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Nested head-tail is a Vlasov solver for transverse oscillations in multibunch beams. It takes into account
azimuthal, radial, coupled-bunch, and beam-beam degrees of freedom affected by arbitrary dipole wakes,
feedback damper,beam-beam effects and Landau damping.
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I. INTRODUCTION

Collective instabilities impose a serious limitation on
beam intensity in circular accelerators, storage rings, and
colliders. That is why quantitative description of the
instabilities is required for understanding both existing
and future machines. Especially dangerous are transverse
instabilities, normally resulting in a beam loss. In principle,
there are two approaches for their modeling. The older
approach is based on the Vlasov equation, a dynamic
equation for a phase space density of collisionless plasma;
the equation was suggested in 1938. In fact, this equation
was first written not for plasma but for gravitating cosmic
objects by Jeans in his publications of years 1913–1915;
see a historical article of Henon [1]. So far, solutions of
the Vlasov equation were limited by rather simple cases
(see e.g. Ref [2]), insufficient to tell about the complicated
reality of multibunch beams with feedbacks, beam-beam
effects, and octupoles. That is why the second approach
to beam stability problems, macroparticle simulations,
attracted more and more attention, driven by a continuing
burst of computational powers. For colliders, such codes as
HEADTAIL [3] and BeamBeam3D [4] are known and have
been used for more than 10 years. Attractiveness of the
macroparticle tracking programs is related to their sim-
ilarity to real beams; they appear to be as close to reality as
possible, allowing rather straightforward introduction of
all the factors influencing beam stability. However, an
attempt of these direct simulations of reality has its draw-
back: convergence typically requires a big number of
macroparticles per bunch, at the order ∼106 or so. For
thousands of bunches per beam in the collider, it makes a
required study of multidimensional space of parameters
so far impossible by means of macroparticle tracking—
even with the help of parallel computations by powerful
supercomputers.

This limitation of the tracking methods brings us back to
the Vlasov equation with a motivation to develop more
sophisticated methods of its solution, where all important
factors of reality would be properly taken into account.
Nested head-tail (NHT) suggests an attempt in this direc-
tion [5]. Its name points to its primary idea: solutions of the
Vlasov equation are sought as expansions over conven-
tional head-tail functions, defined at a set of nested rings in
the longitudinal phase space. Since the impedance, feed-
back, and coherent beam-beam interaction are described by
linear response functions, their analysis is reduced to a
standard eigensystem problem that is solved instantane-
ously, as soon as the related matrices are defined. After this
is done, growth rates and tune shifts of all potentially
dangerous modes are known. However, as with any feed-
back, that pure linear system is still unstable: its stabiliza-
tion requires some Landau damping, an intrinsic self-
stabilization mechanism caused by nonlinearity of sin-
gle-particle motion. In general, these anharmonicities lead
to very complicated equations [see e.g. Eq. (6.179) in
Ref. [2]]. However, for many practical cases, the anhar-
monicities may be treated as perturbations of the linear
system. When Landau damping moves the coherent tune
shifts not by much, it can be found as a perturbation. That is
how Landau damping is treated in this paper, allowing one
to find thresholds of the instabilities, with both octupoles
and beam-beam nonlinearities taken into account.
Fortunately, for many practical cases this perturbative
approach to Landau damping is justified. For pure trans-
verse nonlinearities it leads to well-known dispersion
relations; see Ref. [6] and references therein. Otherwise,
a more general form of the dispersion relation has to be
applied; see Sec. VI. Numerous examples of NHT appli-
cations for the LHC are shown in the last two sections.

II. BASIS FUNCTIONS

Bunch longitudinal distribution inside a linear potential
well can be represented by a sequence of concentric rings,
or airbags, as it was suggested by Ref. [7]. It appears to be
optimal to keep all the rings equally populated, so the phase
space density is reflected by variable distances between
them. To do that, the phase space has to be divided into a
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certain number of equally populated areas,then a weighted-
average radius has to be found for each area. The number of
rings has to reflect the wake properties. Unless the wake is
extremely microwave, the default NHT choice of nr ¼ 5
shown in Fig. 1 should work reasonably well. On these
concentric rings, a conventional set of head-tail harmonics
ψ lα is defined as a basis for phase space density perturba-
tions [see e.g. Ref. [2], Eq. (6.175)]:

ψ lα ¼ expðilϕþ iχα cosϕ − iQxω0tÞ;
χα ¼ Q0

xω0τα=η: (1)

Here ϕ is the synchrotron phase, l is the azimuthal head-
tail harmonic number, 1 ≤ α ≤ nr is the radial harmonic
number,ω0 is the angular revolution frequency,Qx ¼ ωx=ω0

is the lattice betatron tune,χα stands for the set of thehead-tail
phases for the rings with radii τα in time units, Q0

x is the
chromaticity, c is speed of light, and η ¼ γ−2t − γ−2 is the
slippage factor.

III. SINGLE-BUNCH EIGENSYSTEM

Any dipole perturbation of the bunch distribution can
be expanded over this nested head-tail basis. Following
Ref. [2], assuming timedependence∝ expð−iΩt − iQxω0tÞ,
Eq. (6.183) of that reference can be presented as

qX ¼ Ŝ ·X − iẐ ·X − igF̂ ·X: (2)

Here, X is the perturbation vector with components
along the basis functions ψ lα, matrix Ŝ reflects harmonic
oscillations inside the rf potential well, matrix Ẑ reflects a

single-turn transverse impedance, g is a damper gain, and F̂
is a flat-wake matrix:

Ŝlmαβ ¼ lδlmδαβ;

Ẑlmαβ ¼ il−m κ

nr

Z∞

−∞
dωZðωÞJlðωτα − χαÞJmðωτβ − χβÞ ;

κ ¼ Nbr0R0

8π2γQxQs
;

F̂lmαβ ¼
im−l
nr

JlðχαÞJmðχβÞ: (3)

Here ZðωÞ is the transverse impedance,Nb is the number
of particles per bunch, r0 is the classical radius, R0 ¼ c=ω0,
Qs ¼ ωs=ω0 is the synchrotron tune. The dimensionless
eigenvalue q ¼ Ω=ωs is the coherent tune shift in units of
the synchrotron tune. The flat-wake matrix F̂ describes any
dynamic response whose variation over the bunch length
can be neglected [8]. Note that flat wakes do not satisfy the
causality condition of conventional wakes, since they are
not related to an instantaneous action of the same-beam
particles. Examples of flat wakes are those of dampers
whose bandwidth is much smaller than an inverse bunch
length, interbunch and multiturn wakes, and beam-beam
responses for a beta function exceeding the bunch length.
Taken with the damper gain g, the term gF̂ describes the

response of a flat damper, which sees only centroids and
whose kicks are bunch-flat. The term “flat” as it is applied
here to the damper assumes space or time flatness, so it is
not to be confused with the idea of a high bandwidth
damper, whose response is flat in a frequency domain. To
avoid this confusion, the term “flat” is applied below for the
time or space domain only. The fourier-image of a flat wake
is the delta function, so the expression for the flat-wake
matrix F̂ in Eq. (3) follows from the impedance matrix Ẑ
after a substitution ZðωÞ ∝ δðωÞ, defining the gain g as a
damping rate in units of the synchrotron frequency.
In case the damper is so broadband that its response is

not flat over the bunch length, its actual nonflat wake
function has to be used, making its matrix different from F̂.

IV. MULTIBUNCH EIGENSYSTEM

Interbunch wake functionsWðsÞ are normally flat thanks
to suppression of high-frequency cavity modes. If so,
interbunch terms in the equation of motion can be described
by means of the flat-wake matrix F̂, used in Eq. (3) for the
flat damper. Interbunch wake fields can be conventionally
summarized for equidistant bunches whose oscillation
amplitudes differ only by a phase factor expð2πiμk=MÞ,
where 0 ≤ k ≤ M − 1 is a bunch number, 0 ≤ μ ≤ M − 1 is
the interbunch mode number, and M is the number of
bunches. Interbunch interaction contributes its own term to
the originally single-bunch Eq. (2):

2 1 1 2
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1

1

2

pz

FIG. 1. Bunch longitudinal Gaussian distribution inside a linear
potential well presented by equally populated nested airbags; the
coordinate z and momentum pz are measured in their rms units.
Note that the radii are not equidistant.
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qX ¼ Ŝ ·X − iẐ ·X − igF̂ ·Xþ Ĉ ·X;

Ĉ ¼ 2πκ ~WμF̂;

~Wμ ¼
X∞
k¼1

Wð−ks0Þ expðikϕμÞ;

ϕμ ¼ 2πðμþQxÞ=M; s0 ¼ 2πR0=M: (4)

These equations reduce the multibunch problem to a set
of single-bunch ones since every interbunch mode μ is
treated separately by Eq. (4), where the sought-for eigen-
vector X has the same structure as for the single-bunch
problem of Eq. (2).
The multibunch problem of Eq. (4) assumes that the

damping rate g is identical for all the interbunch modes,
being the same as for the single-bunch case; in other words,
it assumes that the damper is a bunch-by-bunch one. In case
this is not so, the damping rate becomes a function of the
interbunch mode number μ. This function can be found in a
way similar to the wake interbunch coefficients ~Wμ. In the
time domain, the damper response can be described by
means of its wake function GðsÞ, associated with the gain
frequency profile Gω by means of the Fourier transform:

GðsÞ ¼
Z∞

0

Gω cosðωs=cÞdω=π; (5)

assuming this wake function to be even (remember that flat
wakes are not causal). With that wake, the interbunch mode
coefficients ~Gμ analogous to the wake coefficients ~Wμ can
be found:

~Gμ ¼ Gð0Þ þ 2
X∞
k¼1

Gðks0Þ cosðkϕμÞ: (6)

In Eq. (4), the mode-independent gain g has to be
changed on a mode-dependent one, g → gμ, and the latter
can be expressed as

gμ ¼ g0 ~Gμ= ~G0; (7)

where g0 stays for the damping rate of the interbunch
mode μ ¼ 0.
In case the bunches are not all equidistant, a similar

summation of the interbunch wakes can be done using the
“train theorem” [8]. This procedure requires two steps. First,
an eigensystem fp;Rg of the total interbunch wake (sum of
the conventional and damper wakes) has to be found:

pμRμ ¼ ð2πκŴ − igĜÞRμ: (8)

Second, for the examined interbunchmode, its eigenvalue
pμ has to be used in Eq. (4) by means of a substitution,

2πκ ~Wμ − igμ → pμ: (9)

According to the “damper theorem” [8], for a sufficiently
high damper gain, the interbunch (and beam-beam) collective
interaction can be neglected, thus reducing the multibunch
problems (4), (10), (13), (14) to the single-bunch case (2),
provided the interbunch and beam-beam wakes are flat.

V. BEAM-BEAM RESPONSE

For colliders, there is one more sourcewhich complicates
beam dynamics: beam-beam effects. There are two different
aspects in the beam-beam interaction: coherent (strong-
strong) and incoherent (weak-strong) ones. The coherent
beam-beam effect is associated with a collective response of
one beam to another. This responseworks as a specific wake
function, coupling the two beams. In case the bunch length is
muchsmaller than thebeta function in thecollisionpoint, this
interaction canbe treated as flat in the sense of this paper. Flat
kicks of oncoming bunches are constant over the bunch
length, being determined by centroid offsets and being
independent of all other details of intra-bunch oscillations.
The incoherent aspect of beam-beam interactions causes
additional anharmonicities of single-particle motion, thus
contributing to Landau damping. In this section, only the
coherent part is considered, while the incoherent one is left
for a chapter belowwhere all optics nonlinearities are treated
together in a framework of the dispersion relation.
Inclusion of the coherent beam-beam interaction doubles

the dimension of the problem. Each beam can be described
by the same Eq. (4), where an additional beam-beam
coupling term has to be added on the right-hand side.
A simplest case of beam-beam response is one of a single

flat collision in a single interaction region (IR). In this
situation, Eq. (4) is modified as

qX1 ¼ Ŝ ·X1 − iẐ ·X1 − igμF̂ ·X1 þ Ĉ ·X1

þ ξX1 − ξF̂ ·X2;

qX2 ¼ Ŝ ·X2 − iẐ ·X2 − igμF̂ ·X2 þ Ĉ ·X2

þ ξX2 − ξF̂ ·X1: (10)

HereX1;2 are perturbation vectors for the two beams, and
ξ is a beam-beam tune shift. The first beam-beam term on
the right-hand side, ξX1;2, describes a linear part of the
incoherent tune shift; it does not actually play a role, being
identical to an external quadrupole, equal for both beams.
The second beam-beam term, −ξF̂ ·X2;1, describes the
beam-beam wake under assumption of its flatness. For
long-range (parasitic) collisions with an impact parameter ρ
and local beta-function βx

ξ ¼ Nbr0βx
2πγρ2Qs

¼ Nbr0
2π ~ρ2εnQs

; (11)

where εn is a normalized rms emittance and ~ρ ¼ ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ=εnβx

p
is a normalized bunch separation; sign corresponds to
proton-proton collisions in the same x plane.
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For the head-on collisions of round beams

ξ ¼ − Nbr0
8πεnQs

; (12)

for nonround beams see Ref. [9]. A factor of Qs enters in
Eqs. (11) and (12) due to a convention of this paper to
measure all tune shifts in units of the synchrotron tune.
For more than one collision per IR, the beam-beam term

has to be modified, taking into account that the interbunch
phases of the oncoming beam are not identical; they vary
according to the considered coupled-bunch mode μ. Note
that for equidistant bunches, beam-beam collisions do not
break the interbunch mode structure∝ expð2πiμk=MÞ since
that is just a consequence of the translational invariance.
Summation over 2K þ 1 mirror-symmetric kicks results in
the following modification of Eq. (10):

qX1 ¼ Ŝ ·X1 − iẐ ·X1 − igμF̂ ·X1 þ Ĉ ·X1

þ ξX1 − ξKμF̂ ·X2;

qX2 ¼ Ŝ ·X2 − iẐ ·X2 − igμF̂ ·X2 þ Ĉ ·X2

þ ξX2 − ξKμF̂ ·X1;

Kμ ¼
XK
k¼−K

~ρ−2k cosð2πμk=MÞ=
XK
k¼−K

~ρ−2k ; (13)

where ξ is the total linear part of the incoherent beam-beam
tune shift.
One more complication of the beam-beam coupling

appears when there is more than one IR. To avoid unnec-
essarily cumbersomeexpressions, let usassume that thereare
only two IRs. In case the IRsare completely identical, and the
betatron phase advances between them are equal for the two
beams, the coupling terms of the IRs simply add together in
Eq. (13). If one of these identical IRs is tilted by90° relatively
to another, both the total incoherent and the total coherent
beam-beam terms are cancelled, provided the phase advance
between them of the beam one is equal to that of the beam
two. If the phase advances are not equal, the incoherent terms
vanish, but the coherent terms do not. The last situation was
realizedat theLHC,with its orthogonalbeamcrossingplanes
for the two main IRs and significant difference between the
inter-IR phase advances of the beam one and beam two,ψ ¼
ψ1 − ψ2 [10,11]. Thus, for the LHC case, the dynamic
equations (13) have to be modified to

qX1 ¼ Ŝ ·X1 − iẐ ·X1 − igμF̂ ·X1 þ Ĉ ·X1

− ξbKμF̂ ·X2;

qX2 ¼ Ŝ ·X2 − iẐ ·X2 − igμF̂ ·X2 þ Ĉ ·X2

− ξb�KμF̂ ·X1;

b ¼ 1 − expðiψÞ: (14)

These equations yield an eigensystem for transverse
dipole multibunch oscillations of one or two coupled beams
for the given wakes/impedances, gain frequency profile,
and the collision scheme. Eigenvalues q give the total
coherent tune shifts resulted from a combined action of the
single- and multibunch wakes, damper and beam-beam
response.
For the LHC, the nested head-tail program is usually run

with 5 radial rings, 21 azimuthal head-tail basis functions,
Eq. (1), and 15 representative interbunch modes, yielding
5 × 21 × 15 ¼ 1575 collective modes for a single beam
and twice more for two coupled ones. After computation of
the single-bunch impedance matrix Ẑ, which needs to be
done only once for the given impedance model, the solution
of the eigensystem problem takes about 1 sec with Wolfram
Mathematica 7 or higher installed on an average laptop.

VI. LANDAU DAMPING

The coherent tune shifts q are found above under a
condition of pure harmonic oscillations for all 3 degrees of
freedom. In general, anharmonicities significantly change
mode structure, driving it far from the harmonic case. If so,
the considered harmonic solution appears to be useless, and
the problem has to be solved from scratch. However, if the
anharmonicities are not that large, they can be treated as
perturbations to the eigenvalues q; the latter can be used as
zero approximation. At first approximation, a tune shift
driven by the perturbation can be conventionally expressed
as a diagonal matrix element of the perturbation term with
the unperturbed basis. If the absolute value of this tune
perturbation is small enough, the perturbation approach is
justified.
For arbitrary nondegenerate matrices, this problem was

solved in Ref. [12]. This solution can be expressed as
follows. Let Â be a nondegenerate matrix, and V, U be
eigenvectors of this matrix and its Hermit conjugation:

Â · V ¼ λ̂ · V;

Â† · U ¼ λ̂� · U: (15)

With all different eigenvalues λ̂, the two sets of vectors
are dual (biorthogonal):

U†
j · Vk ¼ δjkU

†
k · Vk. (16)

Let ~A be a matrix, close to Â; their difference is
proportional to a small parameter. Then, at first order by
this parameter, kth eigenvalue ~λk of the matrix ~A satisfies
the following equation:

U†
k · ð~A − ~λkÎÞ · Vk ¼ 0; (17)

where Î is the identity matrix. In other words, at the first
order of the small parameter, the eigenvalues of the
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perturbed matrix~A can be found from state averaging of the
perturbedequationswith theunperturbedeigenvectors. If the
unperturbed matrix Â is Hermitian, then V ¼ U; otherwise
the two basis sets are different. This algebraic result suggests
treating of incoherent nonlinearities as perturbations, giving
rise to the question about its justification.
Nonlinear terms yield an incoherent frequency spread

causing Landau damping. When nonlinearity is high
enough, the beam is stable. The instability threshold
corresponds to a case when the growth rate computed
for a purely linear situation is equal to the Landau damping
rate. Thus, at the threshold, the nonlinear perturbation of
the coherent tune is equal to its imaginary part. That is why
justification of the perturbation method for the threshold
computation requires the imaginary part of the coherent
tune shift q to be small compared to its real part. Assuming
this is true, the method of perturbation is justified for
threshold computation.
Let x be an NHT perturbation vector of a small fraction

of the beam having its incoherent tune shift δν and actions
Jx, Jy, Jz . A linearized Vlasov equation for this beamlet
can be presented similar to Eq. (4):

νx ¼ δνxþ Ŝ · xþ M̂ ·X; (18)

where ν stays for a perturbed mode frequency of the
nonlinear system, matrix M̂ combines all the collective
response matrices generating a coherent field M̂ ·X, and
the coherent vector X is a beam average of the beamlet
perturbations x.
From here, the beamlet perturbation x can be expressed

in terms of the collective perturbation X. After the beam-
averaging, h...i, this yields

X ¼ h½ðν − δνþ iοÞÎ − Ŝ�−1i · M̂ ·X; (19)

where ο stands for a positive infinitesimally small number
showing how to bypass the pole. Assuming that a solution
of this set of equations is close to the unperturbed one, with
δν ¼ 0, the theorem of Eq. (17) can be applied, leading to a
dispersion equation for the perturbed mode tune νk:

Y†
k · h½ðνk − δνþ iοÞÎ − Ŝ�−1i · ðqkÎ − ŜÞ ·Xk ¼ 1; (20)

where Xk and Yk are the unperturbed eigenvectors,

ðM̂þ Ŝ − qkÎÞ ·Xk ¼ 0; ðM̂† þ Ŝ − q�kÎÞ · Yk ¼ 0;

(21)

the normalization condition Y†
k ·Xk ¼ 1 was assumed.

Since all thematrices of Eq. (20) are diagonal, the dispersion
equation (20) can be further simplified. For every unper-
turbed eigenvalue q, the corresponding mode tune with

Landau damping taking into account can be found from the
following dispersion equation

−X
l

ðq − lÞ
Z Y�

l ðJzÞXlðJzÞJx ∂F
∂Jx

ν − l − lδνs − δνx þ iο
dΓ ¼ 1;

Y† ·X ¼
Z

Y�
l ðJzÞXlðJzÞFzðJzÞdJz ¼ 1;

dΓ≡ dJxdJydJz;Z
FdΓ ¼

Z
FzðJzÞdJz ¼ 1: (22)

Here, F ¼ FðJx; Jy; JzÞ and FzðJzÞ are total and longi-
tudinal normalized phase space densities as functions of
corresponding actions, while δνs ¼ δνsðJzÞ and δνx ¼
δνxðJx; Jy; JzÞ are incoherent anharmonicities of the nor-
malized synchrotron and betatron tunes. Note that the beam
averaging h...i is expressed as

h...i ¼ −
Z

...Jz
∂F
∂Jz dΓ; (23)

not by a naively expected
R
...FdΓ. For an ensemble of

nonharmonic oscillators, that rule was derived by Hereward
[13], and explained by him as resulting from an incoherent
frequency shift when the coherent field acts on a given
particle. In general, Eq. (22) tells that the mode tune shift ν
is determined not only by its harmonic approximation q,
the incoherent spectrum δν, and the phase space density F,
but also it depends on the eigenvectors X and Y. The latter
is expectable: a contribution to Landau damping of par-
ticles with the longitudinal action Jz has to be proportional
to the wave amplitude at this action. Note that Eq. (22)
assumes the sought-for mode tune ν be located at the upper
complex half-plane, while at the lower half-plane the left-
hand side (LHS) of Eq. (22) has to be understood as an
analytical continuation. In many practical cases, it is suffi-
cient to tell if the system is stable or not under given
conditions, while a specific value of the mode tune is not
so important. For that purpose, it is reasonable to consider the
LHSofEq. (22) as amapof the real axis ν.When ν is running
from−∞ to∞, theLHSfollowsaclosedcurve in its complex
plane, sometimes referred toasa lotus.Thesystemis stable if,
and only if, the lotus does not cover the point 1þ 0i.
In case of the weak head-tail, when the eigenvalue q is

close to its nearest integer lq ¼ RoundðqÞ, jq − lqj ≪ 1,
and the synchrotron tune spread can be neglected, the
longitudinal integration can be performed, resulting in the
well-known dispersion equation [6]

− Δq
Z

Jx∂F=∂Jx
Δν − δνxðJx; JyÞ þ io

dJxdJy ¼ 1;

Δq≡ q − lq; Δν≡ ν − lq: (24)
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For this, and apparently only for this case, the dispersion
relation, and thus a stability condition, does not depend on
the eigenvectors. Then, the stability condition can be
expressed in terms of the stability diagram independent
of the eigensystem [14,15]. Namely, Eq. (24) can be
presented as

Δq¼DðΔνÞ;DðΔνÞ≡−
�Z

Jx∂F=∂Jx
Δν−δνxþ iο

dΓ
�−1

: (25)

AnexpressionDðΔνÞ canbeconsideredas amapof the real
axis in the complexplaneΔνontoa complexplaneD.As such,

it is conventionally referred to as the stability diagram. The
diagram curve goes along the real axis of the D plane,
DðΔνÞ ≈ Δν, when jΔνj ≫

ffiffiffiffiffiffiffiffiffiffiffi
hδν2i

p
. The width and the

height of the stability diagram are determined by the averaged
nonlinearities δν for the phase space density F. The same
stability diagram is valid for all the modes: as soon as the
eigenvalue Δq is located above the diagram, the mode is
unstable; otherwise, it is suppressed by Landau damping.
For Gaussian transverse distribution, and with negligible

spread of the synchrotron frequencies, the 2D dispersion
integral was found by Gluckstern[6]:

Z∞

0

Z∞

0

x expð−x − yÞdxdy
ν − ax − byþ iο

¼ − a − bþ ½b − νð1 − b=aÞ� expð−ν=aÞEiðν=aÞ
ða − bÞ2 þ b expð−ν=bÞEiðν=bÞ

ða − bÞ2

− πi
j−½b − νð1 − b=aÞ� expð−ν=aÞθðν=aÞ þ b expð−ν=bÞθðν=bÞj

ða − bÞ2 ;

EiðzÞ≡−P:V:
Z∞

−z
ðe−t=tÞdt: (26)

Here P.V. stands for the principle value and θðzÞ is the
Heaviside theta function. Stability diagrams for distribution
functions FðJx; JyÞ ∝ ð1 − ðJx þ JyÞ=aÞn are discussed
in Ref. [16].
For the LHC impedance model, the highest coherent tune

shifts are comparable to the synchrotron tune if the damper
is turned off [17], making the weak head-tail approach to
Landau damping (24), (25) marginally applicable in this
area of the parameters. However, when the head-tail phase
and the gain are sufficiently large, the most critical coherent
tune shifts q are reduced several times [5], allowing one to
rely on the weak-head-tail stability diagram (25) without
any visible loss of accuracy.

VII. BENCHMARKING

Above, the main ideas and formulas of the NHT code are
described. Some NHT results for the LHC were compared
with the air-bag averaged Vlasov solver [18] and
BeamBeam3D tracking code [4,19], showing a good agree-
ment for all the examined cases.
In Ref. [19], instability growth rate computed from the

BeamBeam3D tracking simulations for LHC parameters is
presented as a function of the chromaticity and damper
gain. For those simulations, a single 3D-Gaussian bunch per
beam and single interaction point (IP) were assumed. The
intensity and collision parameters were taken close to the end
of the beta-squeeze case. Namely, 10 rms beam radius of the
beam-beam separation was assumed, and the computed
beam-beam long-range kick was additionally enhanced by
a factor of 10, thus simulating 10 identical long-range

collisions instead of 1. The IP optics was taken as perfectly
round, all the octupoles were zeroed, the potential well was
supposed to be ideally parabolic, and the doubled nominal
impedance of the LHC was implemented.
To make a comparison, NHT computations were fulfilled

for the same conditions. Without octupoles and longitudinal
nonlinearity, the only source of the Landau damping is a
long-range beam-beam octupole term yielding the incoher-
ent tune shift per collision, which can be presented as

δνx ¼
3ξ

2~ρ2
Jx − 2Jy

εn
; hJxi ¼ hJyi ¼ εn ; (27)

where the beam-beam parameters ξ , ~ρ are the quadrupolar
incoherent beam-beam tune shift and normalized separation,
introduced in Eq. (11).
In Ref. [19], the instability threshold is shown as a

threshold chromaticity Q0 for certain values of the damper
gain. In Fig. 2, these results of BeamBeam3D are presented
together with corresponding NHT ones.
To appreciate the agreement between the two sets of

results, one has to take into account that at high chroma-
ticity, Q0 ≳ 10, the stability condition is barely sensitive to
Q0 (see the following section), which significantly ampli-
fies initially small computational errors when the chroma-
ticity is that high. Note that the NHT data at Fig. 2 reflect
eigenvalue computation followed by analysis of the sta-
bility diagram. Both coherent and incoherent beam-beam
effects are taken into account here. Since implementation of
the incoherent beam-beam effects, Eq. (27), is formally
identical to the octupoles, Eq. (28), the good agreement

A. BUROV Phys. Rev. ST Accel. Beams 17, 021007 (2014)

021007-6



between the two codes demonstrated by Fig. 2 works as a
valid benchmarking for correctness of any octupolar
perturbation.
Figure 3 shows BeamBeam3D single bunch, no damper,

and no octupoles growth rates [19] compared with corre-
sponding NHT eigenvalues Imq for the most unstable
mode, demonstrating agreement within a few percent or
better.

VIII. LHC: EIGENSYSTEM

In the rest of this paper, various capabilities of the nested
head-tail program are demonstrated for the LHC at 4 TeV.
All the computations are done for the horizontal degree of
freedom. LHC horizontal wake and impedance functions
are presented in Figs. 4 and 5, as they were provided by
Mounet [18,20]. According to this model, vertical wake
and impedance are similar to horizontal, being slightly
smaller. Hereafter, this impedance model is referred to as a
nominal one. Various beam-based measurements at the

LHC are showing, though, that actual impedances are ∼2–3
times higher than the nominal ones (see Ref. [17] and
following sections). So far, a reason for this discrepancy is
unknown. Strictly speaking, it has to be supposed that not
only a scale of the impedance is higher, but its frequency
dependence may be considerably different from the model
as well. However, due to a lack of knowledge about the real
impedance of the LHC, the NHT computations are
normally performed just with the doubled nominal imped-
ance and wake functions. Figures below assume Nb ¼
1.5 × 1011 protons per bunch, 50 ns of the bunch separa-
tion, the normalized rms emittance εn ¼ 2 μm, the syn-
chrotron tune Qs ¼ 2.3 × 10−3, and the rms bunch length
cτ̄ ¼ 9.4 cm. In this section, properties of the eigensystem
are discussed; the next one is devoted to the stability
analysis.

A. Single beam

Figures 6 and 7 show an example of horizontal eigenvalues
of Eq. (4) for the specified beamat the chromaticityQ0

x ¼ 15,
yielding the rms head-tail phase χ̄ ≡Q0

xω0τ̄=η ¼ 1.0; the
damperwasassumed tobeflat bunchbybunch.Thegainvalue
g ¼ 1.4 is a standard run I setting corresponding to 50 turns of
the damping time for the 50 ns beam.
Figure 8 offers a 3D plot for maximal growth rate

Imq� ≡Max½ImðqÞ� versus the gain and chromaticity. A
significant difference between positive and negative

0.2 0.4 0.6 0.8 1.0 1.2 1.4
gain

5

10

15

20

Q'

FIG. 2. Threshold chromaticity Q0 versus the damper gain for
BeamBeam3D tracking (circles) [17] and NHT solutions
(squares)

FIG. 3. BeamBeam3D (blue) and NHT (pink) growth rates
versus chromaticity for a single bunch, no octupoles and no
damper.

108 109 1010 1011
f Hz

1

2

5

10

20

50

MZ /m

FIG. 4. Horizontal impedance, nominal [20].
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FIG. 5. Horizontal wake function, nominal [20].
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chromaticity is not surprising, but nonmonotonic depend-
ence over the gain at the negative chromaticity area was not
expected. Note a stable area at moderate gain and slightly
negative chromaticity.
Figure 9 presents intensity-chromaticity scan of the

maximal growth rate, assuming the standard gain g ¼ 1.4.
The coefficientKZ is the intensity scaling parameter, defined
as impedancemultiplied by bunch population divided by the
nominal value of this product.All the plots above correspond
to KZ ¼ 2.

B. Two beams

Similar results for two beams in the LHC, Eq. (14), are
presented in Figs. 10–12 with long-range beam-beam
parameter, Eq. (11), ξ ¼ 2.5 × 10−3 per interaction region,
as it is at the end of the LHC beta squeeze, and the inter-IR
beam1-beam2 phase difference ψ ¼ 90°. While no-damper
growth rates (blue) are about doubled by the beam-beam
interaction, they are changed much less for the standard

6 4 2 0 2 4 6
Re q

0.005

0.010

0.015

0.020

0.025
Im q

FIG. 6. Horizontal eigenvalues of a standard single beam with
the damper gain g ¼ 1.4 and chromaticity Q0

x ¼ 15 (red). The
blue dots show the same case with the damper off.

0.25 0.20 0.15 0.10 0.05 0.00
Re q

0.005

0.010

0.015

0.020

0.025
Im q

FIG. 7. The same as the figure above but for the fractional
eigenvalues Δq ¼ q − Round½q� entering into the stability
condition, Eq. (24).

FIG. 8. Highest growth rate versus gain and chromaticity.

FIG. 9. Maximal growth rate versus intensity and chromaticity
at the gain g ¼ 1.4.
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Re q

0.01

0.02

0.03

0.04

0.05

Im q

FIG. 10. Two-beam eigenvalues for the same single-beam
parameters and color convention as Fig. 6.
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gain g ¼ 1.4. This property of the coherent spectrum is a
consequence of the “damper theorem”; see Ref. [8].
Up to this point, all the plots show eigenvalues for pure

linear particle motion. The next section takes into account
octupole transverse nonlinearity causing Landau damping
and thus responsible for certain instability thresholds. Note
that maximal growth rates q� shown in several plots above
are not generally proportional to the octupole strength,
required for stabilization, since this strength depends not
only on the growth rate but also on the tune shift ReðΔqÞ
as well.

IX. LHC: INSTABILITY THRESHOLDS

For Landau damping, two families of octupoles are
installed in the LHC, normally fed with the same currents
Io. According to Refs. [20,21], the incoherent tune shifts
δν≡ ðδνx; δνyÞT introduced by the LHC octupoles fed with
current Io ¼ þ100 A, with both emittances ε ¼ 2 μm, are
as follows:

δν ¼ Â · J=ε ; J≡ ðJx; JyÞT;

Â ¼
�
axx axy
ayx ayy

�
;

axx ¼ ayy ¼ 1.8 × 10−2;
axy ¼ ayx ¼ −1.3 × 10−2: (28)

Substitution of that in the dispersion relation, Eq. (25),
for a Gaussian beam yields the stability diagram of Fig. 13.
For every given chromaticity and gain in a grid, the
threshold octupole current was found, i.e. such a current
when all the fractional eigenvalues lie below the stability
diagram, except one sitting on this curve. The threshold
octupole currents Io as functions of chromaticity and gain
are presented in Fig. 14 (single beam, single bunch), Fig. 15
(one 50 ns beam), and Fig. 16 (two 50 ns beams).
Computational time for each one of these plots is about
a half an hour at PC laptop with Intel(R) Core(TM)2 Duo

FIG. 12. Maximal growth rate for two beams versus gain and
chromaticity.

0.4 0.3 0.2 0.1 0.0 0.1
Re q

0.01

0.02

0.03

0.04

0.05

Im q

FIG. 11. Same as the previous figure, but for the fractional
eigenvalues.

0.1 0.1 0.2
Re q

0.005

0.010

0.015

Im q

FIG. 13. Stability diagram for LHC octupoles at their current
Io ¼ þ100 A.

FIG. 14. Threshold octupole current [A] at positive polarity, for
a single nominal bunch in the LHC and doubled nominal
impedance.
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CPU, 2.5 GHz processor. While these three plots are very
different at not a very high gain and negative chromaticity,
they are close at high gain, demonstrating validity of the
“damper theorem” [8]. It can be concluded that the
accelerator has to be operated at the plateau Io ≅
120–140 A at positive chromaticity region, where stability
is provided by a relatively low octupole current insensitive
to errors in the chromaticity.
Note that Figs. (14–16) do not take into account beam-

beam nonlinearity. At first glance, Eq. (27) could be used
for the octupole component of the long-range tune shift to
be taken into account together with the LHC Landau
octupoles. To do this, one has to double this tune shift,
since there are two interaction regions, and divide it back by
a factor of 2 for the first or the last bunch of the batch
(pacman bunches), so that for the pacman LHC bunches
Eq. (27) gives the result. However, this result would not be

normally correct, since in the reality the beams are initially
separated in the orthogonal plane as well, which is not
taken into account by Eq. (27). Analysis of the stability
diagram of Gaussian beams provided by Ref. [22] dem-
onstrates that with this additional beam-beam separation for
pacman bunches, the beam-beam nonlinearity is approx-
imately equivalent to 100 A of the Landau octupoles at the
end of the betasqueeze. For positive polarity of the octu-
poles, these 100 A of beam-beam nonlinearity go with the
same sign as the octupoles, thus increasing Landau damp-
ing. For negative polarity, the two nonlinear contributions
are of the opposite sign, leading to a collapse of the stability
diagram at certain beam-beam separation. When this was
realized [23], the initially negative octupole polarity was
inverted.
Single-beam measurements of the instability thresholds

made at the high gain and high chromaticity plateau never
exceeded 200 A of the Landau octupoles [17]. Compared
with Fig. 15, it leads to the conclusion that the effective
single-bunch impedance of the LHC should be 2.5–3 times
higher than the nominal one of Fig. 4. Figure 16 shows the
effective octupole current required for stabilization of two
LHC beams seeing each other at the end of the betasqueeze.
The effective octupole current is the sum of the Landau
octupole current and a contribution of the beam-beam
nonlinearity expressed in terms of the equivalent octupole
current. According to Ref. [22], the oncoming beam con-
tributes 100 A to the effective octupole current for the
pacman bunches and twice more for the central ones at the
end of the squeeze. It follows then, that about 100 A of the
Landau octupoles should be sufficient for the stabilization,
assuming the machine is operated at the high gain and high
chromaticity plateau of Fig. 16, as it normally was. Contrary
to this conclusion, at the end of the squeeze a transverse
instability was permanently observed, notwithstanding the
octupole current was kept at its maximum of 550 A [24].
An initial idea that this instability is driven by the coherent

(strong-strong) beam-beam effect or some hidden two-beam
impedance was refuted by these NHT computations [25],
confirmed later by a dedicated LHC beam experiment [26].
To explain this instability, a hypothesis of three-beam
instability, or beam-beam-beam effect was suggested, where
the third beam is an electron cloud accumulated in a high-
beta area of the main interaction regions [27].

X. SUMMARY

This paper describes the nested head-tail Vlasov solver
effectively used for high energy beams in the LHC, where
radial modes, couple-bunch modes, feedbacks, beam-beam
effects, and nonlinearities responsible for Landau damping
are accurately handled. The main advantage of that solver
against macroparticle tracking codes is many orders of
magnitude shorter CPU time, which allows a fast and
efficient analysis of that complicated system in a multidi-
mensional space of parameters.

FIG. 15. Same as above, but for a full 50 ns single beam.

FIG. 16. Same as above, but for two 50 ns single beams at the
end of the beta-squeeze separation.
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