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Harmonic generation becomes increasingly important as x-ray free-electron lasers push to shorter
wavelengths. Recent studies have pointed to the possibility of enhancing harmonic generation by detuning
the fundamental. In x-ray free-electron lasers, the wiggler line is composed of multiple wiggler segments
with magnetic quadrupoles in the gaps to provide for increased focusing. In this paper, we study the effect
on harmonic generation in simulation by (1) varying the gap lengths between the wiggler segments and (2)
varying the electron beam β function. In studying the harmonic we find enhanced harmonic generation is
periodic in the gap length and peaks are found as the wiggler separation varies by λ=3 (where λ is the
fundamental wavelength), which corresponds to a phase shift of 2π=3. As a consequence, enhanced
harmonic generation is found both when the fundamental emission is strong by the nonlinear harmonic
generation mechanism and by linear harmonic generation when the fundamental is detuned.
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I. INTRODUCTION

Free-electron lasers (FELs) have been designed to
operate over virtually the entire electromagnetic spectrum
from microwaves through x rays and in a variety of
configurations including amplifiers and oscillators [1]. In
recent years, short wavelength, x-ray FELs became opera-
tional at SLAC [2] at a wavelength of 1.5 Å and SACLA
[3] at a wavelength of 0.634 Å, and there is interest
building in achieving lasing at still shorter wavelengths.
Since the cost of achieving shorter wavelengths by scaling
up the electron beam energy is high, there is great interest in
operation at harmonics of the fundamental resonance.
Nonlinear harmonic generation (NHG) has been studied
for some time [4–7], and the expected output power at the
hth harmonic is typically of the order of 10−h times the
power of the fundamental [5]. As a result, various schemes
have been proposed to enhance the harmonic interactions
[8–11]. In contrast to NHG, linear harmonic generation
(LHG) might become important if the fundamental can be
suppressed. A method that was proposed for suppressing
the fundamental [12] is based upon shifting the phase of the
fundamental between wiggler segments. For the third
harmonic, this phase shift should be 2π=3. Following up
on this suggestion, Schneidmiller and Yurkov [13] ana-
lyzed the effect of optimizing the β function for LHG
operation at the third harmonic.
The phase shift between wiggler segments can be

controlled by various techniques. For example, a chicane

can be inserted between the wiggler segments to delay the
propagation of the electrons relative to the radiation. This
has the advantage that the phase shift can be controlled by
the field strength in the chicane. Another approach
is simply to vary the gap length between the wiggler
segments.
In this paper, we present three-dimensional simulations

of the emission at the fundamental and third harmonic as
functions of the gap length between wiggler segments and
the β function. As we will show, the harmonic emission is
of the order of 10−h as expected for the choice of the
optimal β function for fundamental radiation. However, as
the β function increases, both NHG and LHG signatures
appear at significantly increased power levels. Indeed,
peaks in the third harmonic emission are observed at
periodic intervals in the phase shift separated by 2π=3
by either the NHG or LHG mechanisms. As a result,
detuning of the fundamental is not required to enhance the
harmonic generation.
The organization of the paper is as follows. The

simulations are conducted using the MEDUSA simulation
code, which is briefly described in Sec. II. A general
discussion of the phase shift due to varying gap lengths is
given in Sec. III. The simulation results for the fundamental
and third harmonic as functions of gap length and β
function are discussed in Sec. IV. Comparisons between
the simulation results and analytic models are also dis-
cussed. A summary and discussion is given in Sec. V.

II. THE SIMULATION CODE

MEDUSA is a three-dimensional simulation code that
includes time dependence, harmonics, and start-up from
noise [5,14–16]. It models helical and planar wigglers and
the optical field is represented as a superposition of Gauss-
Hermite modes. Electron trajectories are integrated using
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the three-dimensional Lorentz force equations in the
combined magnetostatic and optical fields. No wiggler
average orbit analysis is used. As such, MEDUSA includes
wiggler periods at the entrance and exit from each wiggler
segment to describe the transition fields and simulates the
injection and ejection of the electrons from each wiggler
segment including the phase shift between the electrons and
the radiation self-consistently. Models for quadrupoles and
dipoles are included. Therefore, MEDUSA provides better
confidence in modeling harmonic generation as compared
with wiggler-orbit-averaged codes.
MEDUSA has been extensively validated by comparison

with amplifier experiments at Brookhaven National
Laboratory [17,18], a high average power oscillator at
Jefferson Laboratory [19], and the SPARC SASE (self-
amplified spontaneous emission) experiment at ENEA
Frascati [20].
Here, we simulate an FEL that incorporates a focusing

and defocusing (FODO) lattice where the wiggler segments
are separated by quadrupoles located in the center of the
gaps. This is illustrated in Fig. 1, where the wiggler
segments of uniform length Lw are separated by a gap
of length Lgap. The quadrupoles of length LQ are located in
the center of the gap with drift spaces Ld1 and Ld2 of equal
length.

III. INTERWIGGLER PHASE SHIFTS

We consider the phase shift over the distance from the
start of one wiggler segment to the start of the next segment
[21]. This includes the phase shift in the wiggler, in the
entry and exit tapers and in the gap between the wigglers.
The phase shift in the gap is

φgap ¼ − Lgap

λwð1þ K2
rmsÞ

; (1)

where Lgap is the separation between the wigglers, λw is the
wiggler period, and Krms is the rms wiggler strength
parameter (¼ 0.06602Bwλw, where Bw is the on-axis field
strength in kG and λw is expressed in centimeters). The
phase shift in the wiggler is given by one wavelength per
wiggler period only when the interaction is on resonance.
When the wavelength is detuned from the resonant wave-
length (λres), then the phase shift in the wiggler is given by

φw

2π
¼ −Lw

λw
ð1 − λ − λres

λres
Þ: (2)

The phase shift in the entry and exit tapers from the
wiggler depends upon the shape of the field variation. We
consider a field in the entry region directed in the y
direction that increases to a uniform level in one wiggler
period as Bw;yðzÞ ¼ Bw sin2ðkwz=4Þ cosðkwzÞ, where kw is
the wiggler wave number and z is measured from the start
of the entry region. Assuming that the exit region is
symmetric, then the phase shifts in the two regions are
identical and can be expressed as

φtrans

2π
¼ − 2ð1þ 3K2

rms=8Þ
ð1þ K2

rmsÞ
: (3)

The total phase shift from the start of each wiggler
segment to the start of the next segment is given by the sum
of these three phase shifts [Eqs. (1–3)].
It is the total phase shift that is important for the

detuning, which will be constant with respect to a phase
shift in the gap (due, for example, by a change in the gap
length) if the phase shift in the wiggler segment changes by
a corresponding amount. The phase shift in the wiggler
segment depends upon the wavelength that is excited, and
is given by one wavelength per wiggler period only on
resonance. Thus, a change in the gap length by δLgap will
result in a change in the wavelength of

δλ ¼ − δLgap

Lw

λyes
1þ K2

rms
¼ − δLgap

2γ2bNw
; (4)

where γb is the relativistic factor of the beam and Nw ð¼
Lw=λwÞ is the number of periods in the wiggler segment.
As a consequence, introducing the same phase shift in each
of the gaps will effectively retune the wavelength that is
excited [21]. In order to suppress the fundamental, there-
fore, a variety of different phase shifts (i.e., gap lengths)
must be imposed between different wiggler segments [13].
While we consider tuning the interaction by changing the

gap lengths between the undulators, it is clear this is
impractical in an operating x-ray FEL. However, as
mentioned previously, it is also possible to vary the phase
shift between the undulators by inserting a mild chicane in
the gaps. This would have the advantage that it would allow
the phase shift to be varied by the simple expedient of
adjusting the current in the dipoles.

IV. SIMULATION RESULTS

The electron beam, wiggler, radiation, and quadrupole
parameters are summarized in Table I. We consider a beam
with a kinetic energy of 12 GeV, which corresponds to a

Ld1 Ld2 

LQ 

Lgap 

wiggler 

L

wiggler 

FIG. 1 (color online). Illustration of the placement of the
wiggler segments and the quadrupoles in the FODO lattice.
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fundamental resonance at a wavelength of 0.9 Å for a
wiggler with a period of 2.49 cm and an on-axis amplitude
of 10.5134 kG. The peak current of the beam is assumed to
be 3400 A and the normalized emittance and rms energy
spread are 0.2 mm-mrad and 0.01% respectively. Note that
each wiggler segment is composed of 103 periods having
uniform field strengths, but since MEDUSA simulates the
entry and exit of the beam, two additional periods are
included to model the entry and exit tapers. We inject
matched beams as the β function is changed and this
requires injecting the beam with different Twiss parameters
(in this case, the rms beam size and Twiss-α parameters)
and also changing the field gradients in the quadrupoles.
Since the wigglers focus in one plane, this means that the
beam sizes in the x and y directions and, hence, βx and βy,
may be different. In practice, we have empirically deter-
mined βx and βy using MEDUSA, and that the values
appearing in the various cases represent solutions that give
near-optimal focusing. It is important to study the variation
in the emission with β function since the optimal β
functions differ for the fundamental and harmonics [13].
In this paper, we perform steady-state (i.e., single-slice)

simulations to study the effect of detuning on the gen-
eration of both the fundamental and third harmonic. We
first consider the effect of tuning the cavity length for
βx¼8.09 m and βy ¼ 3.82 m and plot the saturated power
at the fundamental (blue) and third harmonic (red) in Fig. 2
as determined by MEDUSA simulations as functions of
the gap length, Lgap, and the normalized gap length,
Lgap=½λwð1þ K2

rmsÞ�. This value of β corresponds to the
optimal performance of the fundamental. Note that a
change in the normalized gap length of unity corresponds
to a phase shift of 2π. It is evident that there are peaks in the
harmonic emission corresponding to phase shifts of
approximately every 2π=3 as indicated by intervals in
the normalized gap length of 1=3. These peaks in the

harmonic emission correspond to NHG when the funda-
mental is not detuned and to LHG when the fundamental is
detuned. In either case, however, the peaks in the harmonic
emission reach about the same power levels. These har-
monic peaks are reduced relative to the fundamental by
about 2–3 orders of magnitude, which is what is typically
expected of the harmonic emission. However, this choice of
the β functions is near the optimal values for fundamental
emission. As will be discussed, the harmonic emission is
substantially enhanced for increased values of the β
functions.
The optimal gap length for fundamental emission,

as determined by the minimum gain length, occurs
for Lgap=½λwð1þ K2

rmsÞ� ≈ 2.6228ðLgap ≈ 0.26040 mÞ over
the range of gap lengths shown. At this gap length, the
NHG mechanism is dominant, and the evolution of the
fundamental and third harmonic are shown in Fig. 3. The
evolution of the harmonic exhibits the expected behavior of
the NHG mechanism; specifically, there is linear harmonic
growth following the initial start-up region followed by
nonlinear harmonic growth once the fundamental reaches

TABLE I. Simulation parameters.

Electron beam

Energy 12 GeV
Peak current 3400 A
Normalized emittance 0.2 mm-mrad
Energy spread 0.01%
β function 8–40 m
Wiggler Flat pole face
Period 2.49 cm
Magnitude 10.5134 kG
Krms 1.73
Length 2.5647 m
Radiation
Fundamental wavelength 0.9 Å
Quadrupoles
Field gradient 3–19 kG=cm
Length 0.0744 m
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FIG. 2 (color online). Variation in the saturated power for the
fundamental (blue) and third harmonic (red) for β; x ¼ 8.09 m
and β; y ¼ 3.82 m as simulated by MEDUSA.
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high powers. For this case, LHG is observed over the range
of about 5 m < z < 26 m after which NHG is dominant.
Saturation of the third harmonic is found slightly before the
fundamental saturates at a distance of about 34 m. Note that
since the phase shift is periodic, this performance for the
fundamental will be replicated for integer increments of this
normalized phase shift.
The third harmonic is found to grow exponentially for a

gap length where the fundamental is suppressed. This is
LHG and is shown in Fig. 4 where we plot the evolution of
the third harmonic power as a function of position along the
wiggler line. For comparison, we also plot the evolution of
the fundamental. Observe that the saturation distance is
now over 100 m, which results from the longer gain length
for LHG of the harmonic.
As previously mentioned, the choice of βx ¼ 8.09 m and

βy ¼ 3.82 m is near the optimal values for performance at
the fundamental, and this is in good agreement with
predictions based on the parametric scaling developed by
Ming Xie [22]. A comparison of the fundamental gain
length (blue circles) and saturated power found in simu-
lation (red triangles) and the parametrization due to Ming
Xie (blue and red lines) is shown in Fig. 5 versus βx.

Also shown in Fig. 5 is the maximum saturated power of
the third harmonic as found in simulation (green squares),
where the dashed line connecting the points is simply a fit
to the data and not an analytic extension of the Ming Xie
parametrization. Note that the peak powers as found with
NHG and LHG are comparable. Observe that the qualita-
tive behavior of the third harmonic is similar to that of the
fundamental in that there is a relatively rapid increase in
power as β increases up to the optimal value of β, followed
by a relatively slow decline thereafter. For the third
harmonic, the optimal value for β is approximately 18 m
for these beam, wiggler, and quadrupole parameters. There
is a substantial enhancement in harmonic power with
respect to that found at the β that yields the maximum
power at the fundamental. The third harmonic power when
βx ¼ 8.09 m, corresponding to the optimal fundamental
power, is about 380 MW, but rises to about 6.0 GW when
βx ¼ 18 m. This is an impressive increase of more than an
order of magnitude in the third harmonic power.
The variation of the saturated power at the fundamental

(blue) and the third harmonic (red) as functions of gap
length found in simulation for the near-optimal β for the
third harmonic is shown in Fig. 6. Observe that the
periodicities indicated in Fig. 2 for smaller values of β,
are more pronounced here where the third harmonic is more
prominent.
The simulations showing the variation in the tuning with

gap length were done at a fixed wavelength. However, since
the phase shift from the start of one wiggler to the next
varies substantially with wavelength over the amplification
band, changes in the gap will result in changes in the
wavelength excited within the resonant bandwidth. This is
illustrated for the fundamental in Fig. 7, which is a contour
plot of the fundamental output power versus both wave-
length and (normalized) gap length. Observe that the peak
powers are found for wavelengths close to 0.9ð�0.004Þ Å
and that the output is periodic in gap length.
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A corresponding contour plot of the third harmonic
power versus both wavelength and (normalized) gap length
is shown in Fig. 8. In this case, we note that there are 5
peaks corresponding to the NHG and LHG harmonic peaks
over the range shown in Figs. 2 and 8, although the central
peak is much reduced relative to the outer peaks.
Figures 7 and 8 provide a measure of the bandwidth that

would be excited at any given gap length, as well as the
relative magnitude of the radiated powers.
It is interesting to compare the performance of the third

harmonic at a wavelength of 0.3 Å for a wiggler tuned to a
fundamental wavelength of 0.9 Å as described previously

with the performance at 0.3 Å when the wiggler is tuned to
a fundamental at that wavelength. To tune the FEL to lase at
0.3 Å at the fundamental we use the same beam parameters
as shown in Table I but we reduce the wiggler period and
amplitude. In particular, when tuned to the fundamental, we
use a wiggler period of 1.86 cm and a peak on-axis
amplitude of 7.0 kG yielding an rms wiggler strength
parameter of Krms ¼ 0.86. It should be remarked that a
wiggler producing this field would have the same gap as the
field used in the harmonic simulations. As shown previ-
ously in Fig. 5, the performance at the fundamental found
in simulation with MEDUSA is in close agreement with the
results of the parametrization developed by Ming Xie [22].
In view of this, we show the predicted performance at the
fundamental of 0.3 Å using the parametrization in Fig. 9
where we plot the gain length (blue) and the saturated
power (red) versus β. As shown in the figure, the saturated
power at the fundamental (0.3 Å) reaches a maximum
value of about 14 GWwhen β ¼ 20 m. This is only a factor
of about 2.3 greater than the highest power found when the
wiggler is tuned to a third harmonic at 0.3 Å and β¼18 m.
In a more general sense, although we have not included
such simulations herein, we speculate that it is possible to
achieve nearly the same power levels at a fixed wavelength
using a harmonic interaction at either a lower energy or a
longer wiggler period than comparable operation at the
fundamental.

V. SUMMARY AND DISCUSSION

In this paper, we analyzed enhanced harmonic gener-
ation in x-ray FELs. Following an analysis by
Schneidmiller and Yurkov [13] that harmonic generation
can be enhanced by proper tuning of the β function, we
performed three-dimensional simulations using the
MEDUSA simulation code of an x-ray FEL design based
upon a FODO lattice composed of multiple wiggler

FIG. 7 (color online). Contour plot showing the variation in
fundamental power with the wavelength and normalized gap
length.

FIG. 8 (color online). Contour plot showing the variation in the
third harmonic power with wavelength and normalized gap
length.

FIG. 9 (color online). Gain length and saturation power for
wiggler parameters consistent with operation at a fundamental
wavelength of 0.3 Å found using the parametrization due to Ming
Xie [22].
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segments in which quadrupoles are inserted in the gaps
between the wigglers.
Steady-state simulations were performed where the

fundamental (0.9 Å) and third harmonic (0.3 Å) powers
were obtained as functions of both the gap length between
the wigglers and the β function of the FODO lattice. As
discussed in [13], it was found that the optimal β for
fundamental generation differed from that for the third
harmonic. For the case under consideration, the third
harmonic power for the choice of βð≈8 mÞ that resulted
in the maximum fundamental power was about 1% that of
the fundamental. However, the harmonic power increased
rapidly with β until it reached a peak for β ≈ 17 m where
the third harmonic power reached about 22% of the
fundamental power (at this β). Further, comparison of
the optimal 3rd harmonic power at 0.3 Å compared
favorably with the predicted performance for a wiggler
tuned to a fundamental at 0.3 Å.
It should be remarked that, as indicated in Figs. 7 and 8,

variations in the gap length will result in a shift in the
excited wavelengths of the fundamental and harmonics.
Because of this, time-dependent simulations, which include
the full spectrum of excited waves, can be expected to show
a shift in the excited spectrum rather than a complete
detuning of the fundamental. It was for this reason that
Schneidmiller and Yurkov [13] included varying the gap
lengths between the different wiggler segments in order to
detune the fundamental. A more complete analysis using
time-dependent simulations is in progress; however, the
complete detuning of the fundamental may be a difficult
process. Nevertheless, the NHGmechanism requires strong
growth of the fundamental, and will be significantly
enhanced by the proper tuning of the FODO lattice to
optimize the β function for harmonic generation.
In summary, we conclude that harmonic generation can

be substantially enhanced by the optimal choice of β for the
FODO lattice in an x-ray FEL. In addition to the work
described here, we (1) expect that the harmonic generation
can be enhanced still further by the use of a tapered wiggler,
and (2) speculate that different harmonics may be prefer-
entially enhanced by different choices of β for the FODO
lattice.
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