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The magnetic field of a staggered-array undulator using a bulk high-temperature superconductor is
calculated by analytical and numerical methods. Analytical formulas for the undulator field and the
solenoid field required to generate the undulator field are derived from a simple two-dimensional model.
The analytical calculation shows the degree of dependence of these fields on the undulator parameters, the
generation of a high undulator field proportional to the critical current density of the bulk superconductor,
and the good tunability of the undulator field over a wide range of values. The numerical calculation is
performed in a three-dimensional geometry by two methods: the center field and energy minimization
methods. The latter treats the current distribution inside the bulk, whereas the former neglects it as a natural
extension of the analytical model. The calculation also reveals the dependence of the fields on the undulator
parameters arising from the current distribution. From the comparison with experimental results, we find
that the latter method reproduces the experimental results well, which indicates the importance of the
current distribution inside the bulk. Therefore, we derive a semiempirical formula for the required solenoid
field by modifying the analytical formula using the numerical results so as to include the effect of the
current distribution. The semiempirical formula reproduces the numerical result with an error of 3%.
Finally, we estimate the magnetic performance of the undulator as an example of using the formulas and
values presented in this paper. The estimation shows that an undulator field twice as large as that of the
present in-vacuum undulator but with an equal period and gap can be obtained at a temperature of
approximately 20–40 K, and that deflection parameters (K values) of 1 and 2 can be achieved with periods
of 5 and 10 mm at approximately 4–20 K.
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I. INTRODUCTION

Synchrotron radiation from a relativistic electron beam
passing through an undulator, i.e., undulator radiation, and
free electron lasers (FELs) are crucial to a wide range of
scientific applications. The fundamental wavelength of
undulator radiation and FELs depends on the electron
beam energy E, undulator period λu, and undulator field
strength B0. As undulators had typically had periods of cm
order, the only way to obtain bright undulator radiation in
the hard x-ray region (10–25 keV) had been to use high-
energy electron beams in large synchrotron facilities such
as the European Synchrotron Radiation Facility in France
(E ¼ 6 GeV ), Advanced Photon Source in the U.S.

(7 GeV), and SPring-8 in Japan (8 GeV). A demonstration
of 4.6 keV x-ray generation from the 2.584 GeV synchro-
tron in the National Synchrotron Light Source was per-
formed with an 11-mm-period undulator [1]. Since then,
moderate-energy synchrotron facilities with short-period
undulators, such as the Swiss Light Source in Switzerland
(E ¼ 2.4 GeV, λu ¼ 17 mm), DIAMOND in the U.K.
(3 GeV, 21 mm), and SOLEIL in France (2.75 GeV,
20 mm), have been constructed [2–4]. In these facilities,
the fundamental wavelengths of undulator radiation reach
the x-ray region; harmonics from the 5th through 11th
reach the hard x-ray region. This scheme also prevails for
FELs. The first x-ray laser of 0.12 nm (10 keV) was
achieved at LCLS in the U.S. (15 GeV, 30 mm) [5], and
such lasers have already been used for x-ray science [6].
Subsequently, a 0.06 nm (20 keV) FEL was achieved at
SACLA in Japan (8 GeV, 18 mm) [7]. Recently, an x-ray
FEL using the 3rd and 5th harmonics from a 3 GeVelectron
beam source and a 15-mm-period undulator has been
proposed [8]. As can be concluded from the above,
short-period undulators require lower electron beam ener-
gies, meaning lower costs, a shorter construction time, and
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less effort, and also provide opportunities for scientists to
use hard x rays in various applications. The undulator field
strength, although not a determining parameter for the
wavelength, must be sufficiently high to maintain the
brilliance of the radiation, especially that of the harmonics,
and the gain of amplification in FELs at a high level with a
short-period undulator and low-energy electron beam. In
addition, the use of multi-MeV gamma rays from high-
field, short-period undulators to generate polarized positron
beams via particle-antiparticle pair production in future
linear colliders has been proposed [9].
To realize higher-field, shorter-period undulators, several

different types of undulator have been studied. In-vacuum
undulators (IVUs) [10], which have specially coated
permanent magnet (PM) arrays inside a vacuum vessel,
have been used in the aforementioned demonstration and in
moderate-energy facilities. Cryogenic PM undulators
(CPMUs) [11], in which the residual flux and coercivity
of PMs are enhanced by cooling the magnets in an IVU to
100–150 K, have been developed and put in use. An
undulator using a low-temperature superconductor (LTS),
generally called a superconducting undulator before
high-temperature superconductor (HTS) undulators were
invented, has come under review. The insertion of LTS
wires in a vacuum vessel has been proposed and demon-
strated by Hezel et al. [12], who attempted to remove the
thick wall of thermal insulation between the electron beam
trajectory and the LTS wires.
Recently, bulk HTSs have been extensively studied; a

trapped field of over 17 T was reported in a 26-mm-
diameter, 15-mm-thick bulk HTS at 29 K [13]. An
undulator using a bulk HTS has several advantages over
other undulators: (1) a bulk HTS can produce fields over 10
times stronger than those of PMs even when the PMs are
cooled; (2) the magnetic properties of bulk HTSs are
continuing to improve, whereas those of PMs have reached
a limit; (3) HTSs are more suitable than LTSs in high-
current accelerators, in which the thermal input from the
electron beam and the radiation itself is high; (4) assembly
is easier than for an undulator using LTSs. However, to use
bulk HTSs in undulators, one has to investigate methods
of magnetizing bulk HTSs and generating a sinusoidal
magnetic field, i.e., an undulator field. So far, various
approaches to achieving this have been proposed.
Cryoundulator plus (CU+) [14], in which bulk HTS rings
are mounted on PMs to enhance the magnetic field in a
CPMU, has been proposed and demonstrated. A super-
conducting PM undulator [15,16], in which bulk HTSs are
magnetized by a dipole field perpendicular to the beam
axis, has also been developed.
We previously proposed and developed a bulk HTS

staggered array undulator (BHSAU) [17], a schematic
diagram of which is shown in Fig. 1. The principle of
operation is as follows. When a solenoid field is applied to
the bulk HTSs in the negative-z direction, superconducting

current loops are established to negate the change in the
magnetic field inside the bulk HTSs; therefore, the bulk
HTSs are magnetized in the positive-z direction and thus
generate a sinusoidal magnetic field in the y direction.
The BHSAU is based on a conventional staggered-array
undulator (SAU) [18], in which soft magnetic blocks are in
a staggered-array configuration instead of bulk HTSs.
Therefore, the BHSAU inherits the properties of an
SAU, i.e., tunability of the undulator field by the solenoid
field. The advantages of the BHSAU are as follows.
Because the undulator field is generated by bulk HTSs,
which are magnetized in the same direction, one external
solenoid can magnetize all the bulk HTSs and control the
undulator field by controlling the magnetization of the bulk
HTSs. Thus, a mechanical structure to control the gap is not
required. Considering the large attraction force in a high-
field undulator and the fact that cracking of the bulk HTSs
occurred in the demonstration experiment of CU+, this is a
major advantage. So far, the demonstration of high-field
generation at 6 K has been performed. An undulator field of
B0 ¼ 0.85 T was achieved at 6 K in a 6-periodic-number,
10-mm-period, 4-mm-gap prototype with a 2 T super-
conducting solenoid and a helium gas cooling system [19].
In the demonstration, we could only use a 2 T solenoid and
rather small bulk HTSs because of budgetary restrictions.
Even stronger undulators can be expected using a stronger
solenoid.
Owing to a lack of formulas or computation codes to

reproduce the undulator field of the BHSAU, the character-
istics of the field inside the BHSAU have not been well
studied. For a conventional PM undulator, the Halbach
formula [20] can be used to easily estimate the undulator
field. A three-dimensional magnetic field computation
code, RADIA [21], which was developed in ESRF
Insertion Device Laboratory, is commonly used to design
undulators using PMs, ferromagnetic pieces, and/or
electromagnetic coils. For an undulator using bulk
HTSs, conventional methods cannot be used because of
the difficulty of calculating the magnetization of a bulk
HTS. The superconducting loop current inside a bulk HTS
depends on the critical current density Jc, the current
distribution, and the history of the applied field after the
superconducting transition. To further complicate matters,
Jc at a certain point in a bulk HTS depends on the magnetic
field at the point. For example, values of Jc for a small

FIG. 1. Schematic view of BHSAU.
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sample of QMG-GdBCO measured by the dc magnetiza-
tion method are listed in Table I. Here, QMG-GdBCO from
Nippon Steel Corporation [22] was the bulk HTS used in
the experiment. To calculate the magnetization of bulk
HTSs, there are multiple steps depending on the required
accuracy. The first step is to use a simple current distri-
bution that does not vary in the z direction and a constant Jc
corresponding to the average critical current density in all
bulk HTSs. The second is to use a current distribution that
varies in the z direction and a constant Jc. The third is to use
a current distribution that varies in the z direction and a Jc
that depends on the field.
In this paper, the magnetic properties of the BHSAU are

studied. We develop an analytical model and derive
analytical formulas for the undulator field and the solenoid
field required to generate the undulator field. A constant Jc
and a simple current distribution are assumed. The basic
characteristics of the fields are obtained using the formulas.
Moreover, we develop a three-dimensional numerical
model to precisely calculate these fields. The numerical
computation is performed by two methods to investigate
the effect of the current distribution. One method is to
assume a simple current distribution, and the other method
is to treat the z-direction distribution of the current. A
comparison with experimental results is also made to
evaluate the methods. To precisely estimate the fields
without a large computation cost, a semiempirical formula
for the solenoid field is derived from the analytical formulas
using the result of comparing the analytical and numerical
calculations. Finally, we estimate the magnetic perfor-
mance of the undulator as an example of using the
formulas.

II. METHOD

A. Analytical calculation

Here, we discuss the simple two-dimensional model
used for the analytical calculation. If we assume that the
bulk HTSs in the BHSAU are infinitely long in the x
direction and that the BHSAU has an infinite periodic
number, the magnetic field can be calculated under a two-
dimensional approximation. Figure 2 shows the geometry
used for the calculation. Here,Dy andDz are the height and

thickness of the bulk, dy is the depth of the layer to which
the current penetrates, and the coordinates of points P and
Q are ðz; yÞ ¼ ð0; ðDz þ gÞ=2Þ and (λu=4, 0), respectively.
The centers of the bulk HTSs in the upper side are located
at z ¼ nλuðn ¼ …;−1; 0; 1;…Þ and those in the lower side
are located at z ¼ ðnþ 1=2Þλuðn ¼ …;−1; 0; 1;…Þ. The
amplitude of the undulator field is equal to the y component
of the field at point Q, i.e., B0 ¼ ByðQÞ. On the basis of
Bean’s critical state model of a type-II superconductor [23],
we assumed the following. The loop current flows inside
the bulk from its outer edge; the layer containing the
flowing current has depth dy. The current density at all
points is equal to the average constant critical current
density, Jbulkc , over the entire bulk. The loop current inside
the superconductor flows to negate the change in the
solenoid field; therefore, the z-direction field at point P
is equal to the change in the solenoid field after the
superconducting transition, i.e., BzðPÞ ¼ −ΔBs.
We next derive analytical formulas from the model.

Using the two-dimensional Biot-Savart law, we have

B0 ¼ μ0Jbulkc λu
X∞
n¼1

sin ðnkuDz=2Þ
n2π2

× e−nkug=2ð1 − e−nkuðDy−dyÞÞð1 − e−nkudyÞ
ð0 ≤ dy < Dy=2Þ; (1)

ΔBs¼−
μ0Jbulkc

2
½dyþTðλu;g;Dz;Dy;dyÞ�; T=dy < 10−3:

(2)

Here, μ0 is the vacuum permeability and ku is the wave
number of the undulator field, i.e., ku ¼ 2π=λu. Writing
Dz ¼ λu=2 and assuming Dy ≫ λu, then, in practical units,

TABLE I. Critical current density of QMG-GdBCO under
magnetic field. Measurements were carried out by the dc
magnetization method with a small sample (∼0.2 mm3).

T [K] Jc [kA=mm2]
(Tc ¼ 94 K) B ¼ 0 T 2 T 4 T 6 T

4 24 18 13 12
10 16 11 8.7 8.2
20 9.4 5.4 5.3 5.3
40 3.5 2.2 2.4 2.2
60 1.5 0.86 0.60 � � �

FIG. 2. Geometry used for analytical calculation.
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B0 ∼ 0.13Jbulkc λu exp

�
−π

g
λu

��
1 − exp

�
−

4πΔBs

μ0Jbulkc λu

��
:

(3)

Here, the units of Jbulkc and λu are kA=mm and mm,
respectively.
Next, we derive formulas to calculate the control curve of

B0. This is the ΔBs-B0 curve used to control B0 for
wavelength tuning once B0 reaches the target value of
the operation. From Bean’s critical state model, if we
decrease ΔBs from the target value, current in the reverse
direction starts to flow from the outer edge of the bulk.
Defining d↓y as the depth of the layer containing the current
flowing in the reverse direction, then the magnetic field is
described by the superposition of the magnetic fields
generated by the positive current (whose depth is dy)
and the negative current (whose depth is d↓y ):

B↓
0 ðd↓y Þ ¼

�
B0ðJc;dyÞ− 2B0ðJc;d↓y Þ ð0< d↓y ≤ dyÞ
−B0ðJc;d↓y Þ ðdy < d↓y ≤Dy=2Þ:

(4)

The formula forΔB↓
s ðd↓y Þ is identical. If we stop decreasing

ΔBs and start to increase it again, current with the same
direction as the original current starts to flow from the outer
edge of the bulk. Defining d↑y as the depth of the layer in
which this current flows, then the magnetic field is
described by the superposition of the magnetic fields
generated by the positive current (whose depths are dy
and d↑y ) and the negative current (whose depth is d↓y ):

B↑
0 ðd↑y Þ¼

8>>>>>>>>>>><
>>>>>>>>>>>:

B↓
0 ðd↓y Þþ2B0ðJc;d↑y Þ

ð0≤ d↑y ≤ d↓y Þ
B0ðJc;dyÞ

ðd↓y <d↑y ≤ dyÞ
B0ðJc;d↑y Þ

ðdy <d↑y ≤Dy=2Þ:
(5)

The formula for ΔB↑
s ðd↑y Þ is identical.

B. Numerical calculation

1. Three-dimensional model of bulk

In this study, the path of the loop current inside the
bulk is fixed and spatially discretized. Figure 3 shows the
three-dimensional model of the rectangular bulk (upper)
and D-shaped bulk (lower) considered in this study. The
rectangular bulk is used for the comparison of the
two methods and the comparison with the analytical
calculation. Because a sufficiently large Dx (Dx ¼ 10λu)

is assumed for the rectangular bulk, the calculation geom-
etry is similar to that used in the two-dimensional analytical
calculation (Dx → ∞). Also, Dy ¼ 2λu is commonly used
in the comparison between the analytical and numerical
calculations. Here, from Eq. (1), the maximum B0 when
Dy ¼ 2λu is over 99% of that when Dy → ∞. The D-
shaped bulk has the same shape as the bulk used in the
experiment (R ¼ 12:5 mm) and is used for the comparison
between the experiment and the numerical calculation. The
left figures are cross-sectional views in the yz plane and the
right figures are cross-sectional views in the xy plane. Here,
Nz and Ny are the numbers of divisions of the bulks in the z
and y directions, respectively. The stars indicate the center
of the bulks. We assumed that the loop current flows only in
the plane perpendicular to the z axis. This is because the z
component is dominant in the solenoid field and in a
field generated on a bulk HTS by other bulk HTSs.
According to the assumption of Bean’s critical state model
for a type-II superconductor, the critical current density is
constant throughout the bulk; thus, each loop has an equal
current:

Iij ¼ Ic ¼ Jbulkc
DzDy

2NzNy
ð0 ≤ i < Ny; 0 ≤ j < NzÞ: (6)

2. Center field method

The basic idea of the center field (CF) method is the
same as that used in the analytical calculation. The loop
current flows to negate the change in the solenoid field at
the center of the bulk.

FIG. 3. Three-dimensional model of bulk HTS.
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The key differences of this method from the analytical
calculation are the finite periodic number and, for the D-
shaped bulk, the three-dimensional geometry. Because of
the finite periodic number, we assumed that each bulk HTS
has a different depth at which the current flows,
dy;GðG ¼ 1;…; 2NÞ. Here, N is the periodic number of
the undulator and 2N is the number of bulks. We also
assumed that each depth is determined by the change in Bz
at the center of each bulk HTS, Bzðrc;GÞ. By defining BGH
as the magnetic field generated by theHth bulk at the center
of the Gth bulk, we obtained Bzðrc;GÞ as

Bzðrc;GÞ ¼
�X2N
H¼1

BGHðdy;HÞ
�
z

: (7)

By using the above-mentioned assumption Bzðrc;GÞ ¼
−ΔBs,

�X2N
H¼1

BGHðdy;HÞ
�
z

þ ΔBs ¼ 0: (8)

To determine all dy;G, an iterative computation was
performed.
In the computation, dy is discretized by ny. Here, ny is

the discretized depth of the layer in which the current flows
(0 ≤ ny ≤ Ny). Moreover, to obtain a high-precision result
with a small number of divisions in the y direction (Ny), we
assumed that the current Ic flowed in ny lines and that a
current of αIcð0 ≤ α < 1Þ flowed in the (ny þ 1)th line.
Here, α is calculated from the residual ΔBs − Bzðrc;GÞ in
each iteration. Then, the field at the center of the Gth bulk
generated by loop ij in the Hth bulk is obtained using the
discretized Biot-Savart law:

BGHij ¼
μ0Ic
4π

XNc

p¼1

Δsp × r

r3
: (9)

Here, Nc is number of the line elements (the number
of divisions of the loop), Δsp is the pth line element of
loop ij in the Hth bulk, and r is the distance between rc;G
and the center of the line element. Then, the field BGH is
expressed by

BGHðny;HÞ ¼
XNz

i¼1

�Xny;H
j¼1

BGHij þ αBGHiðny;Hþ1Þ

�
: (10)

3. Energy minimization method

The energy minimization (EM) method was proposed
by Badía et al. to determine the critical state in which a
system organizes itself [24]. Sanchez and Navau applied
the method to a single bulk HTS with a finite height
and cylindrical symmetry [25]. The shielding current

distribution of a finite cylinder can be obtained with a
constant Jc or field-dependent Jc under a uniform/
nonuniform applied field.
In this study, to use the EM method for the three-

dimensional problem of bulk HTSs with an arbitrary shape,
we assumed the path of the loop current and used the
discretized Neumann formula to compute the inductance.
The EM method is as follows. The energy required for

the current to flow is the sum of the work required for the
current to flow against the magnetic field induced by other
loops and the energy obtained upon the vanishing of the
external field. For current Iij to flow in loop ij, the required
energy is written as

Eij ¼ IijðΦint
ij − Φext

ij Þ

¼ Iij

�XNyNz

kl

Mij;klIkl −
Z
Sij

BextdS

�
: (11)

Here Φint
ij is the magnetic flux on the surface surrounded by

loop ij generated by the other loops, Φext
ij is the magnetic

flux by the external field on the same surface, and Mij;kl is
the mutual inductance (ij ≠ kl) or self-inductance (ij ¼ kl)
between the loops. If a constant Jc is assumed, Iij and Ikl
are both equal to Ic. The calculation procedure is as
follows: (1) Calculate Eij for every loop that does not
have a current. (2) Finish the calculation if there is no loop
with Eij < 0. (3) Find the loop with the minimum Eij.
(4) Flow a current in the loop. (5) Repeat the calculation
from step (1). The current distribution after the calculation
shows the critical state.
The model can be applied to three-dimensional problems

with bulk HTSs of an arbitrary shape if the path of the loop
current is determined in advance. We assumed the current
path shown in Fig. 3 in common with that in the CF
method. The current flows in a fixed plane normal to the z
axis. This is similar to the thin-film approximation used in
finite element analysis for bulk HTSs. However, in the thin-
film approximation, the current path is free in the plane
normal to the z axis; in this model, the current path is fixed
in the plane to calculate the inductances in advance.
For a loop current with an arbitrary shape, it is difficult

to find analytical formulas for the mutual inductance
and self-inductance. Therefore, we numerically calculated
the mutual inductance and self-inductance. The vector
potential generated by loop kl at position r is described
by the Biot-Savart law:

AklðrÞ ¼
μ0Ikl
4π

I
Ckl

ds2
r

: (12)

Here Ikl is the current flowing in loop kl and Ckl is
the integration path on the loop. The magnetic flux
generated by loop kl on the surface surrounded by loop
ij is expressed by
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Φij;kl ¼
I
Cij

Akl · ds1

¼ μ0Ikl
4π

I
Cij

I
Ckl

ds1 · ds2
r

: (13)

By discretizing the formula, we obtain the mutual induct-
ance between loops ij and kl:

Mij;kl ¼
Φij;kl

Ikl
¼ μ0

4π

XNc

p

XNc

q

ΔsijpΔsklq
rpq

: (14)

Here Δsijp and Δsklq are respectively the pth and qth line
elements of loops ij and kl, rpq is the distance between the
centers of the two elements, and Nc is the number of line
elements (the number of divisions of the loop). The self-
inductance of loop ij is calculated as the mutual inductance
between loop ij and a slightly larger copy of loop ij, which
is at a distance of 0.78Dy=2=Ny from loop ij. For a torus
with major radius Rij and minor radius Dy=2=Ny=2, the
calculation using this distance matches the analytical
solution of the self-inductance. For a bulk HTS with an
arbitrary shape, we define Rij as the smallest distance in the
y direction between loop ij and the center of the bulk HTS
(the star in Fig. 3).

III. CALCULATION RESULTS AND COMPARISON
WITH EXPERIMENT

A. Analytical results

Equation (3) shows that the BHSAU has a much higher
undulator field than conventional undulators at a high
critical current density. As examples, the maximum undu-
lator fields obtained with three representative parameter
sets are shown in Table II. One can obtain the maximumB0,
i.e., B0;max, by substituting the value of Jc listed in Table I.
Here, parameter set (a) comprises values for the IVU in
SACLA, (b) comprises those in our experimental setup, and
(c) comprises those giving our target period.
Figure 4 shows the dependence of B0 on ΔBs at λu ¼

10 mm and g ¼ 4 mm. The upper figure shows the initial
curves for various Jbulkc . The plot was obtained from
Eqs. (1) and (2) by using dy as a parameter. The lower
figure shows (1) the initial curve and sample control curves,
i.e., (2) a curve to decrease B0 and (3) a curve to increase B0

again. The plot was obtained from Eqs. (4) and (5) using dy,

d↓y , and d
↑
y as parameters. Here, the initial curve is the curve

when the bulk is magnetized after the superconducting
transition, and the control curves are the curves used to tune
the wavelength of the undulator radiation during operation.
There was hysteresis in the ΔBs-B0 curve.
Table III shows values of B0 and the corresponding

values of ΔBs required to obtain each B0. Here, Γy is
defined as Γy ¼ 2dy=Dy and is the depth of the field-
penetrated layer in which the current flows. The values in
this table have an error within 2% over a wide range of
conditions (0.1 ≤ g=λu ≤ 10).

TABLE II. Examples of maximum B0 and ΔBs (analytical).

λu [mm] g [mm]
B0;max=Jc

[T=kA=mm2]
ΔBs;max=Jc
[T=kA=mm2]

(a) 18 3.6 1.26 13.4
(b) 10 4 0.364 7.45
(c) 5 1 0.350 3.72

FIG. 4. Dependence of B0 on ΔBs (analytical, λu ¼ 10 mm,
g ¼ 4 mm). The upper figure shows the initial curves for various
Jbulkc . The lower figure shows the initial curve and the sample
control curves.

TABLE III. Examples of values of B0 and the corresponding
values of ΔBs required to obtain each B0 (analytical, B0=B0;max
has an error of 2% in the range 0.1 ≤ g=λu ≤ 10).

Γy [%] B0=B0;max [%] ΔBs=ΔBs;max [%]

5 29 4.2
10 48 8.5
15 63 12.7
20 72 17.0
25 80 21.2
30 86 25.5
100 100 100
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B. Numerical results

Figure 5 shows a cross-sectional view of the current
distribution (x-direction current in zy plane) in the BHSAU
with N ¼ 6 obtained by the EM method. The black area
indicates where the current is flowing and the gray area
indicates where the current is not flowing. The depths of the
layer in which the current flowed at the bulk edge and bulk
center were markedly different, even in the bulk near the
undulator center. The bulk HTSs at the end of the undulator
showed an asymmetric distribution of the depths. The depth
of the layer in which the current flowed in the single bulk
was flat in the calculation by the CF method, as was
expected from the assumption. However, without relation
to the difference in the current distributions, the total
amounts of the current in the bulk near the center had at
most 1% difference between the CF and EM methods.
Figure 6 shows the dependence of B0 on the parameter

f, which is defined by f ¼ 1 −Dz=λu: the ratio of the
horizontal gap between two bulk HTSs to the period. The
numerical calculation was performed by the CF and EM
methods with N ¼ 12. To compare the numerical and
analytical results, the numerical (analytical) fields at various
f were normalized by the numerical (analytical) value for
f ¼ 0.5. In the analytical calculation and the numerical
calculation by the CF method, for both f < 0.5 and f > 0.5
almost the same degradation of B0 was observed for all
ΔBs. In contrast, in the numerical calculation by the EM
method, the f > 0.5 condition sometimes resulted in a
higher B0 than the f ¼ 0.5 condition at low ΔBs.
Figure 7 shows the difference in the analytical and

numerical values ofΔBs required for the same B0. Here, the

superscripts An and Nu indicate analytical and numerical
values, respectively. The numerical calculation was per-
formed by the EM method with N ¼ 12. BAn

0 and ΔBAn
s are

the values respectively obtained by Eqs. (1) and (2). In the
numerical calculation, a larger ΔBs than the analytical
value was required to generate the same B0, particularly for
low B0. For f ¼ 0.5, the numerical value of ΔBs required
was up to 50% higher than the analytical value. For
f > 0.5, the requirement was moderate at low B0. The
divergence at high B0 for f > 0.5 means that B0ðfÞ
(f > 0.5) cannot reach B0;maxðf ¼ 0.5Þ.

C. Comparison between experiment and calculation

The experiment was performed with a 6-periodic-
number, 10-mm-period, 4-mm-gap prototype with a 2 T
superconducting solenoid and a helium gas cooling system.
To equalize the geometry, the calculation was performed
with a D-shaped bulk with the same size as that used in the
experiment, f ¼ 0.5, N ¼ 6, λu ¼ 10 mm, and g ¼ 4 mm.

FIG. 5. Cross-sectional view of current distribution (EM
method). The black area indicates where the current is flowing.
The gray area indicates where the current is not flowing.

FIG. 6. Dependence of B0 on f (analytical, CF, and EM,
g=λu ¼ 0.4). For comparison, the analytical (numerical) fields
at various f are normalized by the analytical (numerical)
value for f ¼ 0.5.
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The experimental results have an error of 4% owing to the
measurement error. The setup of the experiment is
described in Ref. [19].
Figure 8 shows a comparison of the experimental and

calculated solenoid field dependences of the undulator
field. The experimental results show data obtained at
T ¼ 20, 40, and 60 K. The calculation results show data
obtained at Jc ¼ 10, 5, 2, and 1 kA=mm2. The green
dotted lines indicate the results obtained by the CF method
and the pink solid lines indicate the results obtained
by the EM method. The initial gradients of the curves,
dB0=dΔBsjΔBs¼0 obtained by the experiment were 0.24 for
all T, and those obtained by the EM and CF methods were
0.24 and 0.4, respectively, for all Jbulkc .
Figure 9 shows a comparison of the experimental and

calculated field distributions of By along the z axis. In the
experiment, after the prototype was cooled to 20 K under a
solenoid field of Bs ¼ −2 T, the solenoid field was

changed to Bs ¼ 0 T (ΔBs ¼ þ2 T) at T ¼ 20 K. This
is known as field cooling. The calculation was performed
by the EM method with Jc ¼ 5 and 10 kA=mm2.

IV. DISCUSSION

A. Basic characteristics of fields

Here we clarify the characteristics of the BHSAU from
the analytical calculations. Equation (1) shows that the
undulator field of the BHSAU has common properties with
that of a conventional Halbach-type PM undulator [20],
such as the exponential dependence of the field on the gap
and on the height of the magnet. Meanwhile, the undulator
field of the BHSAU has the unique property that it depends
on Jbulkc , λu, and dy. Equation (3) also shows that the
BHSAU has a much higher undulator field than conven-
tional undulators at a high Jbulkc . Although its performance
will be estimated later, here we introduce one example. If Jc
is over 2 kA=mm2, B0;max under condition (a) is twice as
large as the peak field in the present IVU (B0 ¼ 1.30 T at
λu ¼ 18 mm, g ¼ 3.6 mm). From Fig. 4, we obtain two
findings. One is that the controllability of B0 by the
solenoid is maintained even in the saturation region
in which B0 is close to B0;max. This is a feature different
from a conventional SAU, which has little controllability in
the saturation region, and is beneficial for tuning the
wavelength. The other is that the ΔBs required to obtain
B0;max at a high Jc is greater than that for present
commercially available solenoids. Fortunately, as shown
in Table III, there is a “reasonable operation range” in
which ΔBs=ΔBs;max is much less than B0=B0;max. For
example, almost half the value of B0;max, B0=B0;max ¼
48% can be obtained even when ΔBs=ΔBs;max ¼ 8.5%.
Thus, for high Jc, the undulator should be operated in the
reasonable operation range.

B. Dependence on f

We next discuss the additional properties of the BHSAU
obtained from the numerical calculation by the EM method

FIG. 7. Difference in the analytical and numerical values of
ΔBs required for the same B0 (analytical and EM, g=λu ¼ 0.4).
The superscripts An and Nu indicate analytical and numerical
values, respectively. The numerical calculation was performed by
the EM method with N ¼ 12.

FIG. 8. Comparison of experiment and calculation: dependence
of B0 on ΔBs.

FIG. 9. Comparison of experiment and calculation: By distri-
bution along the z axis.
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that were not observed in the analytical calculation and the
numerical calculation by the CF method. One of the
differences is the dependence of B0 on f. As shown in
Fig. 6, a higher B0 was observed for f > 0.5 than when
f ¼ 0.5 for the same value of ΔBs. Because the CF method
and the analytical calculation did not exhibit this phenome-
non, it is not due to the effect of the finite periodic number
but to the current distribution inside the bulk HTSs shown
in Fig. 5. Here we discuss this in detail. Currents with two
different directions that are symmetric with respect to the z
axis generate equal values of By on the z axis with opposite
signs. When f < 0.5, the number of such pairs increases
with increasing bulk thickness; therefore, B0 decreases.
However, currents with two different directions that are
symmetric with respect to a certain point on the z axis
generate the same By at the point. When f > 0.5, the
numbers of such pairs decrease with decreasing bulk
thickness; therefore, B0 also decreases when f > 0.5,
similarly to when f < 0.5. However, only in the EM
method is there an effect that increases B0 when
f > 0.5. In the EM method, the depth of the layer in
which the current flows is large at the edge of the bulk. If
the position of the edge moves in the z direction to a point
far from the field peak, the absolute field at the point
decreases, although the By component increases in some
cases. Therefore, in the EM method, B0 increases or
decreases depending on the current distribution at a certain
ΔBs when f > 0.5. This dependence on f is opposite that
for a conventional SAU, in which the undulator field is high
at f < 0.5 [26].

C. Effect of current distribution

Here we evaluate the agreement between the calculation
and experiment. It is difficult to compare the By profile or
B0 at a single value of ΔBs without the exact value of the
average Jc in the experiment. Thus, we used the depend-
ence curve of B0 on ΔBs. As is clear from Eqs. (1) and (2),
and as shown in Fig. 4, the shape of the ΔBs-B0 curve and
its initial gradient dB0=dΔBsjΔBs¼0 do not depend on Jc but
on the geometrical parameters. This was also true in the
numerical calculation even when the depth of the layer in
which the current flowed had a distribution in the z
direction inside the bulk, as shown by the numerical
ΔBs-B0 curve in Fig. 9. The only exception is the case
that the current distribution at each different T had a
different shape for an equal ΔBs=ΔBs;max. This is caused
when the shape of the Jc-B curve changes markedly with T.
However, we know from the dc magnetization measure-
ment that the shape of the Jc-B curve did not change
markedly with T and also this effect did not appear in the
initial gradient of the experimental ΔBs-B0 curve in Fig. 9.
Thus, by comparing the initial gradient, we can discuss the
agreement without knowing the exact value of Jc.
From the comparison between the calculation and

experiment, we clearly found that the results obtained by

the EM method showed agreement with those of the
experiment. The initial gradients of the curves in the
experiment and the EM method are identical, whereas
the initial gradient in the CF method is 1.7 times larger than
that in the experiment. Moreover, the dependence curve of
B0 onΔBs in the calculation by the EMmethod is similar to
that in the experiment. From the comparison, we can
estimate the range of the average Jc in the experiment.
Because the average Jc changes with the field, it is difficult
and meaningless to estimate the exact value to fit the curve.
The estimated average ranges of Jc were 5–10 kA=mm2 at
T ¼ 20 K, 2–3 kA=mm2 at T ¼ 40 K, and approximately
1 kA=mm2 at T ¼ 60 K . These ranges are almost within
the ranges from JcðB ¼ 0Þ to JcðB ¼ 2TÞ in Table I, and
are thus thought to be reasonable. From these findings, we
can conclude that the results of the EM method show
agreement with those of the experiment. Additionally, we
found that the macroscopic Jc in the bulk HTSs was almost
equal to that of the small sample. This means that the large
degradation due to the difficulty of manufacturing large
bulk HTSs or cracking did not occur.
The reason for the agreement is next discussed. The

geometrical parameters N, λu, g, Dx, Dy, and Dz and the
bulk shape were equal in the experiment, the CF method,
and the EM method. As stated in Sec. III A, the total
amounts of current inside the bulk at the same ΔBs are only
slightly different for the two calculation methods. The only
remaining factor is the geometrical shape of the current,
i.e., the current distribution inside the bulk. Therefore, we
conclude the following. The reason why the EM method
closely reproduced the experiment is that it closely repro-
duced the current distribution in the experiment. The
current distribution inside the bulk must be considered
to precisely estimate the field inside the BHSAU.
We next discuss the results shown in Fig. 9. On the basis

of the above discussion, the calculation was performed by
the EM method with Jc ¼ 5 and 10 kA=mm2. The differ-
ence between the results obtained experimentally and by
calculation for both Jc is less than 5% except near the peak
at z ∼ −32 mm. By considering the fact that the measure-
ment has an error of 4%, the difference of 5% is not large.
The difference near the peak at z ∼ −32 mm is about 30%.
There are two possible reasons for this large difference.
One is that the individual differences in Jc among the bulk
HTSs particularly affect peaks near the ends of the
undulator. The other is that the current distribution cannot
be reproduced well near the ends of the undulator even by
the EM method. The former effect can be included in the
calculation by including the individual differences in Jc
among the bulk HTSs. For the latter case, it is difficult
to measure the actual current distribution inside the
bulk HTSs. However, the difference can be evaluated by
comparing a much larger amount of data, i.e., the By and Bz
distributions in three-dimensional space near the ends of
the undulator. If a difference appears, the assumption that
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the current flows only in the plane perpendicular to the z
axis should be changed in a future calculation.
Although the amplitude of the undulator field can be

obtained by the empirical formulas derived in the next
section, the numerical code remains useful for future
research. As PMs have individual differences in magneti-
zation, bulk HTSs also have differences in their critical
current density, which cause the errors in the undulator
field, such as so-called phase error and residual field
integrals. Methods of compensating for these errors are
practically important and the next topic of our research. It is
not difficult to modify the numerical code to treat individ-
ual differences in the critical current density of bulk HTSs.
Therefore, the numerical code can be used to study
methods of compensating for these errors.

D. Empirical formulas

Next we modify the analytical formulas by using the
results obtained by comparing the numerical and analytical
calculations. The maximum B0 in the numerical calculation
is equal to that in the analytical calculation; therefore, the
target range of the modification is the reasonable operation
range discussed previously, and modification should
be applied to the formula for ΔBs but not to the formula
for B0:

BNu
0 ¼ BAn

0 ; (15)

ΔBNu
s ¼ ð1þ αÞΔBAn

s : (16)

As shown in Fig. 7, the factor α is at most 50%. However, if
a suitable f is chosen for the target operation point, it can be
less than 5%. We fit the curves by the empirical formula,

α ¼ aþ b
BAn
0

BAn
0;max

þ c exp

�
d

BAn
0

BAn
0;max

�

ðfor a; b; c; and d; see Þ: (17)

The fitting results of the parameters a, b, c, and d are shown
in Table IV. The error of the formula is less than 1% in the
effective range shown in Table IV.
Additionally, we consider the effect of the periodic

number. Because we used N ¼ 12 in the calculation for
Fig. 7, the required ΔBs should be modified as

ΔBNu
s ðNÞ ¼ βðNÞ × ð1þ αÞΔBAn

s : (18)

Here, β is a function of the periodic number, and the right
term of the multiplication is the value when N ¼ 12. By
fitting the dependence curve of ΔBs on N for
B0=BAn

0;max ¼ 50%, we have

βðNÞ ¼ 1.098 − 1.060
1

N
− 1.519

1

N2
: (19)

The error of this formula is less than 1% in the range of
N ≥ 6 and 20 ≤ B0=BAn

0;max ≤ 90.
Equation (18) reproduces the numerical B0 andΔBs with

an error of less than 2% for Dy ¼ 2λu, g=λu ¼ 0.4, N ≥ 6,
and the effective B0=B0;max range shown in Table IV.
Moreover, because it is clear from Table III that the shape
of theΔBs-B0 curve has a difference of less than 2% among
various values of g=λu, this modified formula can be
applied to a wide range of conditions (0.1 ≤ g=λu ≤ 10)
with an error of less than 3%.

E. Usage of formulas and performance estimation

Here we estimate the magnetic performance of the
BHSAU as an example of using the formulas and the
values obtained above. As examples of performance
estimation, we calculated two patterns with λu ¼ 18 mm
and g ¼ 3.6 mm by targeting a field twice as large as that
generated in the IVU but with an equal period and gap.
Next, we calculated two patterns with λu ¼ 10 mm and
g ¼ 4 mm by targeting K ¼ 2 and two patterns with
λu ¼ 5 mm and g ¼ 1 mm by targeting K ¼ 1 and 2.
Here, K is called the deflection parameter and is defined
by K ¼ eB0λu=ð2πmcÞ, where e and m are the electron
charge and mass, respectively. To obtain bright undulator
radiation, K ∼ 1–2 is required.
In Table V, we show the estimated B0, and the values of

ΔBs and the operation temperature T required to obtain
each B0. Here, ΔBs is the value for N ¼ 50. Note that Γy is
not the actual depth of the layer in which the current flows
and is simply the index in Table III. We set Jbulkc , Γy, f, and

TABLE IV. Parameters for Eq. (17).

aþ bxþ c expðdxÞ

f a b c d
Effective range
B0=B0;max [%]

0.55 0.296 −0.294 � � � � � � 20–90
0.60 0.176 −0.188 7.93 × 10−9 18.2 20–90
0.65 0.0995 −0.107 1.50 × 10−5 11.2 20–80
0.70 0.0551 −0.0346 1.47 × 10−4 9.89 20–70

TABLE V. Performances of BHSAU.

λu
[mm]

g
[mm]

Jbulkc
[kA=mm2]

Γy
[%] f

B0

[T]
ΔBs=2
[T]

T
[K] K

18 3.6
2.4 30 0.6 2.6 4.8 40 4.4
7.1 5 0.7 2.6 2.3 20 4.4

10 4
8.0 20 0.6 2.1 6.0 20 2.0

12.0 10 0.65 2.1 4.4 10 2.0

5 1
7.1 30 0.6 2.1 3.9 20 1.0

16.7 20 0.6 4.2 6.0 4 2.0
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T to satisfy the following conditions: (i) ΔBs=2 does
not exceed 6 T, (ii) Jbulkc is in the range from JcðB ¼ 0Þ
to JcðB ¼ ΔBs=2Þ at T, (iii) f is chosen to obtain a
small α. Here, we assumed the field cooling method,
i.e., the undulator is cooled to below the superconduct-
ing transition temperature under a solenoid field of
−ΔBs=2 and operated under a solenoid field of ΔBs=2.
Thus, we used Jbulkc in the range between JcðB ¼ 0Þ
and JcðB ¼ ΔBs=2Þ.
As shown in the table, an undulator field twice as large as

that of the present IVU but with an equal period and gap
can be obtained at temperatures of approximately 20–40 K.
Moreover, K ¼ 1 or 2 can be achieved with a short period
such as 5 or 10 mm. Because B0 of over 4 T is required to
achieve K ¼ 2 at λu ¼ 5 mm, it is impossible to achieve
this using PM undulators even with g ¼ 0. Although T ¼
4 K is required to achieve the condition of the bottom row
in Table V with currently available bulk HTSs, if the critical
current density of the bulk HTS is doubled as a result of
future material developments, the BHSAU can be operated
at approximately 20 K. We believe that the magnetic field
strength of the BHSAU is sufficiently high for future high-
field short-period undulators.

V. CONCLUSION

The magnetic field inside a BHSAU was calculated by
analytical and numerical methods to reveal its character-
istics. The analytical calculation showed that a high
undulator field could be achieved by the BHSAU at a
high critical current density and that good undulator field
tunability was maintained even in the saturation region. The
numerical calculation by the EM method, which treats the
current distribution inside the bulk HTSs, produced a
considerably different current distribution from that
obtained by the CF method, and closely reproduced the
experimental results. Thus, we found that consideration of
the current distribution is extremely important in calculat-
ing the undulator field and the required change in the
solenoid field. To precisely estimate the fields without a
large computation cost, by comparison between the ana-
lytical and numerical calculations, we obtained a semi-
empirical formula for the required solenoid field by
modifying the analytical formula so that it treats the effect
of the current distribution inside bulk HTSs. Finally, we
estimated the magnetic performance of the BHSAU as an
example of using the formulas and the values obtained in
the discussion. The estimation showed that an undulator
field twice as large as that of the present IVU but with an
equal period and gap can be obtained at a temperature of
approximately 20–40 K, and that K ¼ 1 and 2 can be
achieved with λu ¼ 5 and 10 mm at approximately 4–20 K.
We consider that the magnetic field strength of the BHSAU
is sufficiently high for future high-field short-period
undulators.

ACKNOWLEDGMENTS

This work was supported by MEXT KAKENHI Grant
No. 21340057 and a Grant-in-Aid for JSPS Fellows, Grant
No. 10J03477.

[1] P. M. Stefan, T. Tanabe, S. Krinsky, G. Rakowsky,
L. Solomon, and H. Kitamura, J. Synchrotron Radiat. 5,
417 (1998).

[2] T. Schmidt, G. Ingold, A. Imhof, B. D. Patterson,
L. Patthey, C. Quitmann, C. Schulze-Briese, and R. Abela,
Nucl. Instrum. Methods Phys. Res., Sect. A 467, 126
(2001).

[3] J. A. Clarke, in Proceedings of the European Particle
Accelerator Conference, Vienna, Austria, 2000, p. 2319.

[4] O. Chubar, C. Benabderrahmane, M. P. Level, O.
Marcouille, and M. Massal, in Proceedings of the 9th
European Particle Accelerator Conference, Lucerne, 2004
(EPS-AG, Lucerne, 2004), p. 369.

[5] P. Emma et al., Nat. Photonics 4, 641 (2010).
[6] M. Hoener et al., Phys. Rev. Lett. 104, 253002 (2010).
[7] T. Ishikawa et al., Nat. Photonics 6, 540 (2012).
[8] J. Dai, H. Deng, and Z. Dai, Phys. Rev. Lett. 108, 034802

(2012).
[9] D. J. Scott, J. A. Clarke, D. E. Baynham, V. Bayliss,

T. Bradshaw, G. Burton, A. Brummitt, S. Carr, A. Lintern,
J. Rochford, O. Taylor, and Y. Ivanyushenkov, Phys. Rev.
Lett. 107, 174803 (2011).

[10] H. Kitamura, J. Synchrotron Radiat. 7, 121 (2000).
[11] T. Hara, T. Tanaka, H. Kitamura, T. Bizen, X. Maréchal,

T. Seike, T. Kohda, and Y. Matsuura, Phys. Rev. STAccel.
Beams 7, 050702 (2004).

[12] T. Hezel, B. Krevet, H. O. Moser, J. A. Rossmanith,
R. Rossmanith, and T. Schneider, J. Synchrotron Radiat.
5, 448 (1998).

[13] M. Tomita and M. Murakami, Nature (London) 421, 517
(2003).

[14] T. Tanaka, T. Hara, H. Kitamura, R. Tsuru, T. Bizen,
X. Marechal, and T. Seike, Phys. Rev. STAccel. Beams 7,
090704 (2004).

[15] T. Tanaka, R. Tsuru, and H. Kitamura, J. Synchrotron
Radiat. 12, 442 (2005).

[16] T. Tanaka, T. Hara, R. Tsuru, D. Iwaki, T. Bizen,
X. Marechal, T. Seike, and H. Kitamura, Supercond.
Sci. Technol. 19, S438 (2006).

[17] R. Kinjo, T. Kii, H. Zen, K. Higashimura, K. Masuda,
K. Nagasaki, and H. Ohgaki, in Proceedings of the 30th
International Free Electron Laser Conference, Geongju,
Korea, 2008, p. 473.

[18] A. H. Ho, R. H. Pantell, J. Feinstein, and B. Tice, Nucl.
Instrum. Methods Phys. Res., Sect. A 296, 631 (1990).

[19] R. Kinjo, M. Shibata, T. Kii, H. Zen, K. Masuda,
K. Nagasaki, and H. Ohgaki, Appl. Phys. Express 6,
042701 (2013).

[20] K. Halbach, Nucl. Instrum. Methods Phys. Res. 187, 109
(1981).

[21] O. Chubar, P. Elleaume, and J. Chavanne, J. Synchrotron
Radiat. 5, 481 (1998).

MAGNETIC PROPERTY OF A STAGGERED-ARRAY … Phys. Rev. ST Accel. Beams 17, 022401 (2014)

022401-11

http://dx.doi.org/10.1107/S0909049597012995
http://dx.doi.org/10.1107/S0909049597012995
http://dx.doi.org/10.1016/S0168-9002(01)00237-6
http://dx.doi.org/10.1016/S0168-9002(01)00237-6
http://dx.doi.org/10.1038/nphoton.2010.176
http://dx.doi.org/10.1103/PhysRevLett.104.253002
http://dx.doi.org/10.1038/nphoton.2012.141
http://dx.doi.org/10.1103/PhysRevLett.108.034802
http://dx.doi.org/10.1103/PhysRevLett.108.034802
http://dx.doi.org/10.1103/PhysRevLett.107.174803
http://dx.doi.org/10.1103/PhysRevLett.107.174803
http://dx.doi.org/10.1107/S0909049500002983
http://dx.doi.org/10.1103/PhysRevSTAB.7.050702
http://dx.doi.org/10.1103/PhysRevSTAB.7.050702
http://dx.doi.org/10.1107/S0909049597015690
http://dx.doi.org/10.1107/S0909049597015690
http://dx.doi.org/10.1038/nature01350
http://dx.doi.org/10.1038/nature01350
http://dx.doi.org/10.1103/PhysRevSTAB.7.090704
http://dx.doi.org/10.1103/PhysRevSTAB.7.090704
http://dx.doi.org/10.1107/S0909049505013610
http://dx.doi.org/10.1107/S0909049505013610
http://dx.doi.org/10.1088/0953-2048/19/7/S03
http://dx.doi.org/10.1088/0953-2048/19/7/S03
http://dx.doi.org/10.1016/0168-9002(90)91279-K
http://dx.doi.org/10.1016/0168-9002(90)91279-K
http://dx.doi.org/10.7567/APEX.6.042701
http://dx.doi.org/10.7567/APEX.6.042701
http://dx.doi.org/10.1016/0029-554X(81)90477-8
http://dx.doi.org/10.1016/0029-554X(81)90477-8
http://dx.doi.org/10.1107/S0909049597013502
http://dx.doi.org/10.1107/S0909049597013502


[22] M. Morita, E. Teshima, and H. Hirano, Nippon Steel
Corporation Technical Report No. 93, 2006.

[23] C. P. Bean, Rev. Mod. Phys. 36, 31 (1964).
[24] A. Badía, C. López, and J. L. Giordano, Phys. Rev. B 58,

9440 (1998).

[25] A. Sanchez and C. Navau, Phys. Rev. B 64, 214506
(2001).

[26] J. Kitagaki, K. Masuda, Z. W. Dong, T. Kii, T. Yamazaki,
and K. Yoshikawa, Nucl. Instrum. Methods Phys. Res.,
Sect. A 475, 613 (2001).

RYOTA KINJO et al. Phys. Rev. ST Accel. Beams 17, 022401 (2014)

022401-12

http://dx.doi.org/10.1103/RevModPhys.36.31
http://dx.doi.org/10.1103/PhysRevB.58.9440
http://dx.doi.org/10.1103/PhysRevB.58.9440
http://dx.doi.org/10.1103/PhysRevB.64.214506
http://dx.doi.org/10.1103/PhysRevB.64.214506
http://dx.doi.org/10.1016/S0168-9002(01)01582-0
http://dx.doi.org/10.1016/S0168-9002(01)01582-0

