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We propose using a radio frequency quadrupole (RFQ) to introduce both the longitudinal spread of
betatron frequency and the transverse spread of synchrotron frequency for Landau damping of transverse
beam instabilities in accelerators. The existing theory of stability diagrams for Landau damping is applied
to the case of a RFQ. As an example, the required quadrupolar strength is calculated for stabilizing the
Large Hadron Collider beams at 7 TeV. It is shown that this strength can be provided by a superconducting
rf device only a few meters long.
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I. INTRODUCTION

In accelerators the effect of Landau damping [1] provides
a natural stabilizing mechanism against collective insta-
bilities if particles in the beam have a small spread in their
natural (betatron or synchrotron) frequencies; see, for
example, [2] and references therein. It is important to note
that it is essential for Landau damping that the frequency
spread depends on action, which means it is not averaged
out over the oscillation period. This is the meaning of the
spread which is used below if not stated otherwise.
The spread can come from several sources related to

nonlinearities of different kinds. Nonlinear space charge
forces cause the spread both in betatron and synchrotron
frequencies. Nonlinearity in rf focusing voltage results in
synchrotron frequency spread. Nonlinearities in a magnetic
focusing system cause betatron frequency spread. Last but
not least, in colliders, beam-beam effects at collision may
also introduce strong frequency spreads. These nonlinear-
ities are usually naturally present in the accelerator and
have to be taken into account when analyzing the beam
stability in accelerators. However, often in order to improve
the beam stability, a dedicated nonlinear element is added
to the system. For example, magnetic octupoles are used to
introduce betatron frequency spread for Landau damping of
dipole modes [3] of coherent beam oscillations caused by
transverse beam coupling impedance of the accelerators.
Each mode is characterized by the induced coherent shift of
the betatron frequency that depends on the mode index,
beam, and accelerator parameters and their coupling
impedance. An approximate stability criterion is a coherent
frequency shift that is smaller than the frequency spread. In
the Large Hadron Collider (LHC) [4], a family of 84

focusing and 84 defocussing, 0.32 m long superconducting
magnetic octupoles has been installed for Landau damping.
In [5], the total integrated strength of all LHC octupoles in
order to stabilize the strongest coupled bunch mode that has
a coherent betatron frequency shift—jΔΩcohj ∼ 0.0002ω0

at 7 TeV, where ω0 is the revolution frequency—has been
calculated using analytical theory developed for Landau
damping in the presence of two-dimensional betatron
frequency spread [6]. The LHC octupoles have been
successfully used to stabilize the beams at top energy of
3.5–4 GeV=c [7,8]. The effect of the transverse spread,
however, reduces as the transverse beam emittance goes
down at higher energies due to adiabatic damping.
The purpose of this paper is to propose, for the first time,

that a radio frequency quadrupole (RFQ) is used to
introduce the longitudinal spread of betatron frequency
for Landau damping of the transverse oscillations. The
basic idea is to use the harmonic dependence of the
quadrupolar focusing strength of the RFQ on the longi-
tudinal position of the particles in the bunch. Moreover,
since transverse momentum change of a particle (transverse
kick) is related to the transverse gradient of longitudinal
momentum change (acceleration) according to the
Panofsky-Wenzel theorem [9], the RFQ also introduces
the transverse two-dimensional spread of the synchrotron
frequency. It will be shown that in high energy accelerators
the longitudinal spread is more effective than the transverse
one due to longitudinal emittance of the beam being much
larger than the transverse one. The higher efficiency of the
longitudinal spread for Landau damping allows for a
compact, only a few meters long, rf device based on
several 800 MHz superconducting cavities operating in a
transverse magnetic (TM) quadrupolar mode to provide the
same functionality as the LHC octupoles whose total length
is about 56 m. This RFQ cavity is not to be confused with
RFQ linac [10] which is a more complicated rf device
focusing, bunching, and accelerating low energy ions at the
same time from few tens of keV up to few MeV. Although,
a simplified version of a RFQ linac cavity operating at
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transverse electric (TE) quadrupolar mode with rf focusing
only can be used for our purpose at the expense of a more
complicated shape and higher rf fields if smaller transverse
dimensions of the cavity are desirable.
It is worthwhile mentioning that the use of a RFQ for

introducing longitudinal linear variation of the betatron
frequency along the bunch has been proposed in [11] to
increase the transverse mode coupling instability (TMCI)
threshold. It has been demonstrated analytically and
numerically that the TMCI threshold can be significantly
increased if the variation of the betatron frequency over the
bunch length is of the order of the synchrotron frequency
which is, for example, ∼0.002ω0 in the LHC. This,
however, may be limited in practice by the synchrobetatron
resonances, which is difficult to avoid because of widening
of the beam footprint in the betatron tune diagram [12]. The
variation required in this case is relatively large because the
effect of frequency mixing must take place within one
synchrotron period in order to increase the TMCI threshold.
The situation of Landau damping discussed below is
different. It is related to the weak head-tail instability. Since
the betatron frequency spread is linear in action, the
frequency variation along the bunch is quadratic and a
particle with large synchrotron amplitude always oscillates
at the same betatron frequency independently whether it is
in the tail or in the head of the bunch. As a result the
frequency spread required for Landau damping must only
be of the order of coherent frequency shift of the unstable
mode. In principle, the same RFQ device can be used to
cure both the TMCI and the head-tail instabilities depend-
ing on its rf phase with respect to the bunch which must be
at zero crossing for the former and on crest for the latter.

II. STABILITY DIAGRAMS
FOR LANDAU DAMPING

The generalized theory for stability of horizontal, ver-
tical, and longitudinal oscillations in the presence of
horizontal betatron, vertical betaron, and synchrotron
frequency spreads has been developed in [13]. It will serve
us as a basic for the following analysis. First, action-angle
variables ½Jα; θα� are defined so that the coordinates ½x; y; z�
are α ¼ ½2JαβαðsÞ�1=2cosðθαÞ, where βα are the β functions
or its longitudinal equivalent for which βα ¼ σ2α=εα holds
with σα and εα being the RMS bunch sizes and emittances
in all three directions. Second, the distribution function is
defined in the form of

Ψ0ðJÞ ¼
ð2πÞ3
εxεyεz

SðJx=εx; Jy=εyÞλðJz=εzÞ;

where the integrals of the functions S and λ are 1 as are
their first moments. Then the problem of stability of
transverse oscillations is expressed by the following
dispersion equations:

1

ΔΩcoh
x;y

¼ −
Z

Jx;y∂Ψ0=∂Jx;y
ΩT

x;y − ωx;yðJx; JyÞ −mωzðJx; JyÞ
d3J;

(1)

1

ΔΩcoh
x;y

Z
Jjmj
z Ψ0d3J ¼

Z
Jjmj
z Ψ0

ΩZ
x;y − ωx;yðJzÞ −mωzðJzÞ

d3J;

(2)

wherem is the longitudinal azimuthal mode number,ΔΩcoh
x;y

is the coherent betatron frequency shift induced by the
machine impedance in absence of any frequency spread,
ΩT

x;y and ΩZ
x;y are coherent frequencies of horizontal (x) and

vertical (y) betatron oscillations in the presence of the
transverse (T) and longitudinal (Z) spread of betatron
frequencies, respectively, ωL is the vector of horizontal
betatron, vertical betatron and synchrotron frequencies
without any spread, i.e. given by linear lattice of the
accelerators and ω ¼ ωL þ A · J is the vector of the
corresponding frequencies with the presence of the spread
expressed in terms of vector of action variables J and a
constant matrix A, whose elements

Aαβ ¼ aαβ=εβ: (3)

The assumption of constant A is only valid if the spread
is linear in terms of action, which is not always true. It can
be linearized, however, in most of the cases as well as in
ours. Equations (1) and (2) are decoupled and describe two
different cases. Equation (1) describes the case of the
transverse spread of the betatron and synchrotron frequen-
cies whereas Eq. (2) treats the case of their longitudinal
spread. Depending on which spread is present, Eq. (1) or
Eq. (2) is solved for complex ΩT

x;y or ΩZ
x;y, respectively, as

an eigenvalue problem giving the stability region boundary
in complex plane of coherent betatron frequency shift:
ΔΩT;Z

x;y ¼ ΩT;Z
x;y − ωL

x;y −mωL
z . A mode is stable if its

complex coherent betatron frequency shift is below the
boundary. Recently, this problem was revised in [14],
where Eq. (1) was re-derived, a better approximation
for Eq. (2) was suggested, and the stability diagram for a
general case of ωx;yðJx; Jy; JzÞ was obtained.
Magnetic octupoles provide linear (in action) variation of

the betatron frequencies in the transverse plane ωx;yðJx; JyÞ
[5], so that matrix elements axx, ayy, axy, and ayx are
constant and nonzero and Eq. (1) applies. ωzðJx; JyÞ ¼ ωL

z ,
since there is no variation of the synchrotron frequency in
the transverse plane and the matrix elements: azx, azy are
zero. Furthermore, in [13], Eq. (2) has been applied to the
case of the longitudinal spread of the synchrotron fre-
quency ωzðJzÞ, due to nonlinearity of the longitudinal rf
focusing voltage, when azz is nonzero. Since in this case
there is no effect on the betatron frequencies, ωx;yðJzÞ ¼
ωL
x;y and axz, ayz are zero. In a RFQ, however, the situation

is different. Both the longitudinal spread of the betatron
frequencies ωx;yðJzÞ and the transverse spread of

A. GRUDIEV Phys. Rev. ST Accel. Beams 17, 011001 (2014)

011001-2



synchrotron frequency ωzðJx; JyÞ are present and matrix
coefficients: azx, azy, axz, ayz are constant and nonzero.
Thus, both Eq. (1) and Eq. (2) apply to the case of RFQ.
Although as it will be shown in Sec. III, the effect described
by Eq. (1) is much smaller and can be neglected in
comparison with the one described by Eq. (2).
The exact shape of the stability boundary depends

very much on the assumed distribution function
[2,4,5,6,13,14,15] and is not discussed in this paper.
However, in most cases a rough estimate holds:
jΔΩT;Z

x;y j > aαβ, depending on which matrix elements are
nonzero. It will be used later on to estimate the spread aαβ
necessary for Landau damping of a mode with coherent
betatron frequency shift ΔΩcoh

x;y according to the following
condition:

aαβ > jΔΩcoh
x;y j: (4)

III. RF QUADRUPOLE

For an ultra-relativistic particle of charge q and momen-
tum p traversing a RFQ along the z-axis at the time
moment t, the transverse kick in the thin-lens approxima-
tion is given by

Δp⊥ ¼ pk2ðxux − yuyÞ cosωt; (5)

where ω is the RFQ frequency, ua is the unity vector along
the α coordinate, and k2 is the amplitude of the normalized
integrated quadrupolar strength. This can be calculated in a
similar way as for magnets by taking the quadrupolar term
in the azimuthal Fourier decomposition of the magnitude
of the integrated transverse Lorenz force due to complex
electric E and magnetic B fields of the RFQ. Taking, for
instance, the horizontal component of the Lorenz force
yields:

k2 ¼
q
pc

1

πr

Z2π
0

����
ZL
0

�
Ex − cBy

�
ejωz=cdz

���� cosφdφ; (6)

where c is the speed of light, L is RFQ length, and ½r;ϕ; z�
are cylindrical coordinates. Assuming that the bunch center
(z ¼ 0) passes the thin-lens RFQ at t ¼ 0, substitution
t ¼ z=c gives the dependence of the quadrupolar strength
along the bunch, ∼cosωz=c, which can be approximated as
∼1 − ðωz=cÞ2=2, for a small argument. Substituting this
dependence in the expression for the betatron frequency
shift due to quadrupolar focusing, and taking into account
that z2 ¼ Jzβz ¼ σ2zJz=εz after averaging over the synchro-
tron period, results in the expression for the variation of the
betatron frequency in terms of the synchrotron action:

Δωx;y ¼ �βx;y
ω0

4π
k2

�
1 − 1

2

�
ωσz
c

�
2 Jz
εz

�

from which corresponding matrix coefficients are
expressed as

axz;yz ¼ ∓βx;yσ
2
zk2

�
ω

c

�
2 ω0

8π
: (7)

From Eq. (7) and condition (4), the integrated strength of
the RFQ necessary for Landau damping is calculated.
Before doing this and discussing at the end of the paper
the implementation of the RFQ, it is interesting to inves-
tigate whether or not matrix Ais symmetric as it is in the
case of magnets.
The Panofsky-Wenzel theorem relates transverse kick

and accelerating voltage by

Δp⊥ejωt ¼
jq
ω
∇⊥Vejωt: (8)

This means that there is a 90° phase difference between
the transverse kick and the acceleration, i.e. if the kick is on
crest [time dependence in Eq. (5)] of the rf wave the
acceleration is at a zero crossing. Taking the real part of the
right-hand side of Eq. (8) gives the time dependence of
accelerating voltage. Then the RFQ accelerating voltage is
expressed as

V ¼ −V2ðx2 − y2Þ sinωt; (9)

where V2 is the quadrupolar expansion coefficient of the
accelerating voltage given by the azimuthal Fourier trans-
formation of the magnitude of the accelerating voltage
integrated over the RFQ length L as

V2 ¼
1

πr2

Z2π
0

����
ZL
0

Ezejωz=cdz

���� cos 2φdφ: (10)

Substituting Eq. (9) into Eq. (8) gives the following
relation between k2 and V2:

k2 ¼
2q
pω

V2: (11)

Equation (11) is used to calculate the quadrupolar
strength from the longitudinal electric field only, which
is often more convenient. Moreover, comparing the results
of Eq. (6) and Eqs. (10) and (11) gives a good estimate
of numerical accuracy of the field maps used in the
calculations.
Now, the main rf voltage, defined as V0 sinðhω0tþ ϕsÞ,

where h is the main rf harmonic number and ϕs is the
synchronous phase of the main rf voltage with respect to the
bunch, is considered. Then the expression for the square of
the unperturbed synchrotron frequency is given by
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ω2
s ¼ ω2

0

jηjqhV0 cosϕs

2πpc
; (12)

where η is the phase slip factor of the accelerator. Since the
slopes of the main rf voltage and the RFQ voltage simply
add up, taking into account the rf phases and harmonic
numbers the following expression for the synchrotron
frequency in the presence of RFQ is derived using Eq. (9):

ωz ¼ ωs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2V2ðy2 − x2Þ

hV0 cosϕs

s
; (13)

where h2 is the RFQ harmonic number. Since the main rf
voltage is much larger than the RFQ accelerating voltage
the second term of Eq. (13) is much smaller than 1. Taking
this into account and substituting expression for hV0cosϕs
derived from Eq. (12) into Eq. (13) yields

ωz ¼ ωs

�
1þ 1

2

ω2
0jηjqh2V2ðy2 − x2Þ

ω2
s2πpc

�
: (14)

Then, taking the second term of Eq. (14), substituting
with Eq. (11) and replacing the coordinate variables with
action variables, the final expression for the synchrotron
frequency variation in terms of betatron actions is derived:

Δωz ¼
ω0jηjω2k2
ωs8πc

ðJyβy − JxβxÞ (15)

from which the corresponding matrix coefficients are
expressed as

azx;zy ¼ ∓βx;yεx;y
jηjc
ωs

k2

�
ω

c

�
2 ω0

8π
: (16)

In order to evaluate the symmetry of matrix A, the ratio
of matrix coefficients is found by dividing Eq. (16) by
Eq. (7):

azx;zy
axz;yz

¼ εx;y
σ2z

jηjc
ωs

: (17)

On the other hand, the dimensionless ratio of transverse
to longitudinal emittances is given by:

εx;y
εz

¼ εx;y
πσzσE=E

¼ εx;y
πσ2z

λ

ΔÊ=E
¼ εx;y

σ2z

jηjc
ωs

: (18)

where E ¼ pc and σE are the bunch energy and the RMS
energy spread, respectively, and λ ¼ 2πc=ω and ΔÊ ¼
2Eωs=jηjω are the length the height of a stationary bucket
(φs ¼ 0) of the RFQ. It is obvious that the right-hand sides
of Eqs. (17) and (18) are equal and matrix A is symmetric

also in the RFQ case taking into account Eq. (3). This
means that the longitudinal and transverse spreads induced
by a RFQ are the same in terms of synchrotron and betatron
actions, respectively. This is a very interesting result by
itself. Furthermore, it leads to a very important conse-
quence that since the dimensionless ratio of the transverse
and longitudinal emittances is typically a very small
number in high energy, high brightness accelerators, the
transverse spread in the bunch is smaller than the longi-
tudinal one by that ratio as follows from Eq. (17). For
example, in the LHC at 7 TeV [4], the transverse and
longitudinal emittances at 1σ is about 0.5 nm and 7 μm,
respectively, resulting in a factor of at least 104 larger
longitudinal spread in the bunch. This difference is the
reason why the longitudinal spread is much more effective
and will be the dominant mechanism of Landau damping
using a RFQ. Furthermore, this also explains why a RFQ
for Landau damping in LHC discussed below is a more
compact device than the LHC octupoles even so that the
typical field strength in superconducting magnets is higher
than in superconducting rf cavities.

IV. RFQ DEVICE

For illustration, a design of a RFQ device with the same
functionality as the LHC octupoles is proposed below.
Combining Eqs. (4) and (7) the required quadrupolar
strength is expressed as

k2 ¼
2

π

jΔΩcoh
x;y j

ω0βx;y

�
λ

σz

�
2

:

Its value k2 ¼ 1.4 × 10−5 m−1, required for Landau
damping of a coupled bunch mode with the coherent
betatron frequency shift of ∼0.0002ω0, is calculated for
nominal parameters of the LHC at 7 TeV [4]: σz ¼ 0.08 m;
β function of 200 m at a potential location in IR4 near the
main rf system; λ ¼ 0.375 m for 800 MHz RFQ frequency,
which is the second harmonic of the main rf frequency
and for which the bunch still fits in the RFQ bucket:
4σz ¼ 0.32 m < λ. On the other hand, the normalized
quadrupolar strength of a cylindrical 800 MHz 0.15 m
long pillbox cavity operating in a TM quadrupolar mode is
calculated from a complex electromagnetic field map
obtained numerically using the code HFSS [16]. In
Fig. 1, the distribution of the magnetic field in the trans-
verse plane of the cavity is shown for illustration. The
strength value per cavity is k2 ¼ 6 × 10−6 m−1 for
the maximum values of electric and magnetic fields on
the cavity surface of 46 MV=m and 120 mT, respectively.
Taking this value as a maximum that can be achieved in one
cavity due to limitations on the surface fields coming from
a rf superconductivity quench or an electrical discharge in
vacuum [17], the total number of cavities needed can be
determined to be three. Adding the same factor 2 margin as
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for the LHC octupoles, we conclude that six cavities whose
total active length is less than a meter can provide the same
Landau damping as the 56 m of LHC magnetic octupoles
with a nominal current of 500 A. The whole device
including the rf power couplers and the coupler for lower,
same, and higher order parasitic modes suppression could
be integrated in a single few–meters-long cryostat.

V. CONCLUDING REMARKS

It has been shown that a rf quadrupole introduces
longitudinal spread of the betatron frequencies that can
be used for Landau damping of the transverse coupled
bunch instabilities. Moreover since typically the longi-
tudinal emittance of a bunch is much larger than the
transverse one, the longitudinal spread is much larger
and is more efficient in Landau damping of the instabilities
than the transverse spread of the synchrotron frequency that
is also present in the case of a RFQ. As an example, the
required strength of the RFQ providing the same function-
ality as the LHC octupoles has been calculated applying the
same analytical theory of stability diagrams for Landau
damping. Although this theory has been proven by operat-
ing the LHC octupoles and stabilizing the LHC beams at

top energy, its validity in the case of a RFQ is still to be
benchmarked with simulations, which is a subject for future
work. This is even more true for the case of operating both
octupoles and a RFQ at the same time, which is not
described by the analytical theory. Furthermore, a possible
implementation of the RFQ using a set of superconducting
cavities in one few-meters-long cryostat has been shown.
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FIG. 1 (color online). Magnetic field distribution in the trans-
verse plane of the TM quadrupolar mode cavity of the RFQ.

RADIO FREQUENCY QUADRUPOLE FOR LANDAU … Phys. Rev. ST Accel. Beams 17, 011001 (2014)

011001-5

http://dx.doi.org/10.1063/1.1715427
http://dx.doi.org/10.1103/PhysRevSTAB.1.041301
http://arxiv.org/abs/1309.0044
http://arxiv.org/abs/1309.0044
http://arxiv.org/abs/1309.0044
http://www.ansys.com/
http://www.ansys.com/
http://www.ansys.com/

