss on
cylinder model, and so an analytical model that reproduces
those contour lines may be used in conjunction with
the impulse approximation to allow a contour representing
the virtual cathode surface to serve as the launch site in the
PIC simulation, thereby alleviating mesh effects associated
with fine gridding near the surface of the emitter and the
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1

1.2

0.6 0.8 1 1.2 1.4

T = x * 1200 K
F = x * 6 eV/nm
l = x   180 nm
Reference

R
at

io

x

*

FIG. 16. Ratio of array emittances with reference cases (εTref ¼
17.0 mm-mrad; εFref ¼ 2.30 mm-mrad; εωref ¼ 16.0 mm-mrad)
as a function of the ratio of the independent parameter with
Tscale ¼ 1200 K (thermal), Fscale ¼ 6 eV=nm (field), and λscale ¼
180 nm (photo).

FIG. 17. Same as Fig. 3 but now the hemispherical boss sits
atop a cylinder of the same length as the fibers shown in Fig. 1
(only the apex region is shown). The total current is 4 times larger
and the emittance has increased by a factor of > 30 times.

FIG. 18. PIC simulation of carbon fiber wires shown in Fig. 1.
Space charge forces are included in the simulation.
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increased costs associated with finer meshes if an analytical
model representing the shape is obtainable.
Such an analytical model for the wire emitters is under

development and is based on a generalization of the PCM
[42,60] used to simulate conical (Spindt-type) field emitters,
although other analytical approaches, such as prolate sphe-
roid methods, could be used [61,62], although they are in
general less flexible. The PCM and its generalizations can be
extended to treat an arbitrary number of emitters that may be
randomly placed and exhibit variation amongst emission
sites. As a result, the impact of shielding, in which adjacent

close-spaced emitters can reduce the apex field on individual
wirelike field emitters [63–66], can be incorporated in the
model, as shown in Figs. 20 and 21. A description of the
methodology and its application to random emission sites
and long wires shall be given separately.

VI. DISCUSSION AND CONCLUSION

All emission mechanisms vary with respect to surface
field F, and therefore, the relation of the maximum current
density that can be drawn across a gap to F will be less than
the Child-Langmuir (CL) limit given by Eq. (B1) (for which
the surface field F vanishes) as demonstrated in exact 1D
analyses [67,68]. Implicit in the 1D analyses is that the field
due to a sheet of charge is independent of distance from that
sheet (e.g., the field due to sheet of charge with charge
density ρdx is ρdx=2ε0). In fact, because of the axially
expanding disks of charge that are emitted, the density is not
uniform and instead declines as the disk area increases, and
additionally, when the disk moves away from the emission
site further than its diameter the field due to it begins to
decline in the usual inverse-squared manner, as schemati-
cally suggested in Fig. 22.
The exact 1D space charge analysis is reasonably well

approximated by a transit time model [5,69,70], although
there are issues if the gap is nanoscale [71]. In fact, in the
case of field emission from a tungsten wire progressively
covered with increasing amounts of barium to reduce the
effective work function depending on coverage [72], the
onset of space charge effects falls between a sequentially
emitted electron model and a transit time model [34]. This
suggests that the impact of space charge on the hemi-
spherical model (and, consequently, more so for the wire

FIG. 19. Close-up of the emission region of the simulation
shown in Fig. 18.
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FIG. 20. Contour lines associated with an analytical model
representing the carbon fibers of Fig. 1. L is approximately the
length of the fiber if the apex radius is small compared to the
width of the fiber. The apex radius in the analytical model has
been blunted to allow for easier visualization.
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FIG. 21. Close-up of the left fiber shown in Fig. 20 and
retaining the color of the contour lines shown there. The apex
radius has been blunted to allow for easier visualization, but the
analytic model can use any radius. Observe that the behavior
matches that shown for the contour lines of Fig. 18.
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models) will be twofold: first, it will depress the apex field
by comparison to the off-axis fields and thereby increase
the notional angle θo, and second, it will augment the
impulse contribution factor σ. The effect of space charge is
therefore expected to increase the magnitude of εarray but in
a decidedly nontrivial manner. An investigation of these
effects is underway.
The quality of electron beams as measured by both their

current and characteristic emittance is of increasing impor-
tance for high frequency vacuum electronics, high power
microwave devices, and FELs, particularly when high
brightness sources subject to space charge effects are used.
The effects of field enhancement variation, as a conse-
quence of the design of the cathode (as in the case of
field emitters) or surface roughness (as is the case for
photocathode surfaces as well as thermionic emitters) on
emission characteristics and particularly emittance, is a
recognized source of increased emittance that is anticipated
to only be exasperated by space charge effects. In the
present study, an analytic model of surface structure allows
for the identification of various mechanisms that increase
emittance due to roughness and emitter shape, allows
for assessing the consequences of the field dependence
of thermal, field, and photoemission processes, and is
expected to enable estimations of the impact of space
charge on emittance. The methodology is, by design,
intended to be amenable to inclusion in beam optics codes
to mitigate demands imposed by the small feature sizes
generally associated with emission. The analytic model
used in the present study is based on a hemispherical
model, but the techniques developed are applicable to other
analytic approaches, particularly long wires that character-
ize field emission from carbon fibers under investigation.

In summary, the formulation of the consequences of
surface roughness (represented as an array of hemispherical
protrusions) on emittance has been given. Emission from a
hemispherical boss has been characterized by an emission
angle, a launch velocity, and an impulse contribution factor.
The separation into these factors makes possible the
continued investigation of an important relation for high
brightness sources, namely, the relationship between intrin-
sic emittance and surface field. It is argued that the method
can be extended to treat nonhemispherical sources and the
inclusion of space charge forces, and an indication of how
that may be possible has been discussed.
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APPENDIX A: THERMAL-FIELD-
PHOTOEMISSION EQUATION

The general thermal-field-photoemission equation
[48,60,73] relates the three main equations of electron
emission as limiting cases after specification of the energy
slope parameter for field emission βFðEmÞ≡ −θ0gðEmÞ and
thermal emission βT ¼ 1=kBT, followed by a reference
energy Eo ≡ Em − θgðEmÞ=θ0gðEmÞ where θgðEÞ is the
Wentzel-Kramers-Brillouin factor accounting for tunneling
given by [74]

θgðEÞ≡ 2

ffiffiffiffiffiffiffi
2m

p

ℏ

Z
xþ

x−

ðVðx0Þ − EÞ1=2dx0; (A1)

where x�ðEÞ are the E-dependent zeros of the integrand,
and where Em is the location of the maximum of the
integrand. The ratio n≡ 1=ðkBTβFÞ defines the regimes of
thermal and field dominated emission with n ¼ 1 being the
boundary between them. The general current density J is
approximated by

JðF; TÞ ¼ ARLDT2N

�
βT
βF

; βFðEo − μÞ
�
; (A2)

Nðn; sÞ ≈ n2Σ
�
1

n

�
e−s þ ΣðnÞe−ns; (A3)

Nðn;−sÞ ≈ 1

2
ðnsÞ2 þ ζð2Þðn2 þ 1Þ: (A4)

Thermal-field emission is described by Eq. (A3) and
photoemission by Eq. (A4). For small argument,

ΣðxÞ ≈ 1þ x2

1 − x2
þ
�
π2

6
− 2

�
x2 þ

�
7π4

360
− 2

�
x4 (A5)

FIG. 22. Sheets of charge in the 1D formulation of space charge
effects become disks of charge for emission from portrusions: the
disk charge density declines as it moves away from the emission
site, reducing the space charge field at the emitter apex by, first,
decreasing the charge density of the disk, and second, by
introducing an inverse-squared distance dependence. The exam-
ple shown is for field emission from a conical tip.
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so that ΣðxÞ provides thermal corrections to field emission
and field corrections to thermal emission.

1. Richardson-Laue-Dushman (thermal)

Thermal emission dominates when n < 1 for which
Jðn ≪ 1Þ → JRLD becomes equivalent to the Richardson-
Laue-Dushman equation [75]

JRLDðF; TÞ ¼ ARLDT2 exp

�
−

ϕ

kBT

�
; (A6)

where ϕ ¼ Φ −
ffiffiffiffiffiffiffiffiffiffi
4QF

p
accounts for Schottky barrier

lowering due to the field F at the surface and the other
terms are as in Table II.

2. Fowler Nordheim (field)

Field emission dominates when n > 1 for which Jðn ≫
1Þ → JFN becomes equivalent to the Murphy and Good
formulation of the Fowler Nordheim equation [76]. If the
Deane and Forbes [77,78] approximation is used, then for
the elliptical integral functions

vðyÞ ¼ 1 −
1

3
y2½3 − lnðyÞ�; (A7)

tðyÞ ¼ 1þ 1

9
y2½1 − lnðyÞ�: (A8)

As tðyÞ is slowly varying with field it may be approximated
by a constant: a convenient choice [74] is requiring
∂xvð

ffiffiffi
x

p Þ ¼ −1 for
ffiffiffi
x

p ¼ y → yo, which sets yo ¼ e−1=2

and to ≡ tðyoÞ ¼ 1þ ð1=6eÞ ¼ 1.0613 [if extended to
vðyÞ, that choice would lead to the approximation
vðyÞ ≈ 1 − ð1=6eÞ − y2 ¼ 0.9387 − y2, similar to the
Spindt approximation [79] vðyÞ ≈ 0.95 − y2, but such
parabolic approximations for vðyÞ are not used here].
Using Table II it follows that

JFNðFÞ → ~AF2−ν exp

�
−B

Φ3=2

F

�
; (A9)

ν≡ 8Q
9ℏ

ffiffiffiffiffiffiffi
2m
Φ

r
; (A10)

~A≡ A
Φt2o

�
Φ2e6

4Q

�
ν

: (A11)

3. Fowler Dubridge (photo)

Photoemission dominates when the electron energy in
the transmission probability is augmented by the photon
energy ℏω and the use of Nðn;−sÞ is required. Quantum
efficiency QE is proportional to the ratio of the current
density with the incident laser intensity. The Fowler-
Dubridge equation is the small n limit [80,81]

QEFD ∝ ðℏω − ϕÞ2 þ 2ζð2ÞðkBTÞ2: (A12)

APPENDIX B: CHILD LANGMUIR
(SPACE CHARGE)

In a diode configuration, the maximum current that can
be transported across an anode-cathode (AK) gap D for
which the anode potential is φ≡ Va=q is governed by the
Child-Langmuir relation, which assumes that the field at
the surface is reduced to zero by the presence of charge in
the AK region [70,82,83]. It reads

JCL ¼ 4ε0
9

ffiffiffiffiffiffi
2q
m

r �
φ3=2

D2

�
¼ 16π

9

Affiffiffiffiffiffi
Ry

p �
V3=2
a

D2

�
; (B1)

where the first more commonly encountered form is less
convenient for numerical calculations herein than the
second equivalent form.

APPENDIX C: 1D EMITTANCE EQUATIONS

The emittance associated with a flat thermionic cathode
is well known [1]. Comparable equations for photoemis-
sion [43,47] and field emission [33] are more recent. For a
flat cathode of radius ρc, forms here for all three are given
by [after Eqs. (2), (3) and (6) of Ref. [33]]

εT1D ¼ ρc
2

�
kBT
mc2

�
1=2

; (C1)

εF1D ¼ ρc

�
ℏkF
mc

��
4μto
ℏF

ffiffiffiffiffiffiffiffiffiffi
2mΦ

p
− 1

�
−1=2

; (C2)

εω1D ¼ ρc
2

�
ℏω − ϕ

3mc2

�
1=2

; (C3)

where the superscripts “T,” “F,” and “ω” denote thermal,
field, and photoemission, respectively.
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