
Transverse mode coupling instability of colliding beams

S. White
Brookhaven National Laboratory, Upton, New York 11973, USA

X. Buffat
CERN, Geneva, Switzerland; EPFL, Lausanne, Switzerland

N. Mounet and T. Pieloni
CERN, Geneva, Switzerland

(Received 16 January 2014; published 9 April 2014; corrected 11 April 2014)

In high brightness circular colliders, coherent and incoherent beam dynamics are dominated by beam-
beam interactions. It is generally assumed that the incoherent tune spread introduced by the beam-beam
interactions is sufficiently large to cure any instabilities originating from impedance. However, as the two
counterrotating beams interact they can give rise to coherent dipole modes and therefore modify the
coherent beam dynamics and stability conditions. In this case, coherent beam-beam effects and impedance
cannot be treated independently and their interplay should be taken into account in any realistic attempt to
study the beam stability of colliding beams. Due to the complexity of these physics processes, numerical
simulations become an important tool for the analysis of this system. Two approaches are proposed in this
paper: a fully self-consistent multiparticle tracking including particle-in-cell Poisson solver for the beam-
beam interactions and a linearized model taking into account finite bunch length effects. To ensure the
validity of the results a detailed benchmarking of these models was performed. It will be shown that under
certain conditions coherent beam-beam dipole modes can couple with higher order headtail modes and lead
to strong instabilities with characteristics similar to the classical transverse mode coupling instability
originating from impedance alone. Possible cures for this instability are explored both for single bunch and
multibunch interactions. Simulation results and experimental evidences of the existence of this instability at
the LHC will be presented for the specific case of offset collisions.
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I. INTRODUCTION

Beam-beam effects are generally considered as the main
limiting factor for luminosity performance in high bright-
ness colliders. As they interact with each other, the two
beams will couple, resulting in coherent oscillations. In the
case of equal bunches and tunes these coherent oscillations
can be described by two eigenmodes, corresponding to
either in-phase or out-of-phase oscillations, respectively the
σ and π modes. The tune shift between the σ and π modes
is equal to Y · ξ where Y is the Yokoya factor and ξ the
beam-beam parameter [1].
These coherent modes have been routinely observed in

various colliders and are generally not self-excited [2–5].
However, the frequency of these modes may be well
separated from the incoherent tune spread and conse-
quently they do not profit from the large intrinsic
Landau damping properties of the beam-beam interactions

[6]. Under external excitation, such as machine impedance,
these modes could therefore become unstable. Assessing
the stability of colliding beams therefore requires one
to consider these two processes simultaneously and in a
self-consistent way.
Past studies have shown that the combination of beam-

beam interactions and impedance could lead to coherent
instabilities. However, these studies were either performed
using a linearized model [7], i.e., not including Landau
damping, or for very specific cases applied to the Tevatron
[8]. During the 2012 proton run of the LHC, coherent
instabilities of colliding beams were routinely observed [9],
triggering a renewed interest to pursue these studies in a
more general scope.
Analytical expressions describing the colliding beams

system can become extremely complex when taking into
account nonlinearities, the presence of multiple asymmetric
collision points, and the contribution of multiple bunches to
the coherent and incoherent beam dynamics. Numerical
simulations are therefore required to study such complex
configurations as relevant in the case of the LHC.
Linearized model and multiparticle tracking simulations
both offer advantages and disadvantages making them
complementary tools to characterize and understand the
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coherent beam dynamics of this complex system. Both
methods will therefore be used in the following. The
motivation of this study being mainly driven by LHC
observations, the LHC impedance model and beam param-
eters will be used, the numerical tools developed are
however applicable to any configurations and the results
should be qualitatively similar for other designs.
It should be noted that octupoles are extensively used

during the whole LHC cycle to provide stability. The
amplitude detuning introduced by the octupoles will
modify the overall tune spread and when the beams are
not colliding head-on their contribution, detrimental or not,
can become important. Dedicated studies and analysis on
the impact and role of the octupoles during the LHC
operation cycle can be found in [10]. The contribution
of octupoles will therefore not be further discussed but
was taken into account when attempting to reproduce
experimental data in Sec. VII.
In this paper we study the coherent modes arising from

the interplay of beam-beam interactions and impedance and
their stability dependence on various parameters such as
chromaticity, interaction point (IP) optics functions, or
transverse damper gain. The numerical tools used in this
study, their implementation and the LHC impedance model
are presented in Sec. II while benchmarking results are
presented in Sec. III. The transverse mode coupling
instability of colliding beams is introduced in Sec. IV
and single bunch simulations as well as experimental
observations are presented in Secs. V, VI, and VII.
Finally, multibunch simulation results are discussed in
Sec. VIII.

II. MODELS

Two models were developed to characterize the interplay
of beam-beam and impedance: (i) a linearized model based
on the circulant matrix approach introduced in [11], (ii) a
fully self-consistent multiparticle tracking model. Single
bunch effects were studied with the code BEAMBEAM3D
[12] and multi-bunch effects with the code COMBI [13].
The circulant matrix model (CMM) allows us to compute

the complex tune shift in the presence of 6D beam-beam
interactions, impedance, chromaticity, and transverse
damper. This approach is very fast and most appropriate
for extensive parameter scans. However, the CMM is not a
self-consistent approach, the elements of the longitudinal
distribution are modeled as rigid objects and the beam-
beam force is linearized. As a consequence, the CMM is
not capable of modeling nonlinear effects, in particular
Landau damping which is most relevant when looking at
beam stability issues, and does not allow us to account for
the Yokoya factor leading to differences in the frequencies
of the beam-beam modes with respect to theoretical
expectations. An analytical derivation of a dispersion
integral in LHC type of configurations promises to be a
great challenge, in particular in the multibunch regime, i.e.,

in the presence of PACMAN effects. As a consequence, any
attempt to predict measured stability threshold using this
approach may fail. A numerical approach, by the means of
self-consistent multiparticle tracking codes allows us to
address these issues. While much more demanding in term
of computing resources, tracking simulations are a neces-
sary complement to the CMM. Such approach also allows
us to treat any other nonlinear effects, such as transverse
feedback imperfections or external noise. BEAMBEAM3D
and COMBI are two similar implementations of such
model, based on different multicore parallelization con-
cepts. BEAMBEAM3D is optimized for single bunch studies
allowing for full 6D beam-beam interactions while COMBI

is designed to study multibunch configurations but is
restricted to 4D beam-beam interactions. Depending on
the case to be studied, it may be more appropriate to use
one or the other.
These two approaches were implemented to allow for an

arbitrary impedance model. This study was however
motivated by LHC observations and the 2012 LHC
impedance was used in all of the following simulations.
Although the results would most likely be qualitatively
similar, the impedance model certainly has an impact on
stability thresholds and rise times. The impact of the
impedance model goes beyond the scope of this study
and will not be presented in this paper. For completeness,
the LHC impedance model will therefore be described
in this section together with the implementation of the
circulant matrix and multiparticle tracking in our simula-
tion codes.

A. The circulant matrix model

The circulant matrix approach was introduced in [11]
and later extended to include single bunch head-on beam-
beam interactions in [7]. Here we shall describe how this
method was extended to an arbitrary number of bunches
and IPs including long-range interactions and bunch train
structures.
Each bunch is represented as Nr nested airbag distribu-

tions in the longitudinal plane, i.e., for a given airbag all the
particles have the same synchrotron amplitude and are
evenly distributed over the synchrotron phase resulting in a
ring in the synchrotron phase space. Each of these rings is
sliced into Ns cells of equal weight characterized by their
transverse dipole moments and synchrotron phase. It
should be noted that arbitrary transverse distributions
can be modeled by assigning different weights to the
different rings. Considering only one transverse dimension,
the synchro-betatron motion of a single ring is then
described by a matrixM consisting of 2Ns × 2Ns elements.
The synchro-betatron transport for a given arc is then
given by

M ¼ C ⊗ B; (1)
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where ⊗ stands for the Kronecker product. B is the well-
known betatron transfer matrix

B ¼
�

cos μβ β sin μβ
− 1

β sin μβ cos μβ

�
: (2)

In this example α was set to 0 and the β-functions at the
IPs are assumed to be equal. μβ is the betatron phase
advance between two consecutive IPs. The synchrotron
transport in each ring is described by the circulant matrix

C ¼ PNsμs
Ns

; (3)

with PNs
the permutation matrix corresponding to a

rotation of the cells by 1=Ns turn in longitudinal phase
space and μs the synchrotron phase advance.
The number of eigenvalues of the matrix C is Ns and

represents the number of synchro-betatron modes to be
computed. The number of slices has to be large enough in
order to correctly compute the coupling between all the
relevant modes and has to be derived from the convergence
of the eigenvalues. It should be noted that the matrix C is
only describing the betatron motion in one transverse
direction, the extension to the 2D case is rather straightfor-
ward and is left at the reader’s discretion. The expansion of
this matrix to two counterrotating beams consisting of Nb
bunches with Nr rings is then given by

MA ¼ I2 ⊗ INb ⊗ INr ⊗ M; (4)

where In is the identity matrix with n × n elements.
The linearized beam-beam parameter in the case of

round beams is given by

ξ ¼ Npr0
4πϵN

; (5)

where Np is the number of protons per bunch, r0 is the
classical particle radius, and ϵN is the normalized rms
emittance. The angular kick received by a slice with
transverse position x1 from a slice with transverse position
x0 is given by

Δx01 ¼
2πξ

NsNrβ
� ðx1 − x0Þ; (6)

where β� is the beta function at the IP. The full 6D beam-
beam interaction is then described by a matrix Mbb
consisting of a succession of kicks and drifts taking into
account the evolution of the β-function over the interaction
region. This matrix is easily extended to offset collision by
locally linearizing the beam-beam force and accordingly
modifying the parameter ξ in Eq. (6). The long-range
interactions are lumped in two locations with phase
advances of � π

2
with respect to the IP. The collision

schedule at each IP is then properly taken into account

by computing the product of a succession of matrices
describing the consecutive beam-beam interactions
between the different bunches.
Figure 1 shows the tunes of the synchro-betatron modes

up to the third sideband in the presence of a 6D beam-beam
interaction for Ns ¼ 7 and Nr ¼ 1. In this case, the
synchro-betatron coupling is rather important (β�=σs ≈ 1,
σs is the rms bunch length). In addition to the tune shift
introduced by the quadrupolar term of the beam-beam
force, the synchrotron sidebands are deflected when their
frequency approaches the coherent dipolar beam-beam
modes indicating that the beam-beam force itself can excite
headtail oscillations. This phenomenon is described in
more detail in [7]. The imaginary part of the tune shifts
of all modes is equal to zero: in the presence of beam-beam
interactions only, the system is always stable.
The machine impedance is introduced by adding a kick

to the ith slice given by

Δx01 ¼ C
Xi−1
j¼1

Wðsj − siÞxj; sj > si; (7)

where C is a constant depending on beam parameters and
machine layout, WðsÞ is the transverse dipolar wake
function considered in the simulation, and si is the location
of the slice i. The same expression applies for coupled-
bunch impedance replacing sj − si by the distance between
the bunches and performing the sum over all the leading
bunches. Under the approximation that the long-range
wake does not significantly vary along the bunch length
the same kick is applied to all the slices within a bunch.
This approximation is valid for the LHC as shown in
Sec. II C.
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FIG. 1. Synchro-betatron modes as a function of the beam-
beam parameter for Q0 ¼ 0.0 and β�=σs ≈ 1. Impedance was not
included in this case. The σ and π modes in the 4D case are shown
in red. Qx is the unperturbed betatron tune and Qs is the
synchrotron tune.
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Finally, the one turn map is expressed as

M1T ¼ Mbb1 ·MA1 ·Mbb2 ·MA2….Mbbn ·MAn ·MI; (8)

where MI is the matrix describing the impedance kicks.
Other elements such as chromaticity or transverse damper
can be described using the same matrix formalism allowing
for realistic stability study of complex machines such as
the LHC.

B. Multiparticle tracking

The two tracking codes used for this study,
BEAMBEAM3D and COMBI, feature very similar implemen-
tations. The main differences reside in the field solver and
the parallelization concepts. The field solvers are well
documented in Refs. [12] and [14], respectively and will
not be described in this paper. Both field solvers were
extensively benchmarked and showed good agreement
with theoretical expectations and experimental data. In
BEAMBEAM3D, the parallelization is done on the bunch
level allowing for fast computation of the 6D beam-beam
kick. It is possible to track a limited number of bunches
colliding in several IPs but the computing time scales
linearly with the number of bunches and IPs. This code is
most suited for the study of head-on effects and synchro-
betatron coupling from the beam-beam interaction origi-
nating from crossing angle or hourglass effect. In COMBI,
the parallelization is done on the beam level, i.e., each
bunch is assigned to a given processor. This allows us to
efficiently simulate complex collision patterns involving
large number of bunches and interaction points. For
computation efficiency the beam-beam kick is computed
in 4D only, therefore neglecting synchro-betatron effects
from the beam-beam interactions. In both codes the
transport from one IP to the other is performed using
the linear map from Eq. (2).
Both codes were extended to include self-consistent

impedance calculation following similar implementation
as the wakefields tracking code HEADTAIL [15]. The
bunches are modeled as an ensemble of particles initialized
with random Gaussian distributions in the 6 dimensions.
After each turn the bunches are sliced longitudinally and
the dipole moments of each of the slices as well as their
weight is computed. The impedance kick for each of the
slices is then derived from Eq. (7) both for intrabunch and
coupled-bunch effects when relevant. Similarly to the
CMM, transverse damper, chromaticity and in addition,
nonlinear fields are available for stability studies.

C. The LHC impedance model

A detailed description of the LHC impedance model can
be found in [16]. As most of the simulations presented in
this paper make use of the 2012 LHC impedance model, a
brief description of this model is provided in this section for
completeness. The different contributions to the overall

impedance can be separated into two main components for
which analytical expressions can be derived: (i) The
resistive wall impedance includes the 44 collimators, the
beam screens (86% of the machine, in colaminated copper
and stainless steel maintained below 20 K) and the vacuum
beam pipe (14% of the machine, in copper at room
temperature). The cross sections of each of these devices
are properly taken into account in the impedance calcu-
lations. In particular, the half-gaps of the collimators are
those measured during normal physics operation of the
machine [17]. (ii) A broadband impedance is used to
account for most of the smooth transitions located around
the ring, as well as various geometric features such as
pumping holes, beam position monitors, bellows, vacuum
valves, and cavities [18].
In the numerical simulations, all the sources are lumped

in one location taking into account the β-function at the
source and at the observation point. This allows us to apply
the impedance kick only once per turn.
Figure 2 shows the transverse dipolar wake functions at

4.0 TeV. The wake of both beams are almost equal, the
horizontal plane is slightly stronger than the vertical plane.
The quadrupolar wake, not shown on this figure, is also
included in the model. One can see that the wake functions
significantly vary over the bunch length, a large number of
slices are therefore required for the numerical simulations
to converge. On the other hand, the bunches are separated
by at least 7.5 m in the LHC. The coupled-bunch wake does
not vary significantly over the bunch length which allows
us to apply the same kick to all the slices within a bunch.
Dedicated measurements were performed in the LHC to

validate the impedance model during which tune shifts and
instability rise times were measured as function of various
parameters such as collimator aperture or bunch intensity
[19]. Discrepancies of approximately a factor 2–3 were
found between the measurements and the model which
appears to underestimate the impedance.
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III. BENCHMARKING SIMULATIONS

The interplay of beam-beam and impedance represents
a very complex problem and only few references are
available to validate our results. It is therefore necessary
to carefully benchmark both the beam-beam and imped-
ance modules of our simulations codes in order to gain
confidence in the results.

A. Beam-beam module

The beam-beam modules of both tracking codes have
already been benchmarked [12,14], we will therefore use
them to validate the implementation of the CMM.
Figure 3 shows a comparison between tracking simu-

lations and the CMM for β�=σs ≈ 1. The CMM was
rescaled by the Yokoya factor to match the tracking results.
Most of the synchro-betatron modes are not observed in the
tracking simulations as they experience Landau damping
due to the beam-beam tune spread. However, an excellent
agreement is seen for the excited modes and one can
see that the frequency of the modes is modified when the
beam-beam coherent modes cross the first sidebands. The
frequency components between the σ and π modes
observed in the tracking correspond to the beam-beam
tune spread.
Figure 4 illustrates the benchmarking simulations per-

formed in the case of 4 bunches experiencing long-range
interactions only in one IP. For long-range interactions
β=σs ≫ 1 and the beam-beam kick is computed in 4D only.
The separation at the location of the long-range encounters
is varied and we set Q0 ¼ 10 to increase the number of
visible synchro-betatron modes. The agreement between
the two models is excellent for large separations since
the bunches see their counterpart as a whole. As the
separation is reduced, the two models diverge due to the

strong non-linear behavior of the beam-beam force at
intermediate separations. This divergence is expected since
the linearized model cannot account for the Yokoya factor.
In general, the CMM is in good agreement with self-

consistent tracking simulations. However, it does not allow
us to account for the Yokoya factor and the tune shifts of the
coherent beam-beam modes computed by the CMM are
underestimated at small separations. This is not the case for
long-range interactions for which the tune shift computed
by the CMM is correct. Although the results from the
CMM will be qualitatively correct, this feature will slightly
bias their interpretation at small separations. Careful
cross-checks with more realistic tracking simulations are
therefore required to get the exact tune shifts.

B. Impedance module

The impedance module is new in both the tracking codes
and the CMM. In order to validate its implementation we
compared the results with the well-established wakefields
tracking code HEADTAIL [15].
Figure 5 shows an intensity scan in the presence of

impedance only and for Q0 ¼ 0.0 to check the consistency
of the transverse mode coupling instability (TMCI) thresh-
old [20] computed by our two models. The red lines are
from the CMM and the colored spectrogram from multi-
particle tracking. For the CMM simulation 5 radial modes
(rings) and 100 azimuthal modes (slices per ring) were
considered, the multiparticle tracking was performed with
200 slices and 500000 macroparticles. An excellent agree-
ment is found between the two methods for which a
threshold of approximately 4.1 × 1011 p=bunch was found.
Similar simulations were performed with HEADTAIL for

FIG. 3. Synchro-betatron modes as a function of the beam-
beam parameter for Q0 ¼ 0.0 and β�=σs ≈ 1. Impedance was not
included in this case. The white dots are the results from the
tracking and the red lines from the CMM.

FIG. 4. Synchro-betatron modes as a function of separation at
the location of the long-range encounters, with Q0 ¼ 10.0. 4
bunches per beam colliding in one IP are simulated. The colored
spectrogram is the result from the tracking and the magenta lines
from the CMM.
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which a TMCI threshold of 4.25 × 1011 p=bunch was
found which is consistent within 5% with our
implementation.
Figure 6 shows the growth rate of the most unstable

mode for different chromaticity and damper gain settings.
Only the unstable cases are shown. The results of our two
models as well as the ones from HEADTAIL are shown. All
codes agree very well up to a chromaticity of approximately
10. Above this value, some disagreements are observed
between the tracking codes and the CMM for high damper
gain. The growth rates for the tracking codes are obtained
by fitting an exponential to the amplitude of the center of
mass motion. In the presence of high damper gain and
chromaticity these growth rates are very slow requiring us
to track a very large number of turns and making it difficult
to cleanly fit an exponential. Large fit errors can therefore
explain these discrepancies.

The impedance modules of both models were validated
against an existing code. The results are in excellent
agreement except for a few cases most likely related to
numerical issues which are not a concern for further studies.

IV. MODE COUPLING INSTABILITY OF
COLLIDING BEAMS

We start by looking at the simple case of two bunches
colliding head-on in one IP. The impedance model used in
the following simulations is the one described in Sec. II C.
The beam-beam interactions are computed with a full 6D
model taking into account the synchro-betatron effects and
eventual non-Gaussian transverse distributions. In order to
estimate the beam stability for large number of beam
parameters multiparticle tracking is performed over 105

turns and each case is analyzed using an interpolated fast
Fourier transform (FFT) algorithm. The beam stability of
any given mode can then be assessed by looking at the
amplitude of its corresponding spectral line.
Figures 7 and 8 show a scan in beam-beam parameter at

constant impedance. As the beam-beam π mode approaches
the headtail mode -1 (ξ ≈ 0.003), their frequencies become
equal and they couple leading to strong instabilities with
similar rise times and characteristics to the impedance
driven TMCI. This is observed both in the tracking and
circulant matrix model with comparable rise times.
As shown in Fig. 8, the circulant matrix model also

indicates a coupling between the σ-mode and headtail mode
þ1. This is not observed in the tracking simulations.
However, the circulant matrix does not include nonlinear
effects and hence, Landau damping. It was shown in [6]
that in the presence of synchro-betatron coupling the
coherent beam-beam modes could be damped by the
sidebands of the incoherent tune spread. It is worth
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FIG. 5. Intensity scans at Q0 ¼ 0.0. The red lines are from the
CMM and the colored spectrogram from multiparticle tracking.
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FIG. 7. Synchro-betatron modes as a function of the beam-
beam parameter for Q0 ¼ 0.0 and β�=σs ≈ 90. The colors
correspond to the amplitude of the spectral line. Impedance
effects were kept constant over the whole scan. The most unstable
modes are shown in green.
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mentioning that beam-beam interactions can damp coher-
ent oscillations not only through incoherent tune spread but
also by a modification of the head-tail phase [6] or by
changing the chromaticity itself [21] (which could also
have detrimental effects).
As shown in Fig. 1 the frequency of the sidebands is

approximately given by Q0 þmQs − ξ=2 where Q0 is the
unperturbed tune, Qs is the synchrotron tune, ξ=2 comes
from the quadrupolar term of the beam-beam force andm is
the order of the sideband. The incoherent tune spread
extends from Q0 to Q0 − ξ and its sidebands are centered
around the frequencies Q0 þmQs − ξ=2, one would there-
fore think that when a coherent beam-beam mode
approaches a low order synchrotron sideband it would
experience Landau damping. Nevertheless, the efficiency
of the Landau damping depends on the particles frequency
distribution around the frequency of the mode to be
damped. The beam-beam tune spread is not uniform and
most of the particles oscillate at frequencies lower than its
central value while very few particles are located above.
The coupling between the σ-mode and headtail mode þ1
occurs with the mode þ1 going down toward the σ-mode
providing very efficient Landau damping, while it is the
opposite for the coupling between the π mode and headtail
mode −1 for which Landau damping will therefore be very
ineffective. This provides a possible explanation for
discrepancies observed between the tracking and CMM
results and why the coupling between the π mode and
headtail mode −1 appears to be much stronger in the case
of head-on interactions.

V. STABILIZING SINGLE BUNCH INSTABILITIES

Chromaticity combined with tune spread, to provide
Landau damping, is generally used to cure transverse
instabilities. When available, as in the case of the LHC,

a bunch-by-bunch transverse damper can also be used for
this purpose. In order to get a better understanding of how
these parameters affect the coherent beam dynamics and to
provide guidance on which cases to study with the more
time consuming multiparticle tracking, we start with
the CMM.
Figure 9 shows the dependency of the imaginary part of

the most unstable mode on the chromaticity and transverse
damper gain as a function of the beam-beam parameter. For
simplicity, we set the ratio β�=σs to 100. Synchro-betatron
coupling introduced by the beam-beam interaction can
therefore be considered as negligible. The double peak
structure characterizing the mode coupling instabilities
shown in Fig. 8 is clearly observed. Operating at beam-
beam tune shifts where these instabilities occur is the most
critical scenario for stability. It is seen that either high
damper gain or chromaticity can help in mitigating these
strong instabilities as the growth rate is significantly
reduced. The case without beam-beam interactions is
however not fully recovered and a combination of both
may be more efficient.
Figure 10 shows the effects of the combination of the

transverse damper gain and chromaticity with and without
beam-beam interactions. Beam-beam interactions clearly
degrade the situation for low damper gain or chromaticity
which confirms the necessity to use an appropriate combi-
nation of both to mitigate the mode coupling instability. For
high damper gain and chromaticity, which corresponds to
the top right corner on the plots, the growth rates with or
without beam-beam are very similar.
This is confirmed by looking at the projection for a gain

of 0.01 (bottom right plot) where we can see that the curves
almost converge when increasing the chromaticity. At high
damper gain and chromaticity the stability of the beams is
therefore mainly given by impedance. High damper gain or
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chromaticity are however known to degrade beam lifetime,
a careful optimization of these two parameters considering
the overall machine performance is therefore recom-
mended. For instance, the transverse damper appears to
be much more efficient than chromaticity, one could
therefore consider running at moderate chromaticity and
high damper gain during the critical period of the operation
cycle when the beams may become unstable. Alternatively
keeping the beams colliding head-on, or quickly sweeping
through the critical tune shifts when bringing the beams
into collision would not only provide strong Landau
damping due to the large beam-beam tune spread but also
help avoid running into these strong mode coupling
instabilities.
As mentioned in Sec. II the CMM does not include

Landau damping which is an essential ingredient to assess
beam stability. Although Fig. 9 provides some insight on
possible mitigations, it is necessary to performmultiparticle
tracking to get a more realistic and complete picture. In the
following simulations the beam-beam tune spread is
assumed to be the only source of Landau damping.
In order to illustrate the importance of Landau damping

we consider two cases, one with head-on collision which
profits from large Landau damping and one with a single
long-range interaction at a separation of 10σ for which
Landau damping is very small. In both cases the beam-
beam tune shift was adjusted to be at the location of the
mode coupling instability. The instability growth rate is
obtained by fitting an exponential to the center of mass
motion before emittance blowup, leading to a change in
tune shift, is observed. The simulation results are shown in
Fig. 11 where the head-on case is on the top plot and the

long-range case in on the bottom plot. One can see that at
zero gain and chromaticity the two cases are in good
agreement together and with the calculation from the CMM
shown in Fig. 10 within approximately 5–8%. This is
explained by the fact that even for head-on collision the π
mode is separated from the beam-beam tune spread by
Y − 1 where Y is the Yokoya factor. In the absence of
chromaticity it is therefore not subject to Landau damping.
As soon as the chromaticity is increased the head-on case

starts to strongly diverge from the CMM or the long-range
case, which remain in relatively good agreement. This

FIG. 10. Imaginary part of the tune shift of the most unstable mode (colors) computed by the CMM as a function of transverse damper
gain and chromaticity. Several cases are illustrated. The case with impedance only is shown on the top left plot, the case corresponding to
the mode coupling instability of the modes π and −1 with β�=σs ¼ 100 on the top right plot. Projections for a 0 transverse damper gain
and a gain of 0.01 are shown on the two bottom plots.
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shows the stabilizing effect of the head-on beam-beam tune
spread. A distinct behavior of long-range and head-on
collision as function of the damper gain is also observed,
i.e., the stabilizing damper gain is much higher for long-
range interactions. It should be noted that the long-range
case agrees well with the CMM calculation represented by
the black dots for a few cases on the bottom plot. Again,
Landau damping may play a role in this mechanism. As the
damper will stabilize dipolar oscillations only it is fairly
possible that other higher-order headtail modes are con-
sequently excited. These would be damped by the
large head-on beam-beam tune spread while the small
tune spread introduced by long-range interactions is not
sufficient.
The CMM results are confirmed by tracking simulation

as it is seen that both chromaticity and transverse damper
can mitigate the transverse mode coupling instability.
Similarly, the transverse damper appears to be very
efficient, while very high chromaticity would be required
in the absence of transverse damper.

VI. STABILITY WITH OFFSET COLLISIONS

Colliding with transverse offsets changes the frequency
of the beam-beam coherent modes, modifies the beam-
beam tune spread and thus, its stabilizing properties. Offset
collisions can occur while bringing the beams into colli-
sion, in the first moments of a physics store before the
luminosity is optimized or when leveling the luminosity as
was routinely done at the LHC in 2012 [22]. Figure 12
illustrates a scan in separation including coherent beam-
beam effects and impedance at zero chromaticity and
damper gain. The mode coupling instability is observed
when either the π mode overlaps the headtail mode −1 or

the σ-mode overlaps the headtail mode þ1 at separations
between 1.0 and 2.0σ. This is also the location at which the
beam-beam tune spread reaches a minimum [23] explaining
the differences with respect to head-on collisions.

VII. EXPERIMENTAL OBSERVATIONS
AT THE LHC

In order to confirm our simulation results a short
experiment was performed at the end of a fill for which
there were only two bunches per beam. Applying a trans-
verse offset is an efficient way to vary the beam-beam
parameter without having to reinject bunches of different
intensities. Initially, the bunches are colliding in two IPs
with a transverse offset of approximately 6.0σ. The offset is
applied in the horizontal plane in one of the two IPs and in
the vertical plane in the other IP. The chromaticity was
measured at the beginning of the experiment and was found
to be of the order of 8.0� 2.0 units in the horizontal
plane and 4.0� 1.5 units in the vertical plane for both
beams. The bunch intensity was approximately 1.1�
0.05 × 1011 p=bunch and the beam emittances ϵx ≈
2.15 μm and ϵy ≈ 1.6 μm for Beam 1, ϵx ≈ 2.25 μm and
ϵy ≈ 1.9 μm for Beam 2. The synchrotron tune Qs equals
2.3 × 10−3 · t ¼ 0. t ¼ 0 corresponds to the time at which
the bunches were brought into head-on collision at the
vertically separated IP. The other IP is kept separated at
6.0σ in the horizontal plane during the whole experiment.
The vertical separation is then increased in steps and at each
step the transverse damper is turned OFF while the beam
centroid motion is observed as a measure of stability.
Figure 13 shows a spectrogram of the vertical plane of

Beam 1 over the duration of the whole experiment. When
separated by 6.0σ, the vertical plane of beam 1 was found to
be unstable without transverse damper for an octupole
current up to 480 A. These single beam instabilities can be
observed before t ¼ 0when the octupole current was raised
in steps in an attempt to stabilize the beam without

FIG. 12. Synchro-betatron modes from tracking simulations as
a function of the transverse separation for Q0 ¼ 0.0 and
β�=σs ≈ 90. The colors correspond to the amplitude of the
spectral line. Impedance effects and beam-beam parameters were
set to be constant over the whole scan.
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transverse damper and at the end of the separation scan
when the separation is back to 6.0σ. The measured rise time
for these single beam instabilities was estimated to 5.9 s as
seen on the top plot of Fig. 14. In this case the frequency of
the unstable mode appears to correspond to the first lower
synchrotron sideband (headtail mode −1).
Bringing the beams into collision in one of the two IPs, at

t ¼ 0, provides stability even in the absence of transverse
damper. This was expected from the large beam-beam tune
spread and the absence of mode coupling instabilities at
ξ ≫ Qs. As the vertical separation is increased in steps
we observed the appearance of instabilities for interme-
diate separations between 0.7σ and 1.4σ corresponding to
separation at which the π mode overlaps the first synchro-
tron sideband and the beam-beam tune spread reaches a
minimum. These instabilities have quite different character-
istics than the ones observed at large separation. They
appear to involve both beams at the same time and their rise
time was measured to be approximately 1.8 s, as seen on the
bottom plot of Fig. 14, which is approximately a factor 3
faster than the single beam instabilities. Finally, the
frequency of the unstable mode is different and is consistent
with the beam-beam π mode.
It should be noted that all instabilities in this experiment

were effectively damped by the transverse damper. This
shows that a rigid bunch damper is not only effective
against instabilities involving beam-beam coherent dipole
modes but also instabilities driven by higher order headtail
modes (in this case mode −1). This is in accordance with
predictions of both the CMM and tracking simulations.
These observations could be consistent with the mode

coupling instability shown in Fig. 12. However, the
separation at which the instability is observed also corre-
sponds to the configuration at which the beam-beam tune

spread, and hence Landau damping, reaches a minimum.
For this reason, one cannot exclude the possibility of a
single beam instability due to the reduction of Landau
damping which is then transferred to the other beam via the
beam-beam force. The lack of diagnostics capable of
correlating the turn by turn position of the two beams
prevents a distinction between these two effects. Although
the distinct characteristics of the single beam and two
beams instabilities observed during this experiment appear
to confirm the existence of the mode coupling instability
involving coherent beam-beammodes, these measurements
cannot be considered as fully conclusive. Numerical
simulations are therefore required to be able to disentangle
coherent and incoherent effects in this specific configura-
tion and should provide the necessary information to
conclude on the role played by the coherent beam-
beam modes.
As mentioned in Sec. II C the impedance model tends to

underestimate the tune shifts by a factor 2–3, to account for
these observations the wakefields are multiplied by a factor
2. Large uncertainties on the chromaticity and emittance
measurements, effective nonlinear fields and the LHC
impedance model itself make it difficult to reproduce the
experimental results, we will therefore empirically deter-
mine the parameters from simulations to match the obser-
vations made for separated beams. These parameters will
then be used in further simulations. As pointed out in [21],
beam-beam interactions themselves can contribute to a
significant change in chromaticity while bringing the
beams into collision as was done in the experiment. This
effect was estimated to be of the order of 1.0 unit at most
which is comparable to the accuracy on the chromaticity
measurement and hence should not affect the interpretation
of the results.
The experimental data for separated beams do not show

any sign of coupling through the beam-beam force as only
one of the two beams was observed to be unstable. This
could be explained by the asymmetry between the beams in
size and intensity which could cancel the coherent beam-
beam modes [6]. We therefore start by looking at the case
with impedance combined with the tune spread from the
octupoles and the beam-beam interactions.
Figure 15 shows the simulated instability growth rate as a

function of chromaticity and octupole current. The first
thing to note is that even with twice the wakefunctions the
model predicts stability at any positive chromaticity for the
measured octupole currents. Nevertheless, a reduction of
approximately 10–20% of the detuning would allow us to
observe instabilities with growth rate consistent with
observations over part of the measured chromaticity range.
Such a difference could easily be accounted for by field
errors or uncertainty on the emittance measurement. In
addition, the measured emittance in the unstable plane was
approximately 1.6 μm. As a consequence, one can expect
the effective vertical detuning due to the octupoles to be
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smaller than the simulated one, and hence the beam to be
more unstable in this given plane.
The main inconsistency with data resides in the fact that

with the measured chromaticities, the horizontal plane
should always be more unstable than the vertical plane
which is the opposite as what was observed experimentally.
Such a feature cannot be explained by the impedance model
nor by beam-beam interactions, which have the same
impact in both planes (assuming equal emittances). The
chromaticity measurement is achieved by applying a
momentum offset which results in a change of orbit.
Even though the beams were separated by 6σ, the beam-
beam force cannot be neglected and may have biased the
chromaticity measurements due to its dependency on
transverse separation. In order to match the experimental
data the chromaticities of the horizontal and vertical planes
were swapped, resulting in the horizontal plane to be more
unstable than the vertical plane.
Figure 16 shows the instability growth rate of the vertical

plane as a function of vertical separation. The results were
obtained using a full 6D strong-strong simulations includ-
ing nonlinear rf, crossing angle, and octupoles with
bunches colliding in two IPs. The parameters used for
these simulations correspond to the measured ones except
for the chromaticity. The weak-strong simulations were
performed with the parameters of Beam 1. A strong
instability involving the 2 beams is observed with the
strong-strong simulations for separations of 1.0 and 1.5σ
(the separation steps are 0.5σ). The simulated rise time is
twice larger than the measured one which is within the
uncertainty on the wake, nonlinearities, emittances, or
bunch intensity. The frequency of the unstable mode is
consistent with the beam-beam π mode. A weaker insta-
bility is observed for separations larger than 5.0σ. This

instability appears to affect also both beams but Beam 1 is
the most unstable. The frequency of the unstable mode is
consistent with a headtail mode −1 in this case. In the weak
strong simulations, for which there are no coherent beam-
beam modes, no instabilities are observed for intermediate
separations. Although the rise-times are significantly differ-
ent with respect to the ones observed in the machine the
results qualitatively agree with the measurements: a strong
instability is observed at intermediate separation with
evidence of coupling between the beams while a much
weaker instability is observed at large separation for which
the coupling between beams appears to be much weaker.
A small tune split of few 1.0 × 10−4 would fully decouple
the two beams. The weak-strong simulations do not feature
the fast instability at intermediate separations providing a
strong argument toward the observation of a mode coupling
instability in the experimental data.

VIII. MULTIBUNCH SIMULATIONS RESULTS

In the LHC, for 25 ns bunch spacing, individual bunches
can experience up to 32 long-range interactions per IP (this
number goes down by a factor 2 for 50 ns bunch spacing),
where the separation between the two beams is approx-
imately 10σ. In some cases, the accumulated tune shifts
from these interactions can become larger than the syn-
chrotron frequency, potentially leading to mode coupling
instabilities. In our model, each interaction region is
modeled as a series of long-range interactions with constant
separation located at phase advances of �π=2 from the IP.
Once in collision, the beam dynamics is dominated by the
head-on interactions which was discussed in Sec. V. We
will therefore concentrate on the case with long-range
interactions only which corresponds to the LHC squeeze
(period over which the β function at the IP is reduced to
enhance luminosity). Over this period the separation at the
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IP is of the order of 40σ. This additional long-range
encounter is therefore neglected in the following analysis.
At the locations of the long-range encounters β=σs ≫ 1 and
the beam-beam interaction can be reduced to the 4D case.
As shown in Sec. III a direct comparison of the tune shifts
obtained with the CMM is possible for separations of the
order of 10σ which makes it a very valuable tool to study
the case of long-range interactions.
Due to their train structure, the LHC beams suffer the

so-called PACMAN effects: bunches along the trains will
experience different number of long-range encounters and
hence have different tune shifts leading to a large variety of
coherent modes with nearby frequencies.
Figure 17 illustrates the impact of PACMAN effects for a

simplified case. Two trains of 8 bunches are colliding in a
single IP, the PACMAN effects are artificially enhanced by
allowing collisions only on one side of the IP. Each bunch
therefore experiences up to 7 long-range interactions. Even
for this simplified case a large number of mode coupling
instabilities are observed involving various modes. As the
separation is reduced, and hence the beam-beam tune shift
is increased, the probability for two modes to overlap
becomes higher and in some cases multiple mode coupling
instabilities can occur simultaneously.

A. Stabilization techniques

In this analysis, we consider two beams composed of a
single train of 16 bunches colliding in one IP. These
bunches experience from 8 to 16 long-range interactions
depending on their position in the train. The imaginary part
of the tune of the most unstable mode, with Q0 ¼ 0 and no
transverse feedback, is shown on Fig. 18. Two peaks are
observed for which the imaginary part of the tune goes up

to high values. They correspond to distinct mode coupling
instabilities. The peak at separations between 11 and 13σ
corresponds to the strongest instability and involves the
beam-beam σ-mode and the headtail mode −1.
Figure 19 shows the imaginary part of the tune of the

most unstable mode derived with the CMM as a function of
both chromaticity and damper gain. The separation was set
to 13σ for which strong mode coupling instabilities are
observed. Above 500 turns damping time or a chromaticity
of 10 a significant decrease of the growth rate is observed
indicating a mitigation of the mode coupling instability.
As a result of PACMAN effects, the beam-beam tune

spread is different for each bunch making it very difficult to
analytically introduce Landau damping to the CMM
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derivations by means of stability diagrams. In addition, the
presence of mode coupling instabilities drastically
increases the difficulty to analytically evaluate the effect
of Landau damping on the modes considered. Tracking
simulations are therefore well suited for this kind of study.
The results of tracking simulations with different chroma-
ticity and transverse feedback settings are compared to the
results obtained with the CMM in Fig. 18. The maximum
tune shift is deduced from tracking simulations by perform-
ing a singular value decomposition of all bunch centroid
positions, turn by turn, and fitting an exponential to the
time evolution singular vector corresponding to the largest
singular value. At Q0 ¼ 0, the coupled mode instability
observed at 12σ is in agreement with the CMM. The second
peak at 9σ separation is not visible, suggesting that it is
Landau damped. More generally, discrepancies for all cases
are observed at low separations for which the beam-beam
tune spread becomes relevant.
Increasing the chromaticity to 10 significantly mitigates

the mode coupling instability while a damper gain of 0.01
appears to fully suppress it. These observations are con-
sistent with the single bunch results presented in Sec. V
where it was shown that high chromaticity and damper gain
can efficiently stabilize the mode coupling instabilities.
At 0 chromaticity and without transverse feedback, there

is a significant discrepancy between the two models for
separations larger than 14σ. This discrepancy may be
attributed to the non-normality of the system [24]. In the
absence of synchrotron motion, non-normal instabilities
arise due to the fact that the wakefield affects only trailing
particles. These are known as the beam breakup instabilities
observed in linear accelerators [20]. While synchrotron
motion restores the normality of the system when consid-
ering intrabunch motion, multibunch effects remain non-
normal when the multiturn wake is neglected, having
strong consequences for both models. Within the CMM,
it leads to nondiagonalizable matrices. As a consequence
the eigenvectors are no longer fully representative of the
dynamic of the system. Also, the behavior observed in
tracking simulations is dominated by transient, i.e., non-
exponential, growth, which are characteristic of non-normal
systems [25]. The exponential fit of simulation data is
therefore not appropriate to describe the beams stability.
Nevertheless, the agreement between the two codes with
high chromaticity and high transverse feedback gain sug-
gests that the non-normal mechanisms are suppressed in
these configurations, which is expected as single bunch
mechanism becomes dominant over multibunch ones.

B. Extrapolation to large number of bunches
and LHC operational scenarios

The LHC beams are composed of up to 2808 bunches.
These bunches are coupled through the machine impedance
and the multiple beam-beam interactions in the four
interaction regions leading to a very complex system.

Both the CMM and tracking simulations become very
demanding in term of computing resources with a large
number of bunches and simulation of the full machine are,
for now, out of reach.
Nevertheless, the case of a train of 16 bunches colliding

in a single interaction region provides a better under-
standing of the behavior of the full machine under changes
of critical parameters, such as beam-beam separation,
chromaticity and damper gain. As shown by Fig. 20, while
the largest imaginary tune shift is affected when changing
the length of a bunch train from 16 to 64 bunches, the
overall behavior as a function of the separation between the
beams is similar in all configurations. It is important to note
that we considered a machine configuration with 16
possible beam-beam interactions in a single interaction
region, therefore the number of interactions per bunch is
identical for all trains of more than 16 bunches. Also, the
simulations presented include a single interaction region,
whereas the LHC counts four in total placed asymmetri-
cally around the ring. Accounting for the full complexity of
the problem would require the presence of the maximum
number of bunches, which as already mentioned is out of
reach. Nevertheless, simulations with the CMM show a
similar behavior with simplified, yet different configura-
tions. While the absolute values of rise times and real tune
shifts obtained vary, the characteristics of the coupled mode
instability shown on Figs. 18 and 19 remained valid in the
configurations tested.
Similarly to the single bunch case, both high damper gain

and high chromaticity appear to mitigate the coupling
between low order modes. At high damper gain, two regions
of stability, with negative or particularly small imaginary
tune shift, are observed. They appear in blue in Fig. 19 and
are located between chromaticities of approximately 1.0 to
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5.0 and−2.0 to−10.0. While appealing due to its large area,
the stability region at negative chromaticity, with imaginary
tune shifts exclusively below 0 was found to significantly
shrink when the beam-beam tune shift increases. This
feature makes it hardly usable for regular operation, as
issues may arise when going to full head-on collisions. On
the other hand, the slightly positive chromaticities remain
rather stable even at large beam-beam tune shifts and would
provide a usable area with minimal tune shifts for the whole
LHC cycle. This stability band is, however, quite narrow and
would require a control of the chromaticity on the unit level.

IX. SUMMARY

We developed numerical tools, both analytical and
multiparticle tracking, to study the interplay of beam-beam
and impedance. These tools were fully benchmarked
against each other and existing instability codes showing
excellent agreement for all the cases tested.
Using these numerical tools, we demonstrated the

existence of a strong mode coupling instability when
one of the beam-beam coherent modes crossed a higher
order headtail mode. This instability which has very similar
characteristics to the classical impedance driven TMCI
could occur even at low bunch intensities providing the
beam-beam parameter is sufficiently large for the beam-
beam coherent modes frequency to reach higher order
headtail modes. While chromaticity appears to be rather
inefficient by itself to cure this instability, a bunch-by-
bunch transverse damper would easily suppress it.
Extensive parameters scans showed that an optimum
combination of damper gain and chromaticity could be
found in order to minimize unwanted side effects related to
high chromaticity or damper gain such as lifetime or
emittance degradation.
A short experiment was performed with colliding beams

with transverse offsets. A strong instability was observed in
the absence of transverse damper at separation consistent
with the mode coupling instability. The data are not fully
conclusive and could only be partially reproduced in
simulations due to large uncertainty on key parameters
such as the impedance model or the chromaticity.
Nevertheless, a comparison between weak-strong, featur-
ing no coherent beam-beam modes, and strong-strong
simulations showed that this strong instability should not
occur in the absence of coherent beam-beam modes.
This observation shows their importance in the process
driving this instability and tends to confirm the hypo-
thesis of the mode coupling instability involving coherent
beam-beam modes.
Finally, we performed multibunch simulations as rel-

evant for LHC operation confirming the results obtained
with the reduced single bunch approximation, i.e., an
appropriate combination of transverse damper and chro-
maticity should allow one to suppress these instabilities.
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