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The performance of a free-electron laser (FEL) depends significantly on the various parameters of the
driving electron beam. In particular, a large energy spread in the beam results in a substantial reduction of
the FEL gain, an effect which is especially relevant when one considers FELSs driven by plasma accelerators
or ultimate storage rings. For such cases, one possible solution is to use a transverse gradient undulator
(TGU). In this concept, the energy spread problem is mitigated by properly dispersing the electron beam
and introducing a linear, transverse field dependence in the undulator. This paper presents a self-consistent
theoretical analysis of a TGU-based, high-gain FEL which takes into account three-dimensional (3D)
effects, including beam size variations along the undulator. The results of our theory compare favorably
with simulation and are used in fast optimization studies of various x-ray FEL configurations.
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I. INTRODUCTION

In recent years, with the successful commissioning of
several major facilities around the world [1-4], the free-
electron laser (FEL) has demonstrated its immense value
as a tunable source of intense, coherent x rays. However,
achieving the desired quality for the output radiation requires
the availability of a high-brightness electron beam to drive
the FEL, a fact which places serious restrictions on param-
eters such as the transverse emittance and the relative energy
spread of the e-beam. In this paper, we are predominantly
concerned with the latter quantity, which must be much
smaller than the gain bandwidth (given by the FEL param-
eter) if efficient lasing is to occur. This is because a large
spread in the energy of the electrons translates into a
significant spread in the resonant wavelength (as can be
seen from the FEL resonance condition), thus drastically
reducing the FEL gain. While standard designs satisfy the
aforementioned condition, there exist a number of promising
novel concepts for which doing so (in a conventional way)
would be very challenging. One prominent example is that of
FELs driven by electron beams from laser-plasma acceler-
ators (LPAs) [5]. The latter are characterized by high energy
(~1 GeV), low normalized emittance (~0.1 ym) and very
high peak current (up to 10 kA), features which make them
attractive for compact FEL applications. Unfortunately, they
also have arelatively large energy spread (~1%) compared to
beams from conventional accelerators. Another potential
scheme involves the use of the beam from an ultimate storage
ring (USR) [6] inahigh-gain FEL situated in a bypass close to
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the ring [7]. This configuration would allow for a high
repetition rate but is again limited by the relatively large
energy spread (~0.1%), as well as the low peak current
(~100 A). For the case of the LPA-based concepts, some
proposals make use of bunch decompression techniques in
order to address the energy spread problem [8]. Instead, we
will consider an alternative concept, the transverse gradient
undulator (TGU), which can also be used in the scheme that
involves an ultimate storage ring. The TGU (Fig. 1) is an
undulator with canted magnetic poles, so that its vertical
field has a linear dependence upon the horizontal position x.
Using a suitable dispersive element, one can also introduce
alinear correlation of the electron energy with x. By properly
selecting the parameters involved (cant angle and
dispersion), one can ensure that electrons with higher than
nominal energy are dispersed towards the higher-field region
in such a way that the variation in the resonant frequency is
minimized.

FIG. 1 (color online). Schematic of a transverse gradient
undulator (TGU). The undulator poles are canted, which in-
troduces a linear dependence of the vertical field with x. The
constant field gradient depends on the cant angle ¢.
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Originally studied as a way to improve the energy
acceptance of low-gain (oscillator) FELs ([9] and [10]),
the TGU has recently been considered in the context of its
possible application in high-gain devices, particularly those
based on LPAs. Specifically, Ref. [11] developed a one-
dimensional (1D) theoretical model for such a device and
investigated the impact of 3D effects through simulation. In
this paper, we present a self-consistent, theoretical descrip-
tion of a TGU-based, high-gain FEL in the framework of
the Vlasov-Maxwell formalism, including 3D effects such
as diffraction, emittance, and betatron oscillations due to
the undulator natural focusing. In Sec. II, an outline is given
of the single particle equations of motion (the detailed
analysis of which is left for the Appendix) and an equation
for the radiation amplitude is derived from the Vlasov-
Maxwell equations. When possible, we seek solutions that
correspond to the guided eigenmodes of the FEL. In
particular, we focus on the fundamental FEL. mode and
employ a variational technique in order to determine its
various parameters. In Sec. III, we present the results of a
numerical study which explores two different concepts for a
soft x ray, TGU FEL, namely a compact device driven by an
LPA and a machine based on an ultimate storage ring.
Finally, Sec. IV summarizes our main conclusions.

II. THEORY

A. Single particle motion

To begin with, we assume that the magnetic field of the
TGU is given by

B, = Bokg sinh(k,y) sin(k,z),

u

B,, = By(1 + ax) cosh(k,y) sin(k,z),
By; = By(1 + ax) sinh(k,y) cos(k,z). (D

where k, = 2xz/A, (4, is the undulator period), By is the
peak on-axis field, and « is the transverse field gradient,
which can be related to the cant angle of the undulator poles
[11]. This magnetic field satisfies Maxwell’s equations in
vacuum and reduces to the field of a standard, planar, flat-
pole undulator for @ — 0. As we have already mentioned,
the object of the TGU is to mitigate the negative impact of a
large energy spread in the electron beam by significantly
reducing the resulting spread in the resonant wavelength 4,.
In order to achieve this, the beam is dispersed in the x
direction so that the horizontal position of an electron
becomes linearly correlated to its energy ymc? according
to x = 55, where 7 is the dispersion, § = y/yy — 1 is the
relative energy deviation, and yymc? is the average electron
energy (m is the electron mass). On the other hand, the
introduction of the constant field gradient o leads to a
linear x dependence of the undulator parameter K, i.e.,
K = Ky(1 + ax), where K, = eBy/(mck,) is its on-axis

value (e is the electron charge). By selecting the dispersion
n according to the relation

2
_ 2+ 12(0 @)

akKj
the resonant condition 4, = 4,(1 + K?/2)/(2y?) is now
satisfied by all the electrons in the beam (up to linear order
in x). Only on-resonance operation of the TGU will be
considered in this study, so Eq. (2) is always assumed to
be valid.

For a derivation of the single particle equations of
motion, we refer to the Appendix. Here, we merely quote
the main results. As far as the transverse dynamics is
concerned, the TGU is characterized by a horizontal
focusing strength kj ~ (n70)~". In this paper, we assume
that this focusing effect is weak (kgL, < 1, where L, is the
undulator length) and exclude it from our treatment.
However, we do take into account the vertical natural
focusing of the undulator, whose strength k,, is given by
k, ~ Kok,/(v/2y,). Moreover, we assume that a small, net
bending (~By/7y) due to the asymmetry of the TGU field
has been corrected. Thus, the (wiggle-averaged) transverse
equations of motion for an electron are x” =0 and

y" = —kZy, or, in a more canonical form,

dx dp, dy dp,

e — s = (), E—— by — = —k2 .
dz D dz a D dz "

3

In addition, we express the electric field of the radiation
(which is linearly polarized along the x direction) as

1 [oo )
E, =3 / dvE,(x,2)eth =) fcc,  (4)
0

where E, (X, z) is the amplitude of the radiation, x = (x,y)
is the transverse position vector, v = w/w, is a scaled
frequency variable, w,=ck,=2nc/A,=2yick,/(1+aj)
is the resonant frequency (with a, = K,/ V?2), and c.c.
stands for complex conjugate. The pendulum equations for
the longitudinal motion are

do X k
Y-k (s-2)_Lr(p2 2 p2y2 5
e < ’7) 2(px+py+ )6
and
ds 00 . )
— =K / dvE,(x,7)e kel 4 ¢ ¢, 6)
dZ 0

Here, 0 = k,z + k.(z — cf) is the averaged electron phase
(7 is the electron arrival time averaged over the wiggle
motion), Av = v — 1 is the frequency detuning parameter,
and k; = eK[JJ]/ (4ygmc?), where [JJ] = Jo(Q0) —J1(Qo)
[with Qo= K3/(4+2K3)] is the well-known factor
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arising from the wiggle averaging. We note the presence
of the linear term proportional to x on the right-hand side
(RHS) of Eq. (5), which reflects the resonant character of
particles with x = #d.

B. Vlasov-Maxwell equations

The Vlasov-Maxwell formalism allows us to study the
interaction between the electron beam and the radiation
that is generated during its passage through the TGU in a
self-consistent fashion. In this context, the phase-space
evolution of the electron beam is described by means of a
distribution function f = f(6, 8, x,y, p. py, z). Prior to the
onset of saturation, the FEL interaction only adds a small
perturbation of to the background distribution f;, (i.e.,
f=fo+6f, where |5f| < fo). Following the standard
perturbation analysis [12], it can be shown that the
linearized, frequency-domain Vlasov equation for the
FEL is (for v > 0)

of of of of .
v v v —k2 v /
oz + p, o +p,y By Y op, +id'f,
afo ik
— E 1Avk,z
K195 ¢ ’ @)

where f,(6,x,y.py. py.2) is the Fourier amplitude
of the perturbation &f [f, = (27)~' [® dOe5f].
Furthermore, the unperturbed distribution f, is assumed
to be 6 independent (which corresponds to a uniform
current profile) and satisfies the relation

%+px%+p %_k%yafo —
X dpy

0.

0z " By ®

As far as the normalization of f, is concerned, we adopt the
convention of Ref. [13], ie., [ dp.dp, [% dxdyx
ff"m défy, = N,/l,, where [, and N, are, respectively,
the bunch length and the total number of electrons. On
the other hand, the evolution of the radiation field along the
undulator is governed by the paraxial wave equation,

0

(a?*

N
2ik,

_ 8iprk,

2r6y0y Jo

)Exx,z) -

2

X exp {2iku§ {_a;x —
orn
_ 2
X exp [_ (x p;zx)
207

C

1

2

o V2
(8_z+2iyk,> E

where V3 = 9%/0x? = 0% /0x* + 0?/Dy? is the transverse
Laplacian, k, = eKy[JJ]/(2e0y9) and g, is the vacuum
permittivity. Equations (7)—(9) accurately describe the FEL
interaction in the linear regime. Using the method of
integration along the unperturbed trajectories (Ref. [12]
or [13]), Eq. (7) can be solved in terms of f,, yielding

1) z
fo= e G2 [ e 00

x e 8k exp{iv[0'E — (k,p./n)E}

for an initially unmodulated electron beam. In the equation
given above, we have defined { = { —z,x, = x+ p,£and
y+ =y cos(k,&) + (py/k,)sin(k,&). We then choose a
background distribution that corresponds to a dispersed
Gaussian beam which is matched to the undulator focusing
in the y direction (and thus has a constant vertical size).
In this case, f( is given by

N,/

__K.zeiAvkuz/ dpxdpy

(5]

/ *dsf,. ()

(10)

Jo= (Zﬂ)s/zgxoya;a'ya,;
(x—n6—p.z)®  pi
X exp [ 262 202
2 2 2
y Py o
xexp|— 2 — ~ 2. 1
P [ 203 20;2} exp [ 26§:| (1)

In the above relation, o5 is the rms energy spread, z,
7 — 29 (20 is a constant offset), 6, and o, are the rms vertical
beam size and angular divergence while o, and o', are their
horizontal counterparts at z, =0 (in the absence of
dispersion). We also point out that the vertical matching
condition is ¢, /6, = k, and that the beam emittance values
are given by €, = 0,0} and €, = 0,0). Inserting Eq. (10)
into the RHS of Eq. (9) and performing the § integration,
we obtain a self-consistent equation for the amplitude of the
radiation:

/ T dgge R exp [—2(0d) k28] / " dp.dp,E,(x;,y:.0)

Here, we have approximated v ~ 1 everywhere except in the detuning term while

or = (62 +n*c2)/? = 0x<1 +

is the total horizontal beam size when ¢, — 0,

22
) 5]
T n
(L + ik 5) pZ—l <L + ik z;) (p? + kaZ)] (12)
2 r X 2 r n N
o 2\, Y
252\ 1/2
’7625> (13)
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—-1/6
17 (o2
pr=7p (1+ g 5) (14)

X

is the corresponding attenuated FEL parameter [14], and

05‘ is a (decreased) effective energy spread given by

1 1 7 n-os

1/2
— of — 1 . 15
cuar e L ALIES SRR

Optimum operation of the TGU requires a significantly
reduced effective energy spread (nos/c, > 1), so we can
usually approximate o*gf ~ o,/n. The FEL parameter p in
absence of dispersion is given by

= L M 3 (16)
161, }/gaxa),kﬁ ’

where I, =ecN,/l, is the peak current and [, =
dzegmc’ /e ~ 17 KA is the Alfven current. We note that,
for a conventional FEL, the energy spread requirement

|

Vi 271:0; 20% 262

would be 65 < p. Equation (12) incorporates all the three-
dimensional effects under consideration, including the
variation of the horizontal beam size with z. The latter is
a consequence of the z dependence of f;, when ¢, # 0,
which also causes the integral kernel in Eq. (12) to depend
explicitly upon z (through z,).

C. Eigenmode formalism

To simplify our treatment, we consider the case of
vanishing horizontal emittance (i.e., the case with ¢, —0
but o}, # 0), when both sizes of the electron beam are
constant. This regime is relevant for a TGU FEL driven
by an ultimate storage ring and also allows for a stand-
ardized description in terms of the self-similar, guided
eigenmodes of the FEL. The latter are solutions of the form
E,(x,z) = A(x)e?, where u is the (constant) complex
growth rate and A(x) is the mode profile. Using Eq. (12),
we can show that the eigenmode equation satisfied by the
mode profile and the growth rate is

8 3k3 : 2 0 i ef\272 £2 2
pT u exp (_ x_ J— y_) / dgéel(ﬂ_Al/kuﬁe*Z(o—ﬁ ) ku§ exp |:_2l %{ku§:|
v/ J—oo orh
ik 5
- k2y? 17

[ anatnsreal -

where only growing modes (with Im[u] < 0) have been considered. We make use of a variational technique in order to obtain
an approximate solution for the Gaussian-like, fundamental mode [15], which is typically the fastest-growing of
the FEL eigenmodes. We begin by assuming a trial solution of the form A(x) o exp(—a,x? + bx) exp(—a,y?) for the
transverse profile, where the bx term has been added to account for the asymmetry (under the reflection x — —x) introduced by
the exponent thatis proportional to x /7 in Eq. (17). We then multiply both sides of the eigenmode equation by A (x ) and integrate
over the transverse position. The result of this manipulation is the relation

F(axvay’b’/’t) =p+

atay , Sprkiyaya, / dEE ox ( b (0/o)ikié)®  p> )
2k, Va, +1/(463) 2a, +1/(207) 2a,
x expli(u — Avk,)&E — 2(c5)?kaé?] / |atotsin® (k,&)
+ a,(1 + ik,6,%¢) + (1/(462))(1 + ik,0,2E)?]1/? = 0, (18)
|

and focusing effects in both transverse directions are
negligible, as is usually the case with LPA-based examples,
we can employ a parallel-beam model for both x and y, in
which case Egs. (17) and (18) reduce to

vz x> y?
_ A — —803K3A -z _ 7
<:u Zk,.) (X) Skau (X) exp ( 20_% 26%)

x/ dEgeiH—Avk,)é g=2(e5) kit

which expresses u in terms of a,, a,, and b. The next step
is to use the variational conditions, namely du/da, = 0,
Op/0a, = 0,and 9u/0b = 0, which stem from the fact that
afirstorder variation of the mode profile yields only asecond
order variation in the growth rate. In particular, we differ-
entiate Eq. (18) with respect to a,, which yields 9F/da, +
(OF /0u)(0p/da,) =0 or—in view of the variational
condition—9JF /da, = 0. In a similar way, we also have
the relations dF/da, =0 and OF/0b = 0. Solving the
above-mentioned derivative relations in conjunction with
Eq. (18), we obtain an approximation to the growth rate and
the parameters of the fundamental mode. When emittance

o2 x
X exp { ; % 5} (19)
orn
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and

a,+ay

8piki/dx /ay

F(axvayvbnu) =p+

2a, + 1/(26%) 2a,

2k, Va, +1/(407)\/a, + 1/(403)
. ((b L RNikEP ) Y

/ dg€ expli(u — Avk,)E — 2(c8 )22

(20)

respectively. The integral on the RHS of the above relation can be expressed in terms of error functions, allowing for faster

numerical calculations. In particular, we find

a, +a, 8pik;
Flagayb.p) =p+——+ hey/ @/
r Va, +1/(40%)\/a, + 1/(403)
A 1
o [VTA fo| —— ) —=—| =0 21
[4A3/2 o <4A2> o <2A5/2> 2A2] ’ ey
where erfc(u) = 1 — (2/y/x) [ e~ ds is the complementary error function and
b? k,b 4 k
Ay = — ; LA =i|u— Ak, — 27—/’1 , = G*%jtz( )22,
4a,(2a,07 +1/2) 022a,+1/(262)]’ o3 2a, + 1/(20%)
(22)

Once the growth rate and the mode parameters are known,
one can calculate the power gain length L, = —1/(2Im[u])
as well as the mode sizes o,, = (4Re[a,])™"/?
(4Re[a,])~!/? (we clarify that Re and Im refer, respectively,
to real and imaginary part). The latter two quantities
(x*) —x2 and
6,, = \/(y?), where the average uses the mode intensity
profile |A(x)|> as a weighting function (i.e., we have
= [© dx|A(x)[*x?/ [* d*x|A(x)|? etc.) and x, =
[b] /(2Rela,]) is the horizontal centroid of the mode. In
the 1D limit, both electron beam sizes are much larger than
the diffraction size op, ~ (prk,k,) /2, thatis o7, 6, > op.
As a result, we have 6, ~ \/or6p < o7, O, 6,0p <
o, and also x, < o7. In view of the above properties,
the results of the parallel-beam analysis are considerably
simplified. In particular, we can approximate a, +
1/(40%) ~ a,anda, + 1/(407) ~ a, while the term propor-
tional to a, + a, in the first line of Eq. (21) is of order
op/or + op/o, when compared to y and can be dropped.
Using similar arguments, we can show that all the terms in
Eq. (22) that contain the mode parameters are negligible.
Thus, Eq. (21) becomes

8prka [V/FA AT A
2L ) erf —1| =0,
oA 2472 TP \aa, ) a1

(23)

and o,, =

are defined by the relations o, =

where A| = i(u — Avk,)and A, = 2(c% )2k2 In the limit of
vanishing effective energy spread (o5 — 0), the error
function can be expressed by the asymptotic formula
erfe(u) = e /(yau)|[l — 1/(2u?) +---] (valid for
lu| > 1), in which case we recover the well-known
cubic dispersion relation p — 8p3ki/A? =+ 8prk;/
(4 — Avk,)*> = 0. For zero detuning, we obtain the
equation u* = —8p3k3, whose growing solution is

H= (1 - l\/g)kau

III. NUMERICAL RESULTS

To illustrate our theoretical analysis, we have considered
two FEL parameter sets, both of which refer to TGU-based

TABLE I. Undulator and electron beam parameters.
Parameter LPA USR
Undulator parameter K, 2 3.68
Undulator period 4, 1 cm 2 cm
Beam energy yomc? 1 GeV 4.5 GeV
Resonant wavelength A, 3.9 nm 1 nm
Peak current /, 10 kA 200 A
Energy spread o5 1072 1.5x 1073
Normalized emittance yge, 0.1 ym 0.0123 um
Normalized emittance yye, 0.1 ym 1.23 ym
Horizontal size o, ) 11.3 ym 8.3 um
Vertical size o, 11.3 ym 38.7 ym
FEL parameter p 6 x 1073 6x 107
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0.27

0.26

0.25

~Im{/2pk )

0.24

0.23 1

-0.8 -0.6 -0.4 -0.2 0
AVI(2p)

FIG. 2 (color online). Negative imaginary part of the funda-
mental FEL growth rate p (in units of 2pk,) as a function of the
detuning Av (in units of 2p) for n = 3.5 mm (LPA set).

concepts for soft x-ray machines (Table I). The first set
describes an FEL driven by a laser-plasma accelerator [11]
while the second set corresponds to a machine that utilizes
the electron beam from the proposed PEP-X ultimate
storage ring [7]. Starting with the LPA parameter set, we
initially select a dispersion 5 = 3.5 mm, which yields
(roughly) a 35 um x 10 ym electron beam. Using the
parallel-beam model—Eq. (20) or (21)—we study the
variation of the main properties of the fundamental mode
with respect to the detuning parameter. In particular, in
Fig. 2, we plot the negative imaginary part of the scaled,
fundamental growth rate i = u/(2pk,) as a function of
the scaled detuning o = Av/(2p) while Fig. 3 shows the
frequency dependence of the scaled mode sizes. For D~
—0.5, the growth rate has a maximum value of —Im[ji],,,.~
0.28. This corresponds to a frequency-optimized gain length

1.4

Scaled mode size

-0.8 -06 iy 02 0
AVI2p)

FIG. 3 (color online). Scaled mode sizes as a function of the
scaled detuning. In particular, the blue curve shows the variation
of 6,,/or while the red one corresponds to o,,/0, (n = 3.5 mm,
LPA set).

of L,=+/3Ly/(2|Im[p]|) ~22.3 cm, where Ly =4,/
(47\/3p) ~ 7.3 cm is the 1D gain length. Moreover, we
note that the mode size in both x and y is comparable to the
electron beam size and increases as one moves towards
longer wavelength (negative detuning). Our next step is to
investigate whether or not the dispersion value we started
with is an optimum one. To this end, we first point out that
the analytical formula of Eq. (21) facilitates the fast
numerical calculation of the frequency-optimized gain
length as a function of the dispersion. The results of such
an analysis are shown in Fig. 4. For comparison, we have
also included optimized gain length values derived from the
1D fitting formula [11],

Os

) ( ef)2
Lo~— 1+ } , (24)
! 4”\/§PT { p%

where we also use the approximation 6§ ~o,/n. As
expected, the gain length estimates from the 3D theory
are larger than those given by the 1D formalism. However,
the functional behavior is the same in both cases, in that the
optimized gain length attains a minimum for a particular
dispersion (5 or 7 mm in our case). For dispersion values
smaller than the optimum (where the effective energy spread
is still large), the gain length curve is considerably steeper
than for large #, where the large horizontal beam size
eventually dominates the variation of L. Lastly, we note that
for 7 =1 cm (a value close to the optimum), we obtain an
optimized gain length of slightly more than 20 cm. This is in
agreement with the SASE simulations presented in [11],
which showed saturation within 5 m of the undulator for this
particular dispersion.

Next, we turn to the parameter set describing a TGU FEL
based on the PEP-X ultimate storage ring. In this case, we
first need to point out that the undulator structure is rotated

0.3

L (m)

0.15

0.015 0.02 0.025 0.03

n (m)

0.005 0.01

FIG. 4 (color online). Frequency-optimized gain length as a
function of dispersion for the LPA parameters. The data shown
were derived using the parallel-beam theory (blue) and the 1D
formula of Eq. (24) (red).
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by 90° so that its x direction (i.e., the one in which the
dispersion and the field gradient are introduced) becomes
perpendicular to the horizontal plane of the ring. This is
done in order to take advantage of the much smaller
equilibrium emittance in the vertical plane of the ring
(for our parameters, the emittance ratio €, /¢, is 1:100). To
avoid confusion, we emphasize that the terms “horizontal”
(x) and “vertical” (y) direction always refer, respectively, to
the dispersive direction and the direction perpendicular to
it. Moreover, we remind the reader that the configuration
under study involves a single-pass, high-gain FEL that is
located in a bypass line next to the ring. Therefore, we
expect any potential restrictions on the achievable undu-
lator strength due to horizontal aperture/gap requirements
to be less important here than in the case of standard storage
ring operation. After clarifying these preliminary points,
we proceed to the main part of our analysis. For an
initial dispersion # = 3.5 cm, we perform a steady-state
GENESIS simulation [16] assuming a Gaussian input field.
Since our objective is to verify the results of that part of our
theory which takes into account vertical emittance and
undulator focusing, we assume that the electron beam is
matched to the undulator in the y direction (with a natural
beta function f, = 1/k, ~ 12 m) but neglect its horizontal
emittance. The results of the simulation are shown in
Figs. 5 and 6, where we plot the local power growth rate
and the radiation size as functions of z. Also included are
the variational values for the inverse gain length and the
size of the fundamental FEL mode. We stress that, since

GENESIS defines the radiation size o, as /(x> + y?), the

corresponding value for the mode size is /62, + 6%, + x2.

Good agreement is observed between simulation and

0.2

0.15
-~
E 0.1
~
5
. 0.05 — simulation
- - - theory

0 26 4b 6‘;0 86 100
z (m)

FIG. 5 (color online). Local power growth rate P~'dP/dz

(where P is the radiation power) as obtained from a steady-state

GENESIS simulation (solid line—USR set/n = 3.5 cm). The

dashed line corresponds to the inverse power gain length 1/L, of
the fundamental mode, calculated using the variational theory.

x 10~
9
8.5 — simulation
sl - - -theory

0 20 40 60 80 100

FIG. 6 (color online). Radiation size as obtained from GENESIS
(solid line—USR set/n = 3.5 cm). Also included is the varia-
tional estimate of the fundamental mode size (dashed line).

theory in the high-gain part of the linear regime, where
the fundamental mode is expected to be dominant.
Having checked the theoretical formalism, we use it to
estimate the optimum value of the dispersion. In Fig. 7, we
plot the power gain length in terms of the dispersion for
different values of the detuning parameter, using both the
simplified parallel-beam theory and the more accurate
model described by Eqgs. (17) and (18). As expected, the
FEL growth rate is suppressed by the included vertical
emittance effect and the gain length curves are shifted
upwards. From the dashed curves, we obtain an optimum
gain length of slightly less than 6 m for a dispersion
n ~ 5 cm. Finally, it is worth noting that for such dispersion

0.04 006 008 01 012 014 016 0.18
n (m)

FIG. 7 (color online). Gain length as a function of dispersion
for Av/(2p) =0.0/—0.2/ — 0.4 (blue/red/green—USR set).
Included are data from a parallel beam analysis (solid lines)
and the model which includes vertical emittance and focusing
(dashed lines).
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values (i.e., a few cm), the electron beam (unlike the LPA
case) is approximately round with sizes ~40-50 um. This
results in the additional advantage of increased transverse
coherence for the output radiation [7], as the transverse
profile of the fundamental FEL mode is also approximately
symmetric and roughly matches that of the electron beam.

IV. CONCLUSIONS

We have developed a theoretical framework for the
study of a TGU-based, high-gain FEL which takes into
account three-dimensional effects such as emittance and
undulator focusing (the latter in the nondispersive plane
only), as well as electron beam size variations with z.
Starting from the Vlasov-Maxwell equations for the FEL,
we derived a self-consistent equation which governs the
evolution of the radiation field in the linear regime. For
the special case of constant electron beam sizes, we use this
equation to formulate a more standard description of the
FEL in terms of its eigenmodes. In particular, we focus on
the fundamental FEL mode, the parameters of which are
obtained using a variational approach. For sufficiently small
emittance in both transverse planes, we can use a parallel-
beam model which yields fully analytical expressions and
facilitates the fast calculation of the mode properties. The
results of our analysis have been used in numerical studies of
two soft x-ray TGU FEL configurations, involving novel
concepts based on laser-plasma accelerators and ultimate
storage rings. Good agreement with simulation has been
demonstrated while our theory extends already existing 1D
results. We believe that this formalism will be useful in
further understanding the physics of a TGU FEL and in
providing an analytical way for optimizing its parameters.

ACKNOWLEDGMENTS

We would like to thank R. Lindberg for useful
discussions.

APPENDIX: EQUATIONS OF MOTION

This section contains a derivation of the equations of
motion for a single electron in the combined field of the
radiation and the undulator. In general, it is also necessary
to superimpose an additional, corrector magnetostatic field
of the form

ch = (chy/ax)y = BOcacy’
ch = BOC(1 + acx)’

B, =0, (A1)
in order to keep the dispersion function constant along
the undulator (we shall verify this assertion later on). We
begin by considering the motion in the transverse plane.
Disregarding the direct influence of the radiation field, the
horizontal motion is governed by the equation

dymv,) _ dlymo.x)

pramial 7 = —e(vyBZ — UZBy>,

(A2)

where v, , . are the velocity components, By, = B, + By,
B, = B, and the prime denotes differentiation with respect
to z. Approximating v, ~ c¢ (which also implies that
vy ~ cy') and neglecting the variation of y with z, we obtain

o 1By~ VB
ymc

= ymic [B(x) cosh(k,y) sin(k,z)

+ B.(x) — y'B(x) sinh(k,y) cos(k,z)], (A3)
where we have used Eq. (1) and introduced the abbrevia-
tions B(x) = By(1 + ax) and B.(x) = By.(1 + a.x). In a
similar way, we find that the equation of motion in the
vertical direction is

ymc
= ymic [x'B(x) sinh(k,y) cos(k,z)

- BO(a/ku> Sinh(kuy) Sin(kuZ) - BOcacy]’ (A4)
where B, = B, + B,,. Since we are dealing with a planar
undulator, the horizontal motion of the electron can be
decomposed into a fast, small-amplitude wiggle motion x,,
and a much slower, large-amplitude “averaged” motion X,
ie., x =X+ x,. As we shall see, a similar conclusion
actually holds for the y direction as well, so that we can
write y =¥+ y,,. A relation for x,, can be derived by
replacing the RHS of Eq. (A3) with its leading oscillatory
term. In particular, we obtain the equation

B(
DA eB(%) cosh(k,y) sin(k,z),
ymce

(A5)

which can be solved approximately ([10],[12]) to give

B(3
X, ~— ;mijlcci cosh(k,y) cos(k,z) (A6)
and
B(x
x, ~ =L (x)2 cosh(k,7) sin(k,z). (A7)
ymck;

The vertical, fast oscillatory motion y,, is induced by the x
component of the undulator field and is governed by

K
v, =~ 70]{2 sinh(k,y) cos(k,z)

u

(A8)
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and

K
yk(; k% sinh(k,y) sin(k,z),

(A9)

Yww

where we recall that Ky, = eBy/(mck,). We note that,
unlike x,,, y,, is nonzero only for y # 0. Since we typically
have ay <« 1, the amplitude of the vertical oscillatory
motion is much smaller than that of its horizontal counter-
part. However, the former can still have an impact upon the
vertical natural focusing (as will be seen below). Given the
explicit expressions for x,, and y,, (as well as their slopes),
we can average Eq. (A3) over the fast wiggle motion in
order to obtain an equation for X. We then introduce the
fractional energy deviation § through y = yo(1 + &) and
expand up to linear order in 6, X, and y. The end result is

e aKoBO
Yomc 27/Oku

(1+ax—26)+By.(1+a.x—9)|.
(A10)

Next, we stipulate that, in order for the dispersion 7 to be a
constant along the undulator, Eq. (A10) should admit as
solutions trajectories of the form X = nd = const (in the
absence of radiation). This, in turn, is only possible if we
choose

KyB By, 1 2+ K?
BOC ak 0 20 + 0 (All)
2yok, Yo kun 2Ky
and
1 21
@ —a——=— ¢ (A12)
n Kon 1+ K3 /2

where we have also made use of the TGU resonance
condition [Eq. (2)]. Using Egs. (All) and (A12) along
with Eq. (A10), we obtain the final form of the linearized
equation of motion in the x direction:

X = —kj(x — né), (A13)

where kj is the total horizontal focusing strength, which is
given by
K:a 1+K3/2
=02 +—/. (A14)
2r5n 775

Moreover, an analogous averaging of Eq. (A4) over the
wiggle motion yields
y' = —k:é', (A15)

where

K3aa,
25

K2
k=% +a*+aa] =k +
2r5

(A16)
Here, k, = Ko\/k2 + a®/(v/2y,) is the vertical natural
focusing of the transverse gradient undulator while the
remaining term denotes the vertical focusing due to the
corrector field. The next step is to consider the equations
which govern the longitudinal motion. Starting from the
definition of the ponderomotive phase w = k,z+
k.(z — ct), we have

dy k. (1
_r 1— —1 ~ A /2 12
7 k, + k(1 =g ~ k, 5 <y2+x +y )

(A17)

where #; = v;/c (j = x, y, z) are the normalized velocities
and we have used the relativistic approximations f, ~ 1 —
(1/y*+$7)/2 and p7 = pi + 5 ~ x> +y'* (which are
valid for y > 1 and v, = ¢). Recalling that x' = X’ + xJ,,
y =y +y,—and in view of Egs. (A6) and (A8)—we
obtain

d k,
&Y _ =k, —— (X* + 52 +2¥'x), + 2y'y.,)
dz 2
k,
—2y2{1+K%[(1+ax) + (k2 + a?)y?]|cos?(k,z) }.
(A18)
Defining the new phase variable
kKD

0=y + 5 sin(2k,z) (A19)

8k,

and once again averaging over the fast wiggle motion
eventually yields the relation

do

k., _ _
ph = (7 + K2y

2
kr =2 k2 T
— ¥ 4kl

=2k, (6 —x/n) —

—n0)(% — 3n8) + X/ ay ]}
(A20)

In the process of deriving the above result, we have made
use of the definition of § and the FEL resonance condition
k,=k.(1+a%)/(2y3). As we have seen, the TGU is
characterized by a natural focusing strength ks ~ (1770) "
in the horizontal (dispersive) direction. From Egs. (2) and
(A12), we also have a, a.~ 1/n, which means that the
terms proportional to a®> and aa, on the RHS of Eq. (A16)
(which give the contributions to the vertical focusing due
to the undulator and corrector gradients) are both of order
(79)~* ~ kj. Here, we will assume that the horizontal
focusing effect is very weak and neglect all terms ~k3. In
this approximation, we have k, = k, = Kok, / (V2y,), the
transverse equations of motion are simply
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X' =0, (A21)
y' = —kiy, (A22)
and the phase equation reduces to
do k
- = 2k, (6 — X/n) — 3’ (X2 + 5%+ k257, (A23)
z

which are the results quoted in the text (with the bars
omitted). Finally, we briefly point out that the remaining
part of the FEL pendulum equations follows directly from
the energy exchange equation

d
mc2d—t — —¢E,v,, (A24)
which can also be written as
ds E (X /
4 B Ex) (A25)

dz yome?

Utilizing Egs. (4), (A6), and (A19)—along with the Jacobi-
Anger expansion—and averaging over the wiggle motion,
we obtain Eq. (6) in the main text. The details of this last
derivation are essentially identical to the ones for a standard
FEL [12] and will not be repeated here.
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