
3D theory of a high-gain free-electron laser based on a transverse
gradient undulator

Panagiotis Baxevanis, Yuantao Ding, Zhirong Huang, and Ronald Ruth
SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

(Received 21 October 2013; published 6 February 2014)

The performance of a free-electron laser (FEL) depends significantly on the various parameters of the
driving electron beam. In particular, a large energy spread in the beam results in a substantial reduction of
the FEL gain, an effect which is especially relevant when one considers FELs driven by plasma accelerators
or ultimate storage rings. For such cases, one possible solution is to use a transverse gradient undulator
(TGU). In this concept, the energy spread problem is mitigated by properly dispersing the electron beam
and introducing a linear, transverse field dependence in the undulator. This paper presents a self-consistent
theoretical analysis of a TGU-based, high-gain FEL which takes into account three-dimensional (3D)
effects, including beam size variations along the undulator. The results of our theory compare favorably
with simulation and are used in fast optimization studies of various x-ray FEL configurations.
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I. INTRODUCTION

In recent years, with the successful commissioning of
several major facilities around the world [1–4], the free-
electron laser (FEL) has demonstrated its immense value
as a tunable source of intense, coherent x rays. However,
achieving the desiredquality for the output radiation requires
the availability of a high-brightness electron beam to drive
the FEL, a fact which places serious restrictions on param-
eters such as the transverse emittance and the relative energy
spread of the e-beam. In this paper, we are predominantly
concerned with the latter quantity, which must be much
smaller than the gain bandwidth (given by the FEL param-
eter) if efficient lasing is to occur. This is because a large
spread in the energy of the electrons translates into a
significant spread in the resonant wavelength (as can be
seen from the FEL resonance condition), thus drastically
reducing the FEL gain. While standard designs satisfy the
aforementioned condition, there exist a number of promising
novel concepts for which doing so (in a conventional way)
wouldbevery challenging.Oneprominent example is that of
FELs driven by electron beams from laser-plasma acceler-
ators (LPAs) [5]. The latter are characterized by high energy
(∼1 GeV), low normalized emittance (∼0.1 μm) and very
high peak current (up to 10 kA), features which make them
attractive for compact FEL applications. Unfortunately, they
alsohave a relatively large energy spread (∼1%) compared to
beams from conventional accelerators. Another potential
scheme involves the use of the beam fromanultimate storage
ring (USR) [6] inahigh-gainFELsituated inabypassclose to

the ring [7]. This configuration would allow for a high
repetition rate but is again limited by the relatively large
energy spread (∼0.1%), as well as the low peak current
(∼100 A). For the case of the LPA-based concepts, some
proposals make use of bunch decompression techniques in
order to address the energy spread problem [8]. Instead, we
will consider an alternative concept, the transverse gradient
undulator (TGU), which can also be used in the scheme that
involves an ultimate storage ring. The TGU (Fig. 1) is an
undulator with canted magnetic poles, so that its vertical
field has a linear dependence upon the horizontal position x.
Using a suitable dispersive element, one can also introduce
a linear correlation of the electron energywith x. Byproperly
selecting the parameters involved (cant angle and
dispersion), one can ensure that electrons with higher than
nominal energy are dispersed towards the higher-field region
in such a way that the variation in the resonant frequency is
minimized.

FIG. 1 (color online). Schematic of a transverse gradient
undulator (TGU). The undulator poles are canted, which in-
troduces a linear dependence of the vertical field with x. The
constant field gradient depends on the cant angle ϕ.
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Originally studied as a way to improve the energy
acceptance of low-gain (oscillator) FELs ([9] and [10]),
the TGU has recently been considered in the context of its
possible application in high-gain devices, particularly those
based on LPAs. Specifically, Ref. [11] developed a one-
dimensional (1D) theoretical model for such a device and
investigated the impact of 3D effects through simulation. In
this paper, we present a self-consistent, theoretical descrip-
tion of a TGU-based, high-gain FEL in the framework of
the Vlasov-Maxwell formalism, including 3D effects such
as diffraction, emittance, and betatron oscillations due to
the undulator natural focusing. In Sec. II, an outline is given
of the single particle equations of motion (the detailed
analysis of which is left for the Appendix) and an equation
for the radiation amplitude is derived from the Vlasov-
Maxwell equations. When possible, we seek solutions that
correspond to the guided eigenmodes of the FEL. In
particular, we focus on the fundamental FEL mode and
employ a variational technique in order to determine its
various parameters. In Sec. III, we present the results of a
numerical study which explores two different concepts for a
soft x ray, TGU FEL, namely a compact device driven by an
LPA and a machine based on an ultimate storage ring.
Finally, Sec. IV summarizes our main conclusions.

II. THEORY

A. Single particle motion

To begin with, we assume that the magnetic field of the
TGU is given by

Bux ¼ B0

α

ku
sinhðkuyÞ sinðkuzÞ;

Buy ¼ B0ð1þ αxÞ coshðkuyÞ sinðkuzÞ;
Buz ¼ B0ð1þ αxÞ sinhðkuyÞ cosðkuzÞ; (1)

where ku ¼ 2π=λu (λu is the undulator period), B0 is the
peak on-axis field, and α is the transverse field gradient,
which can be related to the cant angle of the undulator poles
[11]. This magnetic field satisfies Maxwell’s equations in
vacuum and reduces to the field of a standard, planar, flat-
pole undulator for α → 0. As we have already mentioned,
the object of the TGU is to mitigate the negative impact of a
large energy spread in the electron beam by significantly
reducing the resulting spread in the resonant wavelength λr.
In order to achieve this, the beam is dispersed in the x
direction so that the horizontal position of an electron
becomes linearly correlated to its energy γmc2 according
to x ¼ ηδ, where η is the dispersion, δ ¼ γ=γ0 − 1 is the
relative energy deviation, and γ0mc2 is the average electron
energy (m is the electron mass). On the other hand, the
introduction of the constant field gradient α leads to a
linear x dependence of the undulator parameter K, i.e.,
K ¼ K0ð1þ αxÞ, where K0 ¼ eB0=ðmckuÞ is its on-axis

value (e is the electron charge). By selecting the dispersion
η according to the relation

η ¼ 2þ K2
0

αK2
0

; (2)

the resonant condition λr ¼ λuð1þ K2=2Þ=ð2γ2Þ is now
satisfied by all the electrons in the beam (up to linear order
in x). Only on-resonance operation of the TGU will be
considered in this study, so Eq. (2) is always assumed to
be valid.
For a derivation of the single particle equations of

motion, we refer to the Appendix. Here, we merely quote
the main results. As far as the transverse dynamics is
concerned, the TGU is characterized by a horizontal
focusing strength kβ ∼ ðηγ0Þ−1. In this paper, we assume
that this focusing effect is weak (kβLu ≪ 1, where Lu is the
undulator length) and exclude it from our treatment.
However, we do take into account the vertical natural
focusing of the undulator, whose strength kn is given by
kn ≈ K0ku=ð

ffiffiffi
2

p
γ0Þ. Moreover, we assume that a small, net

bending (∼B0=γ0) due to the asymmetry of the TGU field
has been corrected. Thus, the (wiggle-averaged) transverse
equations of motion for an electron are x00 ¼ 0 and
y00 ¼ −k2ny, or, in a more canonical form,

dx
dz

¼ px;
dpx

dz
¼ 0;

dy
dz

¼ py;
dpy

dz
¼ −k2ny:

(3)

In addition, we express the electric field of the radiation
(which is linearly polarized along the x direction) as

Ex ¼
1

2

Z
∞

0

dνEνðx; zÞeiνkrðz−ctÞ þ c.c.; (4)

where Eνðx; zÞ is the amplitude of the radiation, x ¼ ðx; yÞ
is the transverse position vector, ν ¼ ω=ωr is a scaled
frequency variable, ωr¼ckr¼2πc=λr¼2γ20cku=ð1þa2wÞ
is the resonant frequency (with aw ¼ K0=

ffiffiffi
2

p
), and c.c.

stands for complex conjugate. The pendulum equations for
the longitudinal motion are

dθ
dz

¼ θ0 ¼ 2ku

�
δ − x

η

�
− kr

2
ðp2

x þ p2
y þ k2ny2Þ (5)

and

dδ
dz

¼ κ1

Z
∞

0

dνEνðx; zÞe−iΔνkuzeiνθ þ c.c. (6)

Here, θ ¼ kuzþ krðz − ct̄Þ is the averaged electron phase
(t̄ is the electron arrival time averaged over the wiggle
motion), Δν ¼ ν − 1 is the frequency detuning parameter,
and κ1¼eK0½JJ�=ð4γ20mc2Þ, where ½JJ�¼J0ðQ0Þ−J1ðQ0Þ
[with Q0 ¼ K2

0=ð4þ 2K2
0Þ] is the well-known factor
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arising from the wiggle averaging. We note the presence
of the linear term proportional to x on the right-hand side
(RHS) of Eq. (5), which reflects the resonant character of
particles with x ¼ ηδ.

B. Vlasov-Maxwell equations

The Vlasov-Maxwell formalism allows us to study the
interaction between the electron beam and the radiation
that is generated during its passage through the TGU in a
self-consistent fashion. In this context, the phase-space
evolution of the electron beam is described by means of a
distribution function f ¼ fðθ; δ; x; y; px; py; zÞ. Prior to the
onset of saturation, the FEL interaction only adds a small
perturbation δf to the background distribution f0 (i.e.,
f ¼ f0 þ δf, where jδfj ≪ f0). Following the standard
perturbation analysis [12], it can be shown that the
linearized, frequency-domain Vlasov equation for the
FEL is (for ν > 0)

∂fν
∂z þ px

∂fν
∂x þ py

∂fν
∂y − k2ny

∂fν
∂py

þ iνθ0fν

¼ −κ1 ∂f0∂δ Eνe−iΔνkuz; (7)

where fνðδ; x; y; px; py; zÞ is the Fourier amplitude
of the perturbation δf [fν ¼ ð2πÞ−1 R∞−∞ dθe−iνθδf].
Furthermore, the unperturbed distribution f0 is assumed
to be θ independent (which corresponds to a uniform
current profile) and satisfies the relation

∂f0
∂z þ px

∂f0
∂x þ py

∂f0
∂y − k2ny

∂f0
∂py

¼ 0: (8)

As far as the normalization of f0 is concerned, we adopt the
convention of Ref. [13], i.e.,

R∞−∞ dpxdpy

R∞−∞ dxdy×R
∞−∞ dδf0 ¼ Nb=lb, where lb and Nb are, respectively,

the bunch length and the total number of electrons. On
the other hand, the evolution of the radiation field along the
undulator is governed by the paraxial wave equation,

� ∂
∂zþ

∇2⊥
2iνkr

�
Eν¼−κ2eiΔνkuz

Z
∞

−∞
dpxdpy

Z
∞

−∞
dδfν; (9)

where ∇2⊥ ¼ ∂2=∂x2 ¼ ∂2=∂x2 þ ∂2=∂y2 is the transverse
Laplacian, κ2 ¼ eK0½JJ�=ð2ε0γ0Þ and ε0 is the vacuum
permittivity. Equations (7)–(9) accurately describe the FEL
interaction in the linear regime. Using the method of
integration along the unperturbed trajectories (Ref. [12]
or [13]), Eq. (7) can be solved in terms of fν, yielding

fν ¼ −κ1 ∂f0∂δ
Z

z

0

dζEνðxþ; yþ; ζÞ

× e−iΔνkuζ expfiν½θ0ξ − ðkupx=ηÞξ2�g (10)

for an initially unmodulated electron beam. In the equation
given above, we have defined ξ ¼ ζ − z, xþ ¼ xþ pxξ and
yþ ¼ y cosðknξÞ þ ðpy=knÞ sinðknξÞ. We then choose a
background distribution that corresponds to a dispersed
Gaussian beam which is matched to the undulator focusing
in the y direction (and thus has a constant vertical size).
In this case, f0 is given by

f0 ¼
Nb=lb

ð2πÞ5=2σxσyσ0xσ0yσδ
× exp

�
− ðx − ηδ − pxzxÞ2

2σ2x
− p2

x

2σ0x2

�

× exp

�
− y2

2σ2y
− p2

y

2σ0y2

�
exp

�
− δ2

2σ2δ

�
: (11)

In the above relation, σδ is the rms energy spread, zx ¼
z − z0 (z0 is a constant offset), σy and σ0y are the rms vertical
beam size and angular divergence while σx and σ0x are their
horizontal counterparts at zx ¼ 0 (in the absence of
dispersion). We also point out that the vertical matching
condition is σ0y=σy ¼ kn and that the beam emittance values
are given by ϵx ¼ σxσ

0
x and ϵy ¼ σyσ

0
y. Inserting Eq. (10)

into the RHS of Eq. (9) and performing the δ integration,
we obtain a self-consistent equation for the amplitude of the
radiation:

� ∂
∂zþ

∇2⊥
2ikr

�
Eνðx; zÞ ¼ − 8iρ3Tk

3
u

2πσ0xσ0y

Z
z

0

dζξe−iΔνkuξ exp ½−2ðσefδ Þ2k2uξ2�
Z

∞

−∞
dpxdpyEνðxþ; yþ; ζÞ

× exp

�
2ikuξ

�
− σ2x
σ2T

x
η
−
�
ξ

2
þ η2σ2δ

σ2T
zx

�
px

η

��

× exp
�
− ðx − pxzxÞ2

2σ2T
− 1

2

�
1

σ0x2
þ ikrξ

�
p2
x− 1

2

�
1

σ0y2
þ ikrξ

�
ðp2

y þ k2ny2Þ
�
: (12)

Here, we have approximated ν ≈ 1 everywhere except in the detuning term while

σT ¼ ðσ2x þ η2σ2δÞ1=2 ¼ σx

�
1þ η2σ2δ

σ2x

�
1=2

(13)

is the total horizontal beam size when σ0x → 0,
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ρT ¼ ρ

�
1þ η2σ2δ

σ2x

�−1=6
(14)

is the corresponding attenuated FEL parameter [14], and
σefδ is a (decreased) effective energy spread given by

1

ðσefδ Þ2
¼ 1

σ2δ
þ η2

σ2x
→ σefδ ¼ σδ

�
1þ η2σ2δ

σ2x

�−1=2
: (15)

Optimum operation of the TGU requires a significantly
reduced effective energy spread (ησδ=σx ≫ 1), so we can
usually approximate σefδ ≈ σx=η. The FEL parameter ρ in
absence of dispersion is given by

ρ ¼
�

Ip
16IA

K2
0½JJ�2

γ30σxσyk
2
u

�
1=3

; (16)

where Ip ¼ ecNb=lb is the peak current and IA ¼
4πε0mc3=e ≈ 17 kA is the Alfven current. We note that,
for a conventional FEL, the energy spread requirement

would be σδ ≪ ρ. Equation (12) incorporates all the three-
dimensional effects under consideration, including the
variation of the horizontal beam size with z. The latter is
a consequence of the z dependence of f0 when ϵx ≠ 0,
which also causes the integral kernel in Eq. (12) to depend
explicitly upon z (through zx).

C. Eigenmode formalism

To simplify our treatment, we consider the case of
vanishing horizontal emittance (i.e., the case with σ0x→0
but σ0y ≠ 0), when both sizes of the electron beam are
constant. This regime is relevant for a TGU FEL driven
by an ultimate storage ring and also allows for a stand-
ardized description in terms of the self-similar, guided
eigenmodes of the FEL. The latter are solutions of the form
Eνðx; zÞ ¼ AðxÞeiμz, where μ is the (constant) complex
growth rate and AðxÞ is the mode profile. Using Eq. (12),
we can show that the eigenmode equation satisfied by the
mode profile and the growth rate is

�
μ − ∇2⊥

2kr

�
AðxÞ ¼ − 8ρ3Tk

3
uffiffiffiffiffiffi

2π
p

σ0y
exp

�
− x2

2σ2T
− y2

2σ2y

�Z
0

−∞
dξξeiðμ−ΔνkuÞξe−2ðσefδ Þ2k2uξ2 exp

�
−2i σ

2
x

σ2T

x
η
kuξ

�

×
Z

∞

−∞
dpyAðx; yþÞ exp

�
− p2

y

2σ0y2
− ikrξ

2
ðp2

y þ k2ny2Þ
�
; (17)

where only growing modes (with Im½μ� < 0) have been considered.Wemake use of a variational technique in order to obtain
an approximate solution for the Gaussian-like, fundamental mode [15], which is typically the fastest-growing of
the FEL eigenmodes. We begin by assuming a trial solution of the form AðxÞ ∝ expð−axx2 þ bxÞ expð−ayy2Þ for the
transverse profile,where thebx termhas been added to account for the asymmetry (under the reflectionx → −x) introducedby
theexponent that isproportional tox=η inEq. (17).Wethenmultiplybothsidesof theeigenmodeequationbyAðxÞand integrate
over the transverse position. The result of this manipulation is the relation

Fðax; ay; b; μÞ≡ μþ ax þ ay
2kr

þ 8ρ3Tk
3
u

ffiffiffiffiffi
ax

p ffiffiffiffiffiayp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax þ 1=ð4σ2TÞ

p
Z

0

−∞
dξξ exp

�ðb − 1
η ðσ2x=σ2TÞikuξÞ2

2ax þ 1=ð2σ2TÞ
− b2

2ax

�

× exp½iðμ − ΔνkuÞξ − 2ðσefδ Þ2k2uξ2�=½a2yσ2ysin2ðknξÞ
þ ayð1þ ikrσ0y2ξÞ þ ð1=ð4σ2yÞÞð1þ ikrσ0y2ξÞ2�1=2 ¼ 0; (18)

which expresses μ in terms of ax, ay, and b. The next step
is to use the variational conditions, namely ∂μ=∂ax ¼ 0,
∂μ=∂ay ¼ 0, and ∂μ=∂b ¼ 0, which stem from the fact that
a first ordervariationof themodeprofileyieldsonlyasecond
order variation in the growth rate. In particular, we differ-
entiate Eq. (18) with respect to ax, which yields ∂F=∂ax þ
ð∂F=∂μÞð∂μ=∂axÞ ¼ 0 or—in view of the variational
condition—∂F=∂ax ¼ 0. In a similar way, we also have
the relations ∂F=∂ay ¼ 0 and ∂F=∂b ¼ 0. Solving the
above-mentioned derivative relations in conjunction with
Eq. (18), we obtain an approximation to the growth rate and
the parameters of the fundamental mode. When emittance

and focusing effects in both transverse directions are
negligible, as is usually the casewith LPA-based examples,
we can employ a parallel-beam model for both x and y, in
which case Eqs. (17) and (18) reduce to
�
μ − ∇2⊥

2kr

�
AðxÞ ¼ −8ρ3Tk3uAðxÞ exp

�
− x2

2σ2T
− y2

2σ2y

�

×
Z

0

−∞
dξξeiðμ−ΔνkuÞξe−2ðσefδ Þ2k2uξ2

× exp

�
−2i σ

2
x

σ2T

x
η
kuξ

�
(19)
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and

Fðax; ay; b; μÞ≡ μþ ax þ ay
2kr

þ 8ρ3Tk
3
u

ffiffiffiffiffi
ax

p ffiffiffiffiffiayp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax þ 1=ð4σ2TÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ay þ 1=ð4σ2yÞ

q
Z

0

−∞
dξξ exp½iðμ − ΔνkuÞξ − 2ðσefδ Þ2k2uξ2�

× exp

�ðb − 1
η ðσ2x=σ2TÞikuξÞ2

2ax þ 1=ð2σ2TÞ
− b2

2ax

�
¼ 0; (20)

respectively. The integral on the RHS of the above relation can be expressed in terms of error functions, allowing for faster
numerical calculations. In particular, we find

Fðax; ay; b; μÞ≡ μþ ax þ ay
2kr

þ 8ρ3Tk
3
u

ffiffiffiffiffi
ax

p ffiffiffiffiffiayp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax þ 1=ð4σ2TÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ay þ 1=ð4σ2yÞ

q

× eA0

� ffiffiffi
π

p
A1

4A3=2
2

exp

�
A2
1

4A2

�
erfc

�
A1

2A1=2
2

�
− 1

2A2

�
¼ 0; (21)

where erfcðuÞ ¼ 1 − ð2= ffiffiffi
π

p Þ R u
0 e−s2ds is the complementary error function and

A0 ¼ − b2

4axð2axσ2T þ 1=2Þ ; A1 ¼ i

�
μ − Δνku − 2

σ2x
σ2T

kub=η
2ax þ 1=ð2σ2TÞ

�
; A2 ¼

σ4x
σ4T

ðku=ηÞ2
2ax þ 1=ð2σ2TÞ

þ 2ðσefδ Þ2k2u:
(22)

Once the growth rate and the mode parameters are known,
one can calculate the power gain lengthLg ¼ −1=ð2 Im½μ�Þ
as well as the mode sizes σrx ¼ ð4Re½ax�Þ−1=2 and σry ¼
ð4Re½ay�Þ−1=2 (we clarify that Re and Im refer, respectively,
to real and imaginary part). The latter two quantities
are defined by the relations σrx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2i − x2c

p
and

σry ¼
ffiffiffiffiffiffiffiffi
hy2i

p
, where the average uses the mode intensity

profile jAðxÞj2 as a weighting function (i.e., we have
hx2i ¼ R∞−∞ d2xjAðxÞj2x2= R∞−∞ d2xjAðxÞj2 etc.) and xc ¼
Re½b�=ð2Re½ax�Þ is the horizontal centroid of the mode. In
the 1D limit, both electron beam sizes are much larger than
the diffraction size σD ∼ ðρTkrkuÞ−1=2, that is σT , σy ≫ σD.
As a result, we have σrx ∼

ffiffiffiffiffiffiffiffiffiffiffi
σTσD

p ≪ σT , σry ∼
ffiffiffiffiffiffiffiffiffiffi
σyσD

p ≪
σy and also xc ≪ σT . In view of the above properties,
the results of the parallel-beam analysis are considerably
simplified. In particular, we can approximate ax þ
1=ð4σ2TÞ ≈ ax anday þ 1=ð4σ2yÞ ≈ aywhile the termpropor-
tional to ax þ ay in the first line of Eq. (21) is of order
σD=σT þ σD=σy when compared to μ and can be dropped.
Using similar arguments, we can show that all the terms in
Eq. (22) that contain the mode parameters are negligible.
Thus, Eq. (21) becomes

μþ 8ρ3Tk
3
u

2A2

� ffiffiffi
π

p
A1

2A1=2
2

exp

�
A2
1

4A2

�
erfc

�
A1

2A1=2
2

�
− 1

�
¼ 0;

(23)

whereA1 ¼ iðμ − ΔνkuÞ andA2 ¼ 2ðσefδ Þ2k2u. In the limit of
vanishing effective energy spread (σefδ → 0), the error
function can be expressed by the asymptotic formula
erfcðuÞ ¼ ½e−u2=ð ffiffiffi

π
p

uÞ�½1 − 1=ð2u2Þ þ � � �� (valid for
juj ≫ 1), in which case we recover the well-known
cubic dispersion relation μ − 8ρ3Tk

3
u=A2

1 ¼ μþ 8ρ3Tk
3
u=

ðμ − ΔνkuÞ2 ¼ 0. For zero detuning, we obtain the
equation μ3 ¼ −8ρ3Tk3u, whose growing solution is
μ ¼ ð1 − i

ffiffiffi
3

p ÞρTku.

III. NUMERICAL RESULTS

To illustrate our theoretical analysis, we have considered
two FEL parameter sets, both of which refer to TGU-based

TABLE I. Undulator and electron beam parameters.

Parameter LPA USR

Undulator parameter K0 2 3.68
Undulator period λu 1 cm 2 cm
Beam energy γ0mc2 1 GeV 4.5 GeV
Resonant wavelength λr 3.9 nm 1 nm
Peak current Ip 10 kA 200 A
Energy spread σδ 10−2 1.5 × 10−3
Normalized emittance γ0ϵx 0.1 μm 0.0123 μm
Normalized emittance γ0ϵy 0.1 μm 1:23 μm
Horizontal size σx 11:3 μm 8.3 μm
Vertical size σy 11.3 μm 38.7 μm
FEL parameter ρ 6 × 10−3 6 × 10−4
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concepts for soft x-ray machines (Table I). The first set
describes an FEL driven by a laser-plasma accelerator [11]
while the second set corresponds to a machine that utilizes
the electron beam from the proposed PEP-X ultimate
storage ring [7]. Starting with the LPA parameter set, we
initially select a dispersion η ¼ 3.5 mm, which yields
(roughly) a 35 μm × 10 μm electron beam. Using the
parallel-beam model—Eq. (20) or (21)—we study the
variation of the main properties of the fundamental mode
with respect to the detuning parameter. In particular, in
Fig. 2, we plot the negative imaginary part of the scaled,
fundamental growth rate μ̂ ¼ μ=ð2ρkuÞ as a function of
the scaled detuning ν̂ ¼ Δν=ð2ρÞ while Fig. 3 shows the
frequency dependence of the scaled mode sizes. For ν̂≈
−0.5, the growth rate has a maximum value of −Im½μ̂�max≈
0.28. This corresponds to a frequency-optimized gain length

of Lg ¼
ffiffiffi
3

p
L0=ð2jIm½μ̂�jÞ ≈ 22.3 cm, where L0 ¼ λu=

ð4π ffiffiffi
3

p
ρÞ ≈ 7.3 cm is the 1D gain length. Moreover, we

note that the mode size in both x and y is comparable to the
electron beam size and increases as one moves towards
longer wavelength (negative detuning). Our next step is to
investigate whether or not the dispersion value we started
with is an optimum one. To this end, we first point out that
the analytical formula of Eq. (21) facilitates the fast
numerical calculation of the frequency-optimized gain
length as a function of the dispersion. The results of such
an analysis are shown in Fig. 4. For comparison, we have
also included optimized gain length values derived from the
1D fitting formula [11],

Lg ≈
λu

4π
ffiffiffi
3

p
ρT

�
1þ ðσefδ Þ2

ρ2T

�
; (24)

where we also use the approximation σefδ ≈ σx=η. As
expected, the gain length estimates from the 3D theory
are larger than those given by the 1D formalism. However,
the functional behavior is the same in both cases, in that the
optimized gain length attains a minimum for a particular
dispersion (5 or 7 mm in our case). For dispersion values
smaller than the optimum (where the effective energy spread
is still large), the gain length curve is considerably steeper
than for large η, where the large horizontal beam size
eventually dominates the variation ofLg. Lastly, we note that
for η ¼ 1 cm (a value close to the optimum), we obtain an
optimized gain length of slightly more than 20 cm. This is in
agreement with the SASE simulations presented in [11],
which showed saturation within 5 m of the undulator for this
particular dispersion.
Next, we turn to the parameter set describing a TGU FEL

based on the PEP-X ultimate storage ring. In this case, we
first need to point out that the undulator structure is rotated
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FIG. 2 (color online). Negative imaginary part of the funda-
mental FEL growth rate μ (in units of 2ρku) as a function of the
detuning Δν (in units of 2ρ) for η ¼ 3.5 mm (LPA set).
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FIG. 3 (color online). Scaled mode sizes as a function of the
scaled detuning. In particular, the blue curve shows the variation
of σrx=σT while the red one corresponds to σry=σy (η ¼ 3.5 mm,
LPA set).
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FIG. 4 (color online). Frequency-optimized gain length as a
function of dispersion for the LPA parameters. The data shown
were derived using the parallel-beam theory (blue) and the 1D
formula of Eq. (24) (red).
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by 90°, so that its x direction (i.e., the one in which the
dispersion and the field gradient are introduced) becomes
perpendicular to the horizontal plane of the ring. This is
done in order to take advantage of the much smaller
equilibrium emittance in the vertical plane of the ring
(for our parameters, the emittance ratio ϵx=ϵy is 1∶100). To
avoid confusion, we emphasize that the terms “horizontal”
(x) and “vertical” (y) direction always refer, respectively, to
the dispersive direction and the direction perpendicular to
it. Moreover, we remind the reader that the configuration
under study involves a single-pass, high-gain FEL that is
located in a bypass line next to the ring. Therefore, we
expect any potential restrictions on the achievable undu-
lator strength due to horizontal aperture/gap requirements
to be less important here than in the case of standard storage
ring operation. After clarifying these preliminary points,
we proceed to the main part of our analysis. For an
initial dispersion η ¼ 3.5 cm, we perform a steady-state
GENESIS simulation [16] assuming a Gaussian input field.
Since our objective is to verify the results of that part of our
theory which takes into account vertical emittance and
undulator focusing, we assume that the electron beam is
matched to the undulator in the y direction (with a natural
beta function βn ¼ 1=kn ≈ 12m) but neglect its horizontal
emittance. The results of the simulation are shown in
Figs. 5 and 6, where we plot the local power growth rate
and the radiation size as functions of z. Also included are
the variational values for the inverse gain length and the
size of the fundamental FEL mode. We stress that, since
GENESIS defines the radiation size σr as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2 þ y2i

p
, the

corresponding value for the mode size is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2rx þ σ2ry þ x2c

q
.

Good agreement is observed between simulation and

theory in the high-gain part of the linear regime, where
the fundamental mode is expected to be dominant.
Having checked the theoretical formalism, we use it to

estimate the optimum value of the dispersion. In Fig. 7, we
plot the power gain length in terms of the dispersion for
different values of the detuning parameter, using both the
simplified parallel-beam theory and the more accurate
model described by Eqs. (17) and (18). As expected, the
FEL growth rate is suppressed by the included vertical
emittance effect and the gain length curves are shifted
upwards. From the dashed curves, we obtain an optimum
gain length of slightly less than 6 m for a dispersion
η ≈ 5 cm. Finally, it is worth noting that for such dispersion
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FIG. 5 (color online). Local power growth rate P−1dP=dz
(where P is the radiation power) as obtained from a steady-state
GENESIS simulation (solid line—USR set=η ¼ 3.5 cm). The
dashed line corresponds to the inverse power gain length 1=Lg of
the fundamental mode, calculated using the variational theory.
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FIG. 6 (color online). Radiation size as obtained fromGENESIS
(solid line—USR set=η ¼ 3.5 cm). Also included is the varia-
tional estimate of the fundamental mode size (dashed line).
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FIG. 7 (color online). Gain length as a function of dispersion
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Included are data from a parallel beam analysis (solid lines)
and the model which includes vertical emittance and focusing
(dashed lines).

3D THEORY OF A HIGH-GAIN FREE-ELECTRON … Phys. Rev. ST Accel. Beams 17, 020701 (2014)

020701-7



values (i.e., a few cm), the electron beam (unlike the LPA
case) is approximately round with sizes ∼40–50 μm. This
results in the additional advantage of increased transverse
coherence for the output radiation [7], as the transverse
profile of the fundamental FEL mode is also approximately
symmetric and roughly matches that of the electron beam.

IV. CONCLUSIONS

We have developed a theoretical framework for the
study of a TGU-based, high-gain FEL which takes into
account three-dimensional effects such as emittance and
undulator focusing (the latter in the nondispersive plane
only), as well as electron beam size variations with z.
Starting from the Vlasov-Maxwell equations for the FEL,
we derived a self-consistent equation which governs the
evolution of the radiation field in the linear regime. For
the special case of constant electron beam sizes, we use this
equation to formulate a more standard description of the
FEL in terms of its eigenmodes. In particular, we focus on
the fundamental FEL mode, the parameters of which are
obtained using a variational approach. For sufficiently small
emittance in both transverse planes, we can use a parallel-
beam model which yields fully analytical expressions and
facilitates the fast calculation of the mode properties. The
results of our analysis have been used in numerical studies of
two soft x-ray TGU FEL configurations, involving novel
concepts based on laser-plasma accelerators and ultimate
storage rings. Good agreement with simulation has been
demonstrated while our theory extends already existing 1D
results. We believe that this formalism will be useful in
further understanding the physics of a TGU FEL and in
providing an analytical way for optimizing its parameters.
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APPENDIX: EQUATIONS OF MOTION

This section contains a derivation of the equations of
motion for a single electron in the combined field of the
radiation and the undulator. In general, it is also necessary
to superimpose an additional, corrector magnetostatic field
of the form

Bcx ¼ ð∂Bcy=∂xÞy ¼ B0cαcy;

Bcy ¼ B0cð1þ αcxÞ;
Bcz ¼ 0; (A1)

in order to keep the dispersion function constant along
the undulator (we shall verify this assertion later on). We
begin by considering the motion in the transverse plane.
Disregarding the direct influence of the radiation field, the
horizontal motion is governed by the equation

dðγmvxÞ
dt

¼ vz
dðγmvzx0Þ

dz
¼ −eðvyBz − vzByÞ; (A2)

where vx;y;z are the velocity components, By ¼ Buy þ Bcy,
Bz ¼ Buz and the prime denotes differentiation with respect
to z. Approximating vz ≈ c (which also implies that
vy ≈ cy0) and neglecting the variation of γ with z, we obtain

x00 ≈
e½By − y0Bz�

γmc

¼ e
γmc

½BðxÞ coshðkuyÞ sinðkuzÞ

þ BcðxÞ − y0BðxÞ sinhðkuyÞ cosðkuzÞ�; (A3)

where we have used Eq. (1) and introduced the abbrevia-
tions BðxÞ ¼ B0ð1þ αxÞ and BcðxÞ ¼ B0cð1þ αcxÞ. In a
similar way, we find that the equation of motion in the
vertical direction is

y00 ≈
e½Bzx0 − Bx�

γmc

¼ e
γmc

½x0BðxÞ sinhðkuyÞ cosðkuzÞ

− B0ðα=kuÞ sinhðkuyÞ sinðkuzÞ − B0cαcy�; (A4)

where Bx ¼ Bux þ Bcx. Since we are dealing with a planar
undulator, the horizontal motion of the electron can be
decomposed into a fast, small-amplitude wiggle motion xw
and a much slower, large-amplitude “averaged” motion x̄,
i.e., x ¼ x̄þ xw. As we shall see, a similar conclusion
actually holds for the y direction as well, so that we can
write y ¼ ȳþ yw. A relation for xw can be derived by
replacing the RHS of Eq. (A3) with its leading oscillatory
term. In particular, we obtain the equation

x00w ≈
eBðx̄Þ
γmc

coshðkuȳÞ sinðkuzÞ; (A5)

which can be solved approximately ([10],[12]) to give

x0w ≈ − eBðx̄Þ
γmcku

coshðkuȳÞ cosðkuzÞ (A6)

and

xw ≈ − eBðx̄Þ
γmck2u

coshðkuȳÞ sinðkuzÞ: (A7)

The vertical, fast oscillatory motion yw is induced by the x
component of the undulator field and is governed by

y0w ≈
K0

γ

α

ku
sinhðkuȳÞ cosðkuzÞ (A8)
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and

yw ≈
K0

γku

α

ku
sinhðkuȳÞ sinðkuzÞ; (A9)

where we recall that K0 ¼ eB0=ðmckuÞ. We note that,
unlike xw, yw is nonzero only for ȳ ≠ 0. Since we typically
have αȳ ≪ 1, the amplitude of the vertical oscillatory
motion is much smaller than that of its horizontal counter-
part. However, the former can still have an impact upon the
vertical natural focusing (as will be seen below). Given the
explicit expressions for xw and yw (as well as their slopes),
we can average Eq. (A3) over the fast wiggle motion in
order to obtain an equation for x̄. We then introduce the
fractional energy deviation δ through γ ¼ γ0ð1þ δÞ and
expand up to linear order in δ, x̄, and ȳ. The end result is

x̄00 ¼ e
γ0mc

�
−αK0B0

2γ0ku
ð1þαx̄−2δÞþB0cð1þαcx̄−δÞ

�
:

(A10)

Next, we stipulate that, in order for the dispersion η to be a
constant along the undulator, Eq. (A10) should admit as
solutions trajectories of the form x̄ ¼ ηδ ¼ const (in the
absence of radiation). This, in turn, is only possible if we
choose

B0c ¼
αK0B0

2γ0ku
¼ B0

γ0

1

kuη
2þ K2

0

2K0

(A11)

and

αc ¼ α − 1

η
¼ 2

K2
0

1

η
¼ α

1þ K2
0=2

; (A12)

where we have also made use of the TGU resonance
condition [Eq. (2)]. Using Eqs. (A11) and (A12) along
with Eq. (A10), we obtain the final form of the linearized
equation of motion in the x direction:

x̄00 ¼ −k2βðx̄ − ηδÞ; (A13)

where kβ is the total horizontal focusing strength, which is
given by

k2β ¼
K2

0

2γ20

α

η
¼ 1þ K2

0=2
η2γ20

: (A14)

Moreover, an analogous averaging of Eq. (A4) over the
wiggle motion yields

ȳ00 ¼ −k2yȳ; (A15)

where

k2y ¼
K2

0

2γ20
½k2u þ α2 þ ααc� ¼ k2n þ

K2
0ααc
2γ20

: (A16)

Here, kn ¼ K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2u þ α2

p
=ð ffiffiffi

2
p

γ0Þ is the vertical natural
focusing of the transverse gradient undulator while the
remaining term denotes the vertical focusing due to the
corrector field. The next step is to consider the equations
which govern the longitudinal motion. Starting from the
definition of the ponderomotive phase ψ ¼ kuzþ
krðz − ctÞ, we have

dψ
dz

¼ ku þ krð1 − β−1z Þ ≈ ku − kr
2

�
1

γ2
þ x02 þ y02

�
;

(A17)

where βj ¼ vj=c (j ¼ x, y, z) are the normalized velocities
and we have used the relativistic approximations βz ≈ 1 −
ð1=γ2 þ β2⊥Þ=2 and β2⊥ ¼ β2x þ β2y ≈ x02 þ y02 (which are
valid for γ ≫ 1 and vz ≈ c). Recalling that x0 ¼ x̄0 þ x0w,
y0 ¼ ȳ0 þ y0w—and in view of Eqs. (A6) and (A8)—we
obtain

dψ
dz

¼ ku − kr
2
ðx̄02 þ ȳ02 þ 2x̄0x0w þ 2ȳ0y0wÞ

− kr
2γ2

f1þ K2
0½ð1þ αx̄Þ2 þ ðk2u þ α2Þȳ2�cos2ðkuzÞg:

(A18)

Defining the new phase variable

θ ¼ ψ þ krK2
0

8kuγ20
sinð2kuzÞ (A19)

and once again averaging over the fast wiggle motion
eventually yields the relation

dθ
dz

¼ 2kuðδ − x̄=ηÞ − kr
2
ðȳ02 þ k2nȳ2Þ

− kr
2
fx̄02 þ k2β½ðx̄ − ηδÞðx̄ − 3ηδÞ þ x̄2=a2w�g:

(A20)

In the process of deriving the above result, we have made
use of the definition of δ and the FEL resonance condition
ku ¼ krð1þ a2wÞ=ð2γ20Þ. As we have seen, the TGU is
characterized by a natural focusing strength kβ ∼ ðηγ0Þ−1
in the horizontal (dispersive) direction. From Eqs. (2) and
(A12), we also have α, αc ∼ 1=η, which means that the
terms proportional to α2 and ααc on the RHS of Eq. (A16)
(which give the contributions to the vertical focusing due
to the undulator and corrector gradients) are both of order
ðηγ0Þ−2 ∼ k2β. Here, we will assume that the horizontal
focusing effect is very weak and neglect all terms ∼k2β. In
this approximation, we have ky ≈ kn ≈ K0ku=ð

ffiffiffi
2

p
γ0Þ, the

transverse equations of motion are simply
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x̄00 ¼ 0; (A21)

ȳ00 ¼ −k2nȳ; (A22)

and the phase equation reduces to

dθ
dz

¼ 2kuðδ − x̄=ηÞ − kr
2
ðx̄02 þ ȳ02 þ k2nȳ2Þ; (A23)

which are the results quoted in the text (with the bars
omitted). Finally, we briefly point out that the remaining
part of the FEL pendulum equations follows directly from
the energy exchange equation

mc2
dγ
dt

¼ −eExvx; (A24)

which can also be written as

dδ
dz

≈ − eExðx̄0 þ x0wÞ
γ0mc2

: (A25)

Utilizing Eqs. (4), (A6), and (A19)—along with the Jacobi-
Anger expansion—and averaging over the wiggle motion,
we obtain Eq. (6) in the main text. The details of this last
derivation are essentially identical to the ones for a standard
FEL [12] and will not be repeated here.
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