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The new traveling wave structure with a single synchronous mode resonantly excited by the relativistic
charge is presented. The structure is composed of a metallic tube with an internally coated low conductive
thin layer. It is shown that the impedance of the internally coated metallic tube has a narrow-band single
resonance at a high frequency. The analytical presentation of the narrow-band impedance, the wake
function, and the frequency of the synchronous mode are obtained. The analytical solutions are compared
with exact numerical simulations using the field matching technique.

DOI: 10.1103/PhysRevSTAB.17.021302 PACS numbers: 41.60.-m

I. INTRODUCTION

The study of the new type of the slowly traveling wave
structures is driven by the development of bothnovel coherent
radiation sources [1–4] and advanced acceleration concepts
[5–9]. The disc- or dielectric-loaded structures are the most
known slowly travelingwave structures that are characterized
by the infinite number of excited modes [10–13].
The structure with a single slow traveling wave has

special interest, as the relativistic charge will excite the
synchronous mode only. The radiated energy is then
effectively stored in a single mode, and for bunch length
σz ≤ λ (λ synchronous mode wavelength) the structure will
serve as a source for a coherent monochromatic radiation.
The single slow wave structure is an attractive candidate

also for particle acceleration due to the absence of high
order propagating modes. In addition, such a structure may
effectively support the high transformer ratio single-mode-
based wake field accelerator schemes with linear ramped
single- [14] and multibunch driver beams [15–17].
In this paper, the new traveling wave structure with single

synchronous mode resonantly excited by the relativistic
charge is presented. The structure is composed of a metallic
tube with an internally coated low conductive thin layer.
We show that the longitudinal impedance of the inter-

nally coated metallic tube (ICMT) under certain conditions
has a narrow-band single resonance at a high frequency
observed numerically in Refs. [18,19] using the exact field
matching technique [11]. We also show that the resonant
mode is a single slow propagating TMmode synchronously
excited by relativistic charge. The expression for the
longitudinal impedance and the resonant frequency are

obtained analytically. The point wake potential for a
relativistic charge is given, and the numerical examples
for the copper outer layer with low conducting thin internal
coating are presented. Finally, the analytical results are
compared with numerical simulations using the field
matching technique.

II. DISPERSION RELATIONS AND TM MODES

Consider a round two-layer hollow pipe with a perfectly
conducting outer wall and a thin inner metallic cover of
thickness d and conductivity σ1 (Fig. 1). The inner and
outer radii of the internal cover are a and b, respec-
tively, (d ¼ b − a).
The eigenvalues for the axisymmetric TM modes (TM0n,

n ¼ 1; 2;…) of the structure may be obtained by matching
the tangential components of the partial axisymmetric
modes at the boundaries r ¼ a and r ¼ b [11]. In a high
frequency range the eigenvalue equation can be presented as

ε0
ν0n

J1ðξ0nÞ
J0ðξ0nÞ

¼ ε1
ν00ntgðν00ndÞ

; (1)

where ξ0n ¼ ν0na, ν0n, and ν00n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν20n − χ2

p
(n ¼ 1; 2…)

are the transverse eigenvalues of the fundamental modes in a
vacuum region (0 ≤ r ≤ a) and of the inner layer
(a ≤ r ≤ b), respectively; ε0 and ε1 ¼ ε0 þ jσ1=ω are the

FIG. 1. Geometry of a two-layer pipe.
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dielectric constants of the vacuum and the inner layer,
respectively; χ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−jσ1μ0ωp

is the transverse propagation
constant of the inner layer; μ0 is the vacuum magnetic
permeability; ω is the frequency; k ¼ ω=c is the wave
number; and c is the speed of light. In a frequency range
jχj ≫ jν0nj and ω ≪ σ1=ϵ0 one gets ν00n ≈ jχ, ε1 ≈ jσ1=ω
and the right-hand side of Eq. (1) is independent from the
mode index n. For the thin inner layer jχjd ≪ 1, the
eigenvalue Eq. (1) is expressed as

1

ξ0n

J1ðξ0nÞ
J0ðξ0nÞ

¼ 1

k2ad
; (2)

and the solutions are independent from the cover metal
conductivity σ1 as well.
Equation (2) has an infinite countable set of solutions

corresponding to TM0n (n ¼ 1; 2;…) modes. Each sol-
ution should be determined by an initial condition at a
frequency close to zero (k → 0), and it should be a
continuous function of the frequency. For zero frequency,
Eq. (2) is converted into the equation for the roots j0n of the
zero-order Bessel function: J0ðξ0nÞ ¼ 0 with solution
ξ0n ¼ j0n. For very high frequencies Eq. (2) is converted
into the equation for the roots j1n (n ¼ 2; 3; 4;…) of the
first-order Bessel function J1ðξ1nÞ ¼ 0 with ξ1n ¼ j1n.
Note that the left-hand side of Eq. (2) should be purely

real, which is possible either for purely real or for purely
imaginary values of ξ0n ¼ ν0na. The frequency depend-
ences of the transverse eigenvalues of TM0n (i ¼ 1; 2;…)
modes, obtained by a numerical solution of Eq. (2), are
shown explicitly in Fig. 2.
As presented in Fig. 2, the solutions for TM0n (n > 1)

modes are purely real and decrease with a frequency
increase.
The specific solution of Eq. (2) exists for the TM01 mode

with zero transverse eigenvalue (ν01 ¼ 0) at a frequency of
k0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
2=ad

p
. As the longitudinal propagation constant of

the mode is β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − ν201

p
, this solution corresponds to a

synchronous component of the mode with a phase velocity
vph equal to the velocity of light c.
In a frequency range k > k0 the TM01 mode transverse

eigenvalue solution of (2) is purely imaginary and the phase
velocity is vph < c. In a frequency range 0 < k < k0 the
transverse eigenvalue is purely real and vph > c. At
synchronous frequency k ¼ k0 the transverse eigenvalue
vanishes and vph ¼ c (Fig. 2). Thus, the structure under
consideration is characterized by a single slow TM01 mode.
Figure 3 shows the dependence of TM01 mode longi-

tudinal propagation constant β on a wave number k
(dispersion curve). The dispersion curve crosses the syn-
chronous line β ¼ k (phase velocity equal to velocity of
light) at a resonant frequency of k ¼ k0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
2=ad

p
.

III. NARROW-BAND RESONANCE

The longitudinal impedance for the arbitrary nonmag-
netic layer in a high frequency range jχja ≫ 1 can be
written as [18,19]

Z0
jj ¼ j

Z0

πka2

�
1þ 2

a
ε1
ε0χ

cthðχdÞ
�−1

; (3)

where Z0 ¼ 120π Ω is the impedance of free space.
For thin inner cover jχjd ≪ 1 (cthðχdÞ ≈ 1=χdþ χd=3)
the impedance (3) is simplified to a form of the impedance
of a parallel resonance circuit [11]:

Z0
jjðωÞ ¼

R

1þ jQ
�
ω0

ω − ω
ω0

� ; (4)

where ω0 ¼ ck0 is the resonant frequency, R ¼ Z0c=πa21A
is the shunt impedance,Q ¼ ω0=A is the quality factor, and

A ¼ 2cffiffiffi
3

p
a
ðςþ ς−1Þ; ς ¼ dσ1Z0=

ffiffiffi
3

p
: (5)

The frequency range of applicability for expression (4) is
given as a−1 ≪ jχj ≪ d−1. The real part of the impedance

FIG. 2. Real (solid line) and imaginary (dotted line) parts of
TM01 and purely real TM0n (n > 1) (dashed line) transverse
eigenvalues versus frequency.

FIG. 3. Synchronous line (dashed line) and dispersion curve of
TM01 mode (solid line); kc is the cutoff frequency.
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reaches its maximum value at a frequency of ω ¼ ω0, while
the imaginary part vanishes at the same frequency. This
corresponds to the necessary condition for the presence of a
synchronous component in the eigenmode of the wave
guide. Note, that the resonant frequency is independent of
the cover metal conductivity σ1. The real impedance of the
resonant frequency is given by ReZ0

jj ¼ Z0c=ðπa2AÞ and
reaches its maximum value at ς ¼ 1 (maximal quality
factor of the resonance circuit).
Figure 4 presents the comparison between the field-

matching-based exact numerical calculations (solid line)
and approximate solutions (4) (dashed line) of the ICMT
structure. The dotted line indicates the resonant frequency
given by f0 ¼ c

2π

ffiffiffiffiffiffiffiffiffiffiffi
2=ad

p
. Curves 1, 2, 3 correspond to

impedances for various conductivities σ1 for the thin inner
film: 3 × 103, 3 × 104, 3 × 105 ðΩ−1 m−1Þ. The inner
radius and the inner layer thickness are a ¼ 2 cm and
d ¼ 1 μm, respectively. A good agreement is obtained in
the validity region of expression (4). The resonant fre-
quency is about f0 ¼ 0.48 THz independent from the inner
layer conductivity.

IV. NUMERICAL EXAMPLES

The longitudinal impedance for a copper tube with a
NEG (nonevaporable getter) thin film coating is presented
in Fig. 5. The following material conductivities σ have been
taken: copper: 58 × 106 Ω−1 m−1; NEG: 3 × 104 Ω−1m−1.
The inner and outer radii of the tube are 2 and 10 cm,
respectively. The calculations have been performed using
the exact field matching technique. The vertical lines show
the resonant frequencies given by k0.
The solid curves (Fig. 5) show the impedances of

conventional homogeneous tubes with infinite thickness
and an inner radius of a ¼ 2 cm. In a frequency region
where the skin depth is much larger than the cover
thickness d, the impedance of the frame tube basically
contributes to the two-layer tube impedance. At a frequency
region where the skin depth is much smaller than the

cover thickness, the cover layer of the tube defines the
impedance. The resonance arises in intermediate frequen-
cies when the skin depth is of the order of inner layer
thickness.

V. WAKE FUNCTION

The longitudinal wake potential W==ðsÞ produced
by a relativistic charge moving along the structure
axis is given by the inverse Fourier transformation of the
impedance [11]:

WjjðsÞ ¼ − 1

2π

Z∞

−∞
ZjjðωÞe−jωcsdω: (6)

The integration of the impedance in the complex
plane is reduced to the calculation of residues of the
impedance (4) in two simple poles, located in the lower
half-plane:

ω1;2 ¼
�
−jA∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2

0 − A2

q �
=2: (7)

The integrand has no cutoff in the complex plane and the
explicit formof thewake functioncanbewrittenas the sumof
two residues:

FIG. 4. The exact (solid line) and approximate (dashed line)
solutions for the real part of longitudinal impedance for various
conductivities of the inner layer: σ1 ¼ 3 × 103ð1Þ, 3 × 104ð2Þ,
3 × 105ð3ÞΩ−1 m−1 .

FIG. 5. Real part of copper-NEG tube impedances for various
cover thicknesses.

FIG. 6. Point wake function for a perfect conducting pipe with a
NEG thin coating. a ¼ 2 cm, d ¼ 1 μm, σ1 ¼ 3 × 104 Ω−1 m−1.
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W0
jjs ¼ −Z0c

πa2
e−α s

�
cosðkαsÞ − α

kα
sinðkαsÞ

�
; (8)

where kα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − α2

p
and α ¼ A=2c.

The wake function is given by the exponentially
damping periodic curve. The minimum damping rate
is α ¼ 2=

ffiffiffi
3

p
a.

Figure 6 presents the point longitudinal wake potential
given by formula (8) (dotted line) and numerically calcu-
lated using the field exact matching technique (solid line)
for a perfect outer layer with a NEG thin film internal
coating. A good agreement is obtained: the curves actually
coincide. The loss factor is W0

sðs ¼ 0Þ ¼ −Z0c=πa2.

VI. SUMMARY

The resonant properties of a metallic tube with a low
conductivity internal thin film coating are examined. It is
shown that a structure of such a type has a single slowly
propagating TM wave. The dispersion relation, impedance,
and the synchronous frequency of the mode are obtained.
The analytical presentation of the longitudinal point wake
potential is given. The main results of the paper are verified
by an exact numerical simulation based on the field
matching technique. The experimental study of the pre-
sented structure at the AREAL test facility [20] is foreseen.
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