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We present an algorithm for calculating the impedance of infinitely long beam pipes with arbitrary cross

section. The method is not restricted to ultrarelativistic beams or perturbative approximations with respect

to the wall surface impedance or skin penetration depth. We exemplify our algorithm with a calculation

of the impedance for rectangular metallic beam pipes. Unlike the situation in the perturbative regime,

where the beam pipe geometry modifies the metallic resistive wall impedances by only a multiplicative

factor, the beam pipe geometry has a more complex influence on the impedance when nonultrarelativistic

effects are significant and in the ultrarelativistic regime at both small and large frequencies. Since our

algorithm requires the boundary conditions at the beam pipe wall to be provided as linear relations

between the transverse components of the electromagnetic field, we discuss a general algorithm to

calculate these boundary conditions for multilayer beam pipes with arbitrary cross section.
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I. INTRODUCTION

Impedance plays an important role in the beam dynamics
of high intensity accelerators, being a leading cause for losses
and instabilities. There is vast literature addressing imped-
ance calculations in accelerators. See, for example, [1–3] and
the references therein. With a few exceptions, the vast ma-
jority of impedance studies address cylindrical [3–12] and
parallel-plane [13–16] beam pipes. Since these systems are
highly symmetric, characteristic modes can be decoupled
and analytical expressions for the impedance can be derived.
Of particular interest is the calculation of impedance in
multilayer beam pipes; the problem has been addressed in
the literature for both cylindrical [8–12] and parallel-plane
[14,15] geometries. Beampipes of general cross section have
also been addressed in the literature [17–19], but only in the
ultrarelativistic approximation and for single-layered metal-
lic pipes in the frequency region where perturbation theory
with respect to the penetration skin depth is valid.

In this paper, we present a method for calculating the
resistivewall impedance for infinitely long beam pipes with
general cross section. Unlike previous investigations, our
method works for systems with large wall surface imped-
ances and in the nonperturbative regime formetallic pipes at
both small and large frequencies. Another important differ-
ence from the existing literature is that our method does not
impose an ultrarelativistic approximation. The ability to
calculate the impedance for nonultrarelativistic beams and
for systems with large wall surface impedance is extremely
important for machines like the Fermilab Booster synchro-
tron, which has laminated magnets characterized by very

large surface impedance [13,16] and an injection energy of
400 MeV (� ¼ 1:42).
To illustrate our algorithm, we calculate the impedance

of a rectangular metallic beam pipe, for both ultrarelativ-
istic and finite-� cases. The ultrarelativistic perturbative
regime is in perfect agreement with the work of Yokoya
[18], which showed that the rectangular beam pipe imped-
ance has a behavior similar to that of the circular and the
parallel-plane geometries, the difference being only a re-
normalizing factor. However, we find that this simple
renormalization is not valid at small and large frequencies,
nor is it valid in the frequency regions where the non-
ultrarelativistic effects are noticeable.
The algorithm assumes that the electromagnetic field

boundary conditions at the pipe walls are known and are
provided as linear relations between the field transverse
components. An example is the boundary conditions pro-
vided via the wall surface impedances. We discuss how the
boundary conditions can be calculated for multilayer beam
pipes of arbitrary cross section, using a similar numerical
method to that used for calculating the impedance.
In order to check the correctness of our code, we compare

the simulations with the analytical results for the parallel-
plane pipe impedance. Since, to our knowledge, the expres-
sions for the nonultrarelativistic parallel-plane impedance
as a function of wall surface impedances were never pub-
lished, we present briefly their calculation in here.
The paper is organized as follows. The impedance algo-

rithm is derived in Sec. II. In Sec. III the impedance of the
rectangular beam pipe is calculated. Conclusions are pre-
sented in Sec. IV. In Appendix A an algorithm designed to
calculate the electromagnetic field boundary conditions in
multilayer beam pipes of arbitrary cross section is dis-
cussed. In Appendix B we present a derivation of the
nonultrarelativistic impedance for the parallel-plane
beam pipe. Appendix C presents a modified version of

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 16, 121001 (2013)

1098-4402=13=16(12)=121001(14) 121001-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevSTAB.16.121001
http://creativecommons.org/licenses/by/3.0/


the impedance calculation algorithm which might be use-
ful for numerical optimization.

II. FORMALISM

Inside the vacuum beam pipe, the electric and magnetic
fields are given by

~E ¼ �r�� @ ~A

@t
(1)

and

Z0
~H ¼ cr� ~A; (2)

where � and ~A are the electric and magnetic vector poten-
tials, respectively. The equations for the potentials in the
vacuum beam pipe are

r2�� 1

c2
@2�

@t2
¼ � �

�0
; (3)

r2 ~A� 1

c2
@2 ~A

@t2
¼ ��0

~j; (4)

r ~Aþ 1

c2
@�

@t
¼ 0: (5)

Equation (5) is the Lorentz gauge condition. Within the
Lorentz gauge constraint, the potentials can undergo a
gauge transformation,

~A0 ¼ ~A�r�; (6)

�0 ¼ �þ @�

@t
; (7)

with the gauge field satisfying

r2�� 1

c2
@2�

@t2
¼ 0: (8)

The impedance describes the response of a witness
particle to the electromagnetic field created in the accel-
erator walls by a source particle. We assume a source
particle with a transverse offset ðx0; y0Þ moving in the z
(longitudinal) direction with velocity �c. The charge
density and electric current are given by

�ðx; y; z; tÞ ¼ �ðx; y; z� �ctÞ
¼ ��ðx� x0Þ�ðy� y0Þeið!t�kzÞ; (9)

~jðx; y; z; tÞ ¼ ~jðx; y; z� �ctÞ
¼ ��ðx� x0Þ�ðy� y0Þ�cẑeið!t�kzÞ: (10)

We are looking for synchronous solutions

~Eðx; y; z; tÞ ¼ ~Eðx; yÞeið!t�kzÞ; (11)

~Hðx; y; z; tÞ ¼ ~Hðx; yÞeið!t�kzÞ; (12)

where k ¼ !
�c .

The impedance terms are defined as a derivative of a
given order of the electromagnetic force acting on the
witness particle with respect to the source or/and witness
particle displacement. Here we consider only the zeroth-
and first-order terms.
We assume the following definitions: The zeroth-order

longitudinal impedance is

Zjj ¼ � Fz

q��c
ðx ¼ y ¼ x0 ¼ y0 ¼ 0Þ: (13)

The first-order horizontal transverse impedances are

Zw
x ¼ � 1

iq��c

@Fx

@x
ðx ¼ y ¼ x0 ¼ y0 ¼ 0Þ; (14)

Zs
x ¼ � 1

iq��c

@Fx

@x0
ðx ¼ y ¼ x0 ¼ y0 ¼ 0Þ; (15)

where Zw
x (Zs

x) describes the effect proportional to the
displacement of the witness (source) particle. It is custom-
ary to define the transverse impedance with a factor of i [4].
For beam pipes with low symmetry it is possible that a

vertically displaced source particle kicks the witness par-
ticle in the horizontal plane or that a vertical displaced
witness particle is kicked horizontally by a term propor-
tional to its vertical displacement [20]. Correspondingly,
the following transverse impedances can be defined:

Zsy
x ¼ � 1

iq��c

@Fx

@y0
ðx ¼ y ¼ x0 ¼ y0 ¼ 0Þ; (16)

Zwy
x ¼ � 1

iq��c

@Fx

@y
ðx ¼ y ¼ x0 ¼ y0 ¼ 0Þ: (17)

Similar equations can be written for the vertical
impedances.

A. Potential field equations

In Fourier space ðx; y; k; !Þ, for the charge and the
current given by Eqs. (9) and (10), the potential equations,
Eqs. (3) and (4), read

@2�

@x2
þ @2�

@y2
� k2r� ¼ � �

�0
�ðx� x0Þ�ðy� y0Þ; (18)

@2 ~A

@x2
þ @2 ~A

@y2
� k2r ~A ¼ ��

c

�

�0
�ðx� x0Þ�ðy� y0Þẑ; (19)

where

k2r ¼ k2 �!2

c2
¼ k2ð1� �2Þ ¼ k2

�2
: (20)

It is convenient to eliminate the calculation of the z
component of the vector potential by fixing the gauge
such that
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Az ¼ �

c
�: (21)

This, together with the Lorentz gauge constraint, Eq. (5),
yields the following equation for the remaining compo-
nents of the vector potential:

@xAx þ @yAy ¼ 0: (22)

By employing Green’s Theorem [21], the solution for
Eqs. (18) and (19) can be written formally as

�ðx; yÞ ¼ �0ðx; yÞ þ
I

Dðx; y; rlÞ�ðrlÞdl

�
I

Gðx; y; rlÞ@n�ðrlÞdl; (23)

Ax;yðx;yÞ¼
I
Dðx;y;rlÞAx;yðrlÞdl�

I
Gðx;y;rlÞ@nAx;yðrlÞdl;

(24)

where the one-dimensional integrals are taken along the
beam pipe contour in the transverse plane and

Gðx; y; x0; y0Þ ¼ � 1

2�
K0ðkrRÞ; (25)

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2

q
(26)

is the Green function satisfying

@2G

@x2
þ @2G

@y2
� k2rG ¼ �ðx� x0Þ�ðy� y0Þ: (27)

K0 is the modified Bessel function of the second kind,�0 is
the free space (i.e. no beam pipe) solution

�0ðx; yÞ ¼ �
Z

Gðx; y; x0; y0Þ�ðx
0; y0Þ
�0

dx0dy0

¼ �

2��0
K0

�
kr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2

q �
; (28)

and

Dðx; y; rlÞ ¼ @nGðx; y; rlÞ; (29)

where the normal derivative @n is taken in rl, i.e., on the
wall contour, and outward.

1. Discretized equations

Equations (23) and (24) show that the solution is deter-
mined once the potentials and their normal components on
the beam pipe’s wall are known. Our algorithm finds the
solution numerically, by taking N points at position ri on
the contour. The discretized equations for the surface

potentials �ðriÞ � ��i and @n�ðriÞ � @�i are

�� i ¼ ��0i þ
XN�1

j¼0

ðDi;j
��j �Gi;j@�jÞ; (30)

�A xi ¼
XN�1

j¼0

ðDi;j
�Axj �Gi;j@AxjÞ; (31)

�A yi ¼
XN�1

j¼0

ðDi;j
�Ayj �Gi;j@AyjÞ: (32)

The bars over the potentials indicate in our notation that
they are evaluated on the surface contour. The equations
can be written in a compact matrix form:

�� ¼ ��0 þD ���G@�; (33)

�A x ¼ D �Ax �G@Ax; (34)

�A y ¼ D �Ay �G@Ay: (35)

We have 6N variables, ��i, �Axi, �Ayi, @�i, @Axi, @Ayi,

i ¼ 1; N, and 3N equations, Eqs. (30)–(32). The gauge
fixing condition, Eq. (22), and the field boundary condi-
tions provide the other set of 3N equations required to
solve the problem. A straightforward way to solve the
problem is to consider all 6N independent variables and
to reduce the problem to a system of 6N complex linear
equations, as described in Appendix C. However, it is
possible reduce the problem to a set of 2N linear equations.
From Eqs. (30)–(32) one can write the potentials’ normal
derivatives as function of the potentials,

@� ¼ U ��þ @�1; (36)

@A x ¼ U �Ax; (37)

@A y ¼ U �Ay; (38)

where

U ¼ G�1ðD� IÞ (39)

and

@�1 ¼ G�1 ��0: (40)

@�1 is the normal derivative of the potential of a perfectly
conducting beam pipe (with conductivity 	 ¼ 1).

So far the 3N surface potentials ð ��i; �Axi; �AyiÞ, i ¼ 1; N,

have been considered as independent variables. The gauge
fixing constraint, Eq. (22), eliminates one more set of N
variables. Equation (22) can be written as a function of the
normal and tangential derivative of the vector potentials.
By considering the discretized tangential derivative of the
potential to the surface to be

@jj ��i ¼
��iþ1 � ��i�1

2hi
; (41)

where 2hi is the distance on the surface between the
points riþ1 and ri�1, one can write the tangential derivative
matrix as
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@jjði; jÞ ¼ 1

2hi
ð�i;jþ1 � �i;j�1Þ: (42)

However, depending on the surface characteristics, a more
suitable discretization of the tangential derivative can be
chosen. At any point ri, the surface is characterized by a

tangential vector ~ti ¼ txi ~iþ tyi ~j and a surface normal vec-

tor ~ni ¼ nxi ~iþ nyi ~j. Equation (22) on the surface reads

ðtx@jj þ nx@nÞ �Ax þ ðty@jj þ ny@nÞ �Ay ¼ 0: (43)

Employing Eqs. (37) and (38) the gauge constraint
becomes

ðtx@jj þ nxUÞ �Ax þ ðty@jj þ nyUÞ �Ay ¼ 0: (44)

Equation (44) allows us to write �Ax and �Ay as a function of

single independent variable �A, thus

�A x ¼ Lx
�A; (45)

�A y ¼ Ly
�A: (46)

For example, one can choose �Ax as the independent vari-
able and express �Ay as a function of �Ax:

�A ¼ �Ax; (47)

Lx ¼ I; (48)

Ly ¼ �ðty@jj þ nyUÞ�1ðtx@jj þ nxUÞ: (49)

However, other choices might be more convenient, de-
pending on the particular problem.

We reduced the number of independent variables to 2N,

ð ��i; �AiÞ, i ¼ 1; N. They are to be determined from the
continuity conditions of the tangential fields at the wall.
Using the potential equations, Eqs. (36)–(38), (45), and
(46) in Eqs. (1) and (2), the fields at the wall become

�E z ¼ i
k

�2
��; (50)

�E t ¼ �@jj ��� i!ðtxLx þ tyLyÞ �A; (51)

Z0
�Hz ¼ c½ðtx@jj þ nxUÞLy � ðty@jj þ nyUÞLx� �A; (52)

Z0
�Ht¼�ð~t� ~nÞzU ��þ ikcðtxLy� tyLxÞ �Aþ�ð~t� ~nÞz@�1:

(53)

Our algorithm assumes the boundary conditions form of a
system of 2N linear equations,

�E z ¼ R11
�Hz þR12

�Ht; (54)

�E t ¼ R21
�Hz þR22

�Ht; (55)

where the matrixR elements depend on the wall geometry
and on the electromagnetic properties of the medium out-
side the beam pipe. Often the boundary conditions can be
determined as an independent problem. We present an

algorithm for determining the boundary conditions for a
multilayer beam pipe with arbitrary cross section in
Appendix A.
As an example, assume that thewall surface impedances,

R z ¼
�Ez

�Ht

; (56)

R t ¼
�Et

�Hz

; (57)

are known at every point on the surface. This would corre-
spond to R11ij ¼ �ijRz, R12 ¼ R21 ¼ 0, and R22ij ¼
�ijRt. These boundary conditions are specific to metallic

beam pipes characterized by large conductivity. The equa-

tions for ð ��; �AÞ become

@jj ��þ
�
i!ðtxLxþ tyLyÞþRt

Z0

cðtx@jj þnxUÞLy

�ðty@jj þnyUÞLx

�
�A¼0; (58)

�
i
k

�2
�Rz

Z0

�ð~t� ~nÞzU
�
��� ikc

Rz

Z0

ðtxLy � tyLxÞ �A

¼ Rz

Z0

�ð~t� ~nÞz@�1: (59)

The problem reduces to the linear equation

MP ¼ S; (60)

where M is a complex 2N � 2N matrix and P ¼ ð ��; �AÞ
and S / @�1 / ��0 are vectors of size 2N. For our choice
of the boundary conditions given by Eqs. (56) and (57),

S ¼ ð0;Rz

Z0
�G�1 ��0Þ.

For beam pipes with specific symmetries, the number of
independent variables can be reduced by a factor equal to the
number of symmetries. For example, for the calculation of
the longitudinal impedance in a rectangular beam pipe, the
size of the problem can be reduced by a factor of 4. For the
calculation of the rectangular transverse impedances, which
require an off-centered source along one transverse direc-
tion, the size of the problem can be reduced by a factor of 2.
Many applications, such as numerical beam dynamics

simulations, require knowledge of the contribution of the
wall finite conductivity to the impedance. For this it is
necessary to subtract the contribution corresponding to
the perfectly conducting wall. For an ideal conductor

�1ðx; yÞ ¼ �0ðx; yÞ �
X
j

Gðx; y; rjÞ@�1
j : (61)

The wall finite-conductivity contribution to the
potential is
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�	ðx; yÞ ¼ �ðx; yÞ ��1ðx; yÞ
¼ X

j

½Dðx; y; rjÞ ��j �Gðx; y; rjÞð@�j � @�1
j Þ�:

(62)

We would like to highlight a subtlety in the calculation
of the discrete Green function matrices G and D. These
matrices connect points along the wall surface and should
be derived from Eq. (23) by taking proper limit when the
wall is approached from inside. Since GðRÞ is singular for
R ¼ 0, and at small R

GðRÞ / �K0ðkrRÞ � ln
krR

2
þ �e; (63)

where �e ¼ 0:57721 is the Euler’s constant, we take

Gii¼� 1

2�
2
Z hi

2

0
dsK0ðkrsÞ¼ hi

2�

�
ln
krhi
4

�1��e

�
: (64)

A careful examination of

lim
�!0

Z
Dð~r� ~n�; ~r0Þ�ð ~r0Þd ~r0 ¼ 1

2
�ð~rÞ (65)

when ~r is on the integration contour shows that

Dii ¼ 1

2
: (66)

B. Impedances

The forces acting on the witness particle are

Fz ¼ qEz ¼ qi
k

�2
�; (67)

Fx ¼ qðEx � �Z0HyÞ ¼ � q

�2
@x�; (68)

Fy ¼ qðEy þ �Z0HxÞ ¼ � q

�2
@y�: (69)

The impedances defined in Eqs. (13)–(17) become

Zjj ¼ �iZ0

k

�2�

�0
�
�ðx ¼ y ¼ x0 ¼ y0 ¼ 0Þ; (70)

Zw
x ¼ �Z0

i

�2�

�0
�

@2�

@x2
ðx ¼ y ¼ x0 ¼ y0 ¼ 0Þ; (71)

Zs
x ¼ �Z0

i

�2�

�0
�

@2�

@x@x0
ðx ¼ y ¼ x0 ¼ y0 ¼ 0Þ; (72)

Zsy
x ¼ �Z0

i

�2�

�0
�

@2�

@x@y0
ðx ¼ y ¼ x0 ¼ y0 ¼ 0Þ; (73)

Zwy
x ¼ �Z0

i

�2�

�0
�

@2�

@x@y
ðx ¼ y ¼ x0 ¼ y0 ¼ 0Þ: (74)

The calculation of Zw
x and Zwy

x requires the derivatives of
the potential at the witness particle position

@2�

@x2
¼ X

j

�
@2Dðx; y; rjÞ

@x2
��j �

@2Gðx; y; rjÞ
@x2

@�j

�
(75)

and

@2�

@x@y
¼ X

j

�
@2Dðx; y; rjÞ

@x@y
��j �

@2Gðx; y; rjÞ
@x@y

@�j

�
: (76)

Note that only the solution of Eq. (60) for a centered source
is required, as is the case for the longitudinal impedance.
Thus, the calculation of the transverse impedance due to
the witness particle displacement requires very small extra
computational effort after the longitudinal impedance has

been calculated and ð ��; @�Þ determined.
Calculation of Zs

x requires the derivation with respect to
the source particle position

@2�

@x@x0
¼ X

j

�
@Dðx; y; rjÞ

@x

@ ��j

@x0
� @Gðx; y; rjÞ

@x

@ð@�jÞ
@x0

�
:

(77)

Since the potentials on the contour are found by solving a
linear equation, the derivative with respect to x0 can be
found by solving

M
@P

@x0
¼ @S

@x0
; (78)

where @P
@x0

¼ ð@ ��
@x0

; @
�A

@x0
Þ. Similar equations can be written for

@P
@y0

which is required for calculating Zsy
x . The calculation of

the transverse impedances caused by the source particle
displacement requires solving 2N linear complex equa-
tions which are different from the one corresponding to
the longitudinal impedance.

III. RECTANGULAR PIPE IMPEDANCE

A. Discussion

The metallic beam pipes are characterized by large
conductivity and, implicitly, by small surface impedance

R z ¼ 1þ i

�	
¼ ð1þ iÞ

ffiffiffiffiffiffiffiffi
!�

2	

r
; (79)

where � is the penetration skin depth. Therefore the first-
order approximation in Rz works very well in the ultra-
relativistic limit in the frequency region relevant for most
beam dynamics problems. In this approximation the im-
pedance is proportional to Rz. The approximation fails at
small frequencies when
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Rz

Z0kb
* 1 or k &

�r

�0c	b
2
; (80)

and at large frequency when

Rz

Z0

kb * 1 or k *

�
�0c	

b2�r

�1
3
; (81)

as can be deduced from the analytical expression of the
impedance for the circular and parallel-plane geometries
[13,16]. For typical metallic pipes the small-frequency
regime is relevant for distances larger than z *
106–107 m, while the large frequency regime is relevant
at short range, z & 10–100 �m. One might argue that
these length scales make only the perturbative region of
interest for beam dynamics. However, note that the short
(long) length scale is proportionally increased (de-
creased) by the increase in the wall surface impedance,
as can be inferred from Eqs. (80) and (81). The wall
surface impedance can easily be increased by orders
of magnitude by increasing the magnetic permeability
and/or by reducing the conductivity. More complicated
structures, like laminated chambers, are also character-
ized by orders of magnitude higher wall surface
impedance [13,16].

The small-frequency regime is relevant for large dis-
tance effects such as coherent tune shift in chambers with
low symmetries [22]. The methods for impedance calcu-
lations for beam pipes with arbitrary cross section de-
scribed in [17] and in [18] do not address this region.

The large frequency regime is relevant for short
bunches; it is called the short-range resistive wall regime
in the literature [23]. For circular chambers in the ultra-
relativistic limit, Bane [23] showed that the impedance in
the large frequency regime can be modeled by a low-Q
resonator. The method described in [17] does not address
this region. Yokoya’s algorithm [18] addresses the large
frequency regime but neglects the contribution of the tan-
gential surface impedance Rt. While the contribution of
Rt to the coupling impedance is small in the ultrarelativ-
istic limit, it becomes important in the nonultrarelativistic
regime at large frequencies. By inspecting the analytical
results for the parallel planes [Eqs. (B35) and (B36)] and
circular [Eq. 20 in [10]] geometries, one can see that the

first-orderRt correction is OðkRt

�2 Þ, similar in magnitude to

the Rz correction term [which is OðkRzÞ].
Our algorithm calculates the impedance at small and at

large frequency and in the perturbative region, for both
nonultrarelativistic and ultrarelativistic regimes, as we
show in the next section.

B. Results

We present results for a rectangular steel beam pipe with
the conductivity 	 ¼ 0:23� 107 ��1 m�1 and dimension
2a� 2b. The longitudinal surface impedance Rz is given
by Eq. (79) and Rt ¼ �Rz. Ultrarelativistic, � ¼ 1000,

and nonultrarelativistic, � ¼ 1:42, cases are considered.
The vertical dimension is kept constant b ¼ 3 cm while
the horizontal one is varied such as the ratio a

b increases

from 1 to 3. For a ¼ 2b we find that the impedance is
already close to the corresponding parallel-plane limit.
First we benchmarked our algorithm by comparing

the simulations for a parallel-plane beam pipe with the
analytical results. The parallel-plane problem can be solved
analytically as shown in Appendix B. We find that the
algorithm converges to the exact results for N of order of
thousands.
In the ultrarelativistic regime and in the perturbative

region defined outside the range of validity of Eqs. (80) and

(81), the longitudinal impedance is proportional to !
1
2

while the transverse impedances are proportional to !�1
2.

The same behavior is known for circular and parallel-plane
impedances. We define the proportionality coefficients cl,
cwy, cwx, csy, csx by

Zjj ¼ cl
Rz

2�b
; (82)

ðZw
y ; Z

w
x ; Z

s
y; Z

s
xÞ ¼ ðcwy; cwx; csy; csxÞ Rz

�kb3
; (83)

as in Yokoya’s paper [18]. Our results agree with those
presented by Yokoya [18], as can be seen in Fig. 1. Here
we plot the coefficients on top of Fig. 8 from Ref. [18].
Note that the longitudinal impedance for a square

FIG. 1. Perturbative region defined outside the range of
validity of Eqs. (80) and (81). Ultrarelativistic limit, � ¼
1000. The longitudinal impedance is proportional to !

1
2 while

the transverse impedances are proportional to !�1
2. The propor-

tionality coefficients defined by Eqs. (82) and (83), cl (cross), csx
(plus), csy (star), cwx (diamond), and cwy (circle), are plotted

on top Yokoya’s [18] Fig. 8. Note that the impedances
for a

b ¼ 2 ( a�b
aþb ¼ 0:33) are very close to the parallel-plane limit

( a�b
aþb ¼ 1).
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pipe, i.e., for a ¼ b, is equal to that corresponding to a
parallel-plane chamber, i.e., for a � b. Starting from a
square pipe and increasing a

b , the longitudinal impedance

decreases slightly until ab � 1:35 ( a�b
aþb � 0:15) where cl ¼

0:94, and then increases asymptotically back. The trans-
verse impedance caused by the witness particle displace-
ment increases from zero to the value corresponding to
the parallel-plane chamber when a

b (
a�b
aþb ) is varied from 1

to 2 (0 to 0.33). Because of the Panofsky-Wenzel theorem,
Zw
x ¼ �Zw

y in the ultrarelativistic limit. The zero value of

Zw
x and Zw

y for a square pipe is a consequence of the

large degree of symmetry [20]. The vertical transverse
impedance caused by the source particle’s displacement,
Zs
y, has a small dependence on a

b while Zs
x decreases to

half of its initial value when a
b (

a�b
aþb ) is varied from 1 to 2

(0 to 0.33).
The ultrarelativistic impedance in the high frequency

regime is presented in Fig. 2. For our parameters the
perturbation theory fails when f> � 60 GHz. At large
frequencies the longitudinal impedance and the vertical
impedances caused by the source displacement decrease
with increasing a

b , while the transverse impedance

caused by the witness particle displacement increases
with increasing a

b .

Nonultrarelativistic effects dramatically change the im-

pedance at high frequency. In Fig. 3 we show the imped-

ance for � ¼ 1:42. The !
1
2 behavior of the longitudinal

impedance is valid up to only � 0:4 GHz. Above this

frequency the impedances corresponding to different val-

ues of a
b are not proportional to each other. Above 1 GHz

the longitudinal impedance decreases with increasing
a
b . The transverse impedances caused by the displacement

of the witness particle increase with increasing a
b . Note that

for the square beam pipe the transverse impedances Zw
x and

Zw
y are nonzero, unlike in the ultrarelativistic case. Unlike

the ultrarelativistic case, Zw
x � �Zw

y as can be seen in

Fig. 3(b). The horizontal transverse impedance caused
by the source displacement, Zs

x, Fig. 3(c), decreases
with increasing a

b while Zs
y, Fig. 3(d), show negligible

dependence of a
b .

The small-frequency nonperturbative regime for � ¼
1:42 is shown in Fig. 4. At small frequencies the non-
ultrarelativistic corrections are negligible aside a multi-
plicative factor of � for the transverse impedance [14].
For our beam pipe parameters, this regime is effective for
f< � 100 KHz. An increase in the value of the wall
surface impedance will, however, increase the character-
istic frequency of this regime by a similar order of magni-
tude. The longitudinal impedance has a similar behavior to
the one characteristic of the perturbative regime, i.e., a
small decrease followed by an asymptotic increase when
going from the square beam pipe to the parallel-planes
limit. However, the longitudinal impedance has no perfect

!
1
2 behavior and the difference between the real and the

imaginary part is noticeable. The transverse impedances
caused by the witness particle displacement, �Zw

x ¼ Zw
y ,

increase from zero to the value corresponding to the
parallel-planes limit. The horizontal impedances caused
by the source displacement Zs

x decreases to half when
going from the square beam pipe to parallel-plane limit.
The vertical impedance Zs

y shows a small decrease

0 400 800 1200
f (GHz)

-0.02

-0.01

0

0.01

0.02

Z
|| /(

Z
0L

)(
m

-1
)

a/b=1
a/b=1.05
a/b=1.33
a/b=2
a/b=3

400 800 1200
f (GHz)

0

0.002

0.004

-Z
w

x, Z
w

y/(
Z

0L
)(

m
-2

)

400 800 1200
f (GHz)

-0.004

0

0.004

0.008

Z
s x/(

Z
0L

)(
m

-2
)

400 800 1200
f (GHz)

-0.004

0

0.004

0.008

Z
s y/(

Z
0L

)(
m

-2
)

(a) (b)

(d)(c)

FIG. 2. Large frequency regime, � ¼ 1000. The perturbation approximation fails when f> � 60 GHz. The real (imaginary) part of
the impedance is plotted with solid (dashed) lines. At large frequencies the longitudinal impedance (a) decreases with increasing a

b ,

while the transverse impedances caused by the witness particle displacement (b) increase with increasing a
b . The transverse impedances

caused by the source displacement (c) and (d) decrease with increasing a
b .
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with increasing a
b . Note that our algorithm captures well

the low frequency features of the transverse impedance,
namely that the real part goes to zero and the imaginary
part goes to a finite value when the frequency approaches
zero [13].

IV. CONCLUSIONS

We present an algorithm for calculating the impedance
in beam pipes with arbitrary cross section. The method is
nonperturbative, works at small and large frequencies, and
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FIG. 4. Small-frequency nonperturbative region, f< � 100 KHz. � ¼ 1:42. The real part (solid line) and the imaginary part (dashed
line) of impedances do not coincide. (a) Longitudinal impedance. (b) The transverse impedance caused by the witness particle
displacement increases with increasing a

b . (c) The horizontal impedance Zs
x decreases with increasing

a
b . The parallel plane Z

s
x is about

half of the square beam pipe Zs
x. (d) The vertical impedance Zs

y shows a slight decrease with increasing a
b .
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Z
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Z
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FIG. 3. Nonultrarelativistic impedance, � ¼ 1:42. The real and the imaginary part of the impedance fall on top of each other. Finite
� effects show for f> � 0:4 GHz. The impedances corresponding to different values of a

b are not proportional to each other.

(a) Longitudinal impedance. At large frequencies (above 1 GHz) the longitudinal impedance decreases with increasing a
b . (b) The

transverse impedances caused by the witness particle displacement, �Zw
x (dash-dotted line) and Zw

y (solid line), increase with

increasing a
b . The plots for

a
b ¼ 2 (blue) and a

b ¼ 3 (orange) are on top of each other. Note that �Zw
x � Zw

y , unlike the ultrarelativistic

case. (c) The horizontal transverse impedance Zs
x decreases with increasing a

b . (d) The vertical transverse impedance Zs
y shows

negligible dependence on a
b .
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does not assume the ultrarelativistic approximation. The
equations for the electromagnetic potentials are discretized
and the solution is obtained after solving a system of linear
algebraic equations.

The impedance algorithm assumes that the electromag-
netic field boundary conditions at the beam pipe wall are
known and are provided as linear relations between the
field transverse components. We describe an algorithm to
calculate the boundary conditions for the general case of
the multilayer beam pipe of arbitrary cross section.

Our simulations are checked against the analytical re-
sults for the parallel-plane beam pipe. We present an
analytical derivation of the nonultrarelativistic parallel-
plane impedance as a function of wall surface impedance.

We show results for a rectangular metallic beam pipe,
for both ultrarelativistic and finite-� cases. The ultrarela-
tivistic perturbative regime is in perfect agreement with the
work of Yokoya [18]. The rectangular longitudinal beam

pipe impedance is proportional to !
1
2 while the rectangular

transverse impedances behave as !�1
2. This behavior is

similar to the one characteristic of the circular and the
parallel-plane beam pipes, the influence of the beam pipe
geometry being captured by a renormalization factor. We
find that this simple renormalization is not valid when the
nonultrarelativistic effects are important or in the ultrarela-
tivistic approximation at small and at large frequencies.
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APPENDIX A: ALGORITHM FOR THE
WALL BOUNDARY CONDITIONS OF
MULTILAYER STRUCTURES WITH

ARBITRARY CROSS SECTION

Our algorithm for the impedance calculation assumes
knowledge of the wall boundary conditions in a form given
by Eqs. (54) and (55). For an infinitely thick metallic beam
pipe, the large wall conductivity limit makes it possible
to use the boundary conditions in Eqs. (56) and (57).
Nevertheless, in general one needs to calculate the bound-
ary conditions by solving the electromagnetic problem
outside the vacuum beam pipe. Here we present a numeri-
cal algorithm for calculating the wall boundary conditions
for multilayer beam pipes with arbitrary cross section.

Let us assume that the medium outside the beam pipe is
characterized by Ohm’s law,

~j ¼ 	 ~E: (A1)

By choosing the gauge

r ~Aþ �r�r

c2
@�

@t
þ�	� ¼ 0; (A2)

the equations for the potentials can be written as

@2�

@x2
þ @2�

@y2
� 
2� ¼ 0 (A3)

and

@2 ~A

@x2
þ @2 ~A

@y2
� 
2 ~A ¼ 0; (A4)

where


2 ¼ k2ð1� �r�r�
2Þ þ i!�	: (A5)

The solution for the potentials can be expressed as before,

�ðx;yÞ¼
I
D
ðx;y;rlÞ�ðrlÞdl�

I
G
ðx;y;rlÞ@n�ðrlÞdl;

(A6)

and analogously for ~A. Fixing the gauge such that

Az ¼ �r�r

�

c

�
1� i

�	c2

�r�r

�
�; (A7)

the same constraint as in thevacuum is implied forAx andAy,

@xAx þ @yAy ¼ 0: (A8)

Following similar reasoning to that described in
Sec. II A, one can consider two sets of independent varia-

bles ð ��; �AÞ to completely determine the solutions:

�A z ¼ g ��; (A9)

@� ¼ U ��; (A10)

@A x;y ¼ U �Ax;y; (A11)

�A x;y ¼ Lx;y
�A; (A12)

where

g ¼ �r�r

�

c

�
1� i

�	c2

�r�r

�
: (A13)

The matrices U and Lx;y are determined by the medium’s

properties and surface geometry.
Let us assume that the medium outside the beam pipe

extends to infinity, i.e., that we have a one-layer problem.
Only the surface potentials at the beam pipe wall are
present in the field equations. Note that these surface
potentials are different from the ones inside the beam
pipe with only the tangential electromagnetic fields being
continuous across the surface. The tangential fields at the
surface read
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�E z ¼ ikð1� �cgÞ ��; (A14)

�E t ¼ �@jj ��� i!ðtxLx þ tyLyÞ �A; (A15)

�rZ0
�Hz¼c½ðtx@jj þnxUÞLy�ðty@jj þnyUÞLx� �A; (A16)

�rZ0
�Ht ¼ �ð~t� ~nÞzU ��þ ikcðtxLy � tyLxÞ �A: (A17)

By inverting the set of equations given by Eqs. (A16)
and (A17), one can write

��
�A

 !
¼ H

�Hz
�Ht

� �
; (A18)

whereH is a 2N � 2N complex matrix. Using Eq. (A18),
Eqs. (A14) and (A15) can be written as

�Ez
�Et

� �
¼ R

�Hz
�Ht

� �
: (A19)

Since the tangential fields are continuous across the sur-
face, this equation represents the boundary condition used
in Eqs. (54) and (55). Note that finding the boundary
conditions for one-layer problem implies calculating the
inverse of a 2N � 2N complex matrix.

Next we consider a two-layer problem, where medium 1
outside the vacuum beam pipe has as its inner surface the
vacuum beam pipe and as its outer surface medium 2. We
assume that medium 2 extends to infinity. We denote the
fields and potentials inside medium 1 at the outer surface
�Ez1, �Et1, �Hz1, �Ht1,

��1, and �A1, and at the inner surface �ez1,
�et1, �hz1, �ht1, ��1, and �a1. Equations (A10) and (A11) can be
rewritten for the potentials at the outer surface as

@�1 ¼ U1
��1 þ u1 ��1; (A20)

@A x;y1 ¼ U1
�Ax;y1 þ u1 �ax;y1; (A21)

where U1 is a N2 � N2 matrix and u1 is a N2 � N1 matrix.
N2 is the number of points at the outer surface while N1 is
the number of points at the inner surface.

The boundary condition at surface 2 (the outer surface of
medium 1), is given by the equation

�Ez1
�Et1

� �
¼ R2

�Hz1
�Ht1

� �
; (A22)

where R2 can be calculated for medium 2 in the same
way as R in Eq. (A19) was calculated in the previous
one-layer example. The system of equations given by
Eqs. (A20)–(A22) and the fixed gauge condition Eq. (A8)
is similar to that given by Eqs. (36)–(38) and (22). One can
regard the inner surface potentials p1 ¼ ð ��1; �a1Þ as the
source for the electromagnetic field inside medium 1.

Therefore, for the outer surface potentials P1 ¼ ð ��1; �A1Þ
one gets an equation similar to Eq. (60):

M1P1 ¼ S1; (A23)

where M1 is a complex 2N2 � 2N2 matrix containing
information about the electromagnetic properties of me-
dium 2. S1 elements are proportional to p1 just as S is

proportional to the source potential ��0 in Eq. (60).
By inverting M1, one can write the solution as

P1 ¼ Bp1; (A24)

where B is a 2N2 � 2N1 matrix. Using Eq. (A24) and the
equation for the derivative of the potentials on the inner
surface deduced from Eqs. (A10) and (A11),

@� 1 ¼ V1
��1 þ v1

��1; (A25)

@a 1 ¼ V1
�A1 þ v1 �a1; (A26)

one can write

@p1 ¼ u2p1: (A27)

Since the outer potentials ð ��1; �A1Þ have been eliminated,
Eq. (A27) corresponds to Eqs. (A10) and (A11) for the
one-layer problem. From this point one can proceed as in
the one-layer problem.
Calculating the boundary conditions for a two-layer

beam pipe requires inverting two 2N2 � 2N2 and one
2N1 � 2N1 complex matrices. In general any extra layer
will add a new surface and will require inverting two extra
2M� 2M complex matrices, where M is the number of
points necessary to describe the fields at the new surface.

APPENDIX B: ANALYTICAL SOLUTION FOR
NONULTRARELATIVISTIC PARALLEL-PLANE

BEAM PIPE IMPEDANCE

For a beam pipe with parallel-plane geometry, due to the
translational symmetry along the horizontal direction, the
different horizontal modes are decoupled and the problem
can be solved analytically.
Consider a beam with a vertical offset y ¼ y0 moving

along the z direction between two parallel plates along the
x direction. The distance between the parallel plates is 2b.
The spectral decomposition along the horizontal direc-

tion can be written as

½�ðx;yÞ;Ayðx;yÞ;Azðx;yÞ�¼
Z 1

�1
½�ð�;yÞ;Ayð�;yÞ;Azð�;yÞ�

�cosð�xÞd�;
Axðx;yÞ¼

Z 1

�1
Axð�;yÞsinð�xÞd�; (B1)

½Hxðx; yÞ; Eyðx; yÞ; Ezðx; yÞ�
¼
Z 1

�1
½Hxð�; yÞ; Eyð�; yÞ; Ezð�; yÞ� cosð�xÞd�;

½Exðx; yÞ; Hyðx; yÞ; Hzðx; yÞ�
¼
Z 1

�1
½Exð�; yÞ; Hyð�; yÞ; Hzð�; yÞ� sinð�xÞd�: (B2)
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In Fourier space, ð�; y; k;!Þ, Eqs. (3) and (4) read

@2�

@y2
�m2� ¼ � �

�0
�ðy� y0Þ; (B3)

@2 ~A

@y2
�m2 ~A ¼ ��0�c��ðy� y0Þẑ; (B4)

where

m2 ¼ �2 þ k2 �!2

c2
¼ �2 þ k2

�2
: (B5)

The solution for the equation�
@2

@y2
�m2

�
GðyÞ ¼ �ðy� y0Þ; (B6)

is

GðyÞ ¼ � 1

2jmj e
�jmðy�y0Þj: (B7)

The potential equations are

� ¼ �

2�0

e�mjðy�y0Þj

m
þ am coshmyþ �am sinhmy; (B8)

Ax ¼ mbm coshmyþm �bm sinhmy; (B9)

Ay ¼ �� �bm coshmy� �bm sinhmy; (B10)

Az ¼ �

c
�; (B11)

where we have imposed the gauge condition Eq. (22).
The electromagnetic field components are

Ez¼ i
k

�2

�
�

2�0

e�mjðy�y0Þj

m
þamcoshmyþ �am sinhmy

�
;

(B12)

Ex¼�

m

�

2�0
e�mjðy�y0Þj þð�am� ik�cmbmÞcoshmy

þð� �am� ik�cm �bmÞsinhmy; (B13)

Ey ¼ sgnðy� y0Þ �

2�0
e�mjðy�y0Þj � ðm �am � ik�c� �bmÞ

� coshmy� ðmam � ik�c�bmÞ sinhmy; (B14)

Z0Hx ¼ �sgnðy� y0Þ� �

2�0
e�mjðy�y0Þj

þ ðm� �am � ikc� �bmÞ coshmy

þ ðm�am � ikc�bmÞ sinhmy; (B15)

Z0Hy ¼ ��

m

�

2�0
e�mjðy�y0Þj þ ð��am � ikcmbmÞ coshmy

þ ð�� �am � ikcm �bmÞ sinhmy; (B16)

Z0Hz ¼ �c
k2

�2
ð �bm coshmyþ bm sinhmyÞ: (B17)

The coefficients am, �am, bm, and �bm are to be determined
from the boundary conditions at the chamber walls.
The boundary conditions are given by the surface wall
impedance,

R zð�Þ ¼ � Ezð�Þ
Hxð�Þ

��������y¼�b
; (B18)

Rxð�Þ ¼ � Exð�Þ
Hzð�Þ

��������y¼�b
; (B19)

which imply

EzðbÞ þ Ezð�bÞ ¼ Rz½HxðbÞ �Hxð�bÞ�; (B20)

EzðbÞ � Ezð�bÞ ¼ Rz½HxðbÞ þHxð�bÞ�; (B21)

ExðbÞ þ Exð�bÞ ¼ �Rx½HzðbÞ �Hzð�bÞ�; (B22)

ExðbÞ � Exð�bÞ ¼ �Rx½HzðbÞ þHzð�bÞ�: (B23)

These equations yield two systems of two independent
linear equations. From Eqs. (B20) and (B22), one has

am

�
�i

k

�2
coshmbþRz

Z0

�m sinhmb

�

� bmikc�
Rz

Z0

sinhmb

¼ � coshmy0
2�0

e�mb

�
i

k

m�2
þ �

Rz

Z0

�
; (B24)

am� coshmb� bm

�
ik�cm coshmbþRx

Z0

c
k2

�2
sinhmb

�

¼ �� coshmy0
2�0

e�mb �

m
; (B25)

with solution
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�¼ i
k

�2
am¼��coshmy0

2�0

�2

m2

Rz

�Z0
sech2mbþ

n
1
�2

h
i kmþ

�
k2

m2�1
�
Rz

�Z0
� i km

RzRx

Z2
0

tanhmb
i
þ 1

�4
k2

m2
Rx

�Z0
tanhmb

o
e�mbsechmb

1þ i Rz

�Z0

�
k
m�m

k

�
tanhmbþRzRx

Z2
0

tanh2mb� i
�2

Rx

�Z0

k
m tanhmb

:

(B26)

Equations (B21) and (B23) yield

�am

�
�i

k

�2
sinhmbþRz

Z0

�m coshmb

�
� �bmikc�

Rz

Z0

coshmb ¼ � sinhmy0
2�0

e�mb

�
i

k

m�2
þ �

Rz

Z0

�
; (B27)

�am� sinhmb� bm

�
ik�cm sinhmbþRx

Z0

c
k2

�2
coshmb

�
¼ �� sinhmy0

2�0
e�mb �

m
; (B28)

with solution

� �¼ i
k

�2
�am¼��sinhmy0

2�0

�2

m2

Rz

�Z0
csch2mbþ

n
1
�2

h
i kmþ

�
k2

m2�1
�
Rz

�Z0
� i km

RzRx

Z2
0

cothmb
i
þ 1

�4
k2

m2
Rx

�Z0
cothmb

o
e�mbcschmb

1þ i Rz

�Z0

�
k
m�m

k

�
cothmbþRzRx

Z2
0

coth2mb� i
�2

Rx

�Z0

k
m cothmb

:

(B29)

Note that the longitudinal component of the electric field is

Ez ¼ � coshmyþ �� sinhmyþ i

�2

�

2�0
e�jmðy�y0Þj k

jmj : (B30)

For an ideal conducting beam pipe (Rz ¼ Rx ¼ 0), the electric field is

E1
z ¼ 1

� coshmyþ �1
� sinhmyþ i

�2

�

2�0
e�jmðy�y0Þj k

jmj ; (B31)

where

1
� ¼ �i

k

�2m

� coshmy0
2�0

e�mbsechmb; (B32)

�1
� ¼ �i

k

�2m

� sinhmy0
2�0

e�mbcschmb: (B33)

The finite-conductivity contribution to the electric field is

E	
z ¼ Ez � E1

z ¼ 	
� coshmyþ �	

� sinhmy; (B34)

where

	
� ¼ � � 1

� ¼ �� coshmy0
2�0

sech2mb

Rz

�Z0

�2

m2 þ 1
�2

h
Rz

�Z0

�
k2

m2 � 1
�
� iRzRx

Z2
0

k
m tanhmb

i
1þ i Rz

�Z0

�
k
m � m

k

�
tanhmbþ RzRx

Z2
0

tanh2mb� i
�2

Rx

�Z0

k
m tanhmb

; (B35)

and

� 	
� ¼ �� � �1

� ¼ �� sinhmy0
2�0

csch2mb

Rz

�Z0

�2

m2 þ 1
�2

h
Rz

�Z0

�
k2

m2 � 1
�
� iRzRx

Z2
0

k
m cothmb

i
1þ i Rz

�Z0

�
k
m � m

k

�
cothmbþ RzRx

Z2
0

coth2mb� i
�2

Rx

�Z0

k
m cothmb

: (B36)

1. Longitudinal impedance

The resistive wall longitudinal impedance is

Zjjð!Þ ¼ �E	
z ðx ¼ y ¼ y0 ¼ 0Þ

��c
¼ � 1

���c

Z 1

0
d�	

�: (B37)
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2. Horizontal transverse impedance

The derivative of the horizontal Lorentz force, Fx, with
respect to the witness particle’s displacement is

1

q

@Fx

@x
¼ � 1

�2
@2x� ¼ i

�2

k
Ez: (B38)

The horizontal impedance is

Zs
x ¼ �Zw

x ¼ 1

iq��c

@Fx

@x
ðx ¼ y ¼ y0 ¼ 0Þ

¼ � 1

���ck

Z 1

0
d��2�: (B39)

Finally, the ideal conducting beam pipe impedance is

Zs1
x ¼ � 1

���ck

Z 1

0
d��21

�

¼ j

�2

Z0

2��

Z 1

0
d�

�2

m
e�mbsechmb: (B40)

Note that for large �, when m � �,

Zs1
x ¼ �Zw1

x ¼ i

�2

Z0

2��

Z 1

0
d��e��bsech�b

¼ i

�2

Z0

2��b2
�2

24
; (B41)

in agreement with Laslett’s calculations [24], while the
resistive wall horizontal impedance is

Zs	
x ¼ �Zw	

x ¼ � 1

���ck

Z 1

0
d��2	

�: (B42)

3. Vertical impedance

The vertical Lorentz force is

Fy

q
¼ � 1

�2
@y� ¼ i

k
@yEz

¼ im

k
ð� sinhmyþ �� coshmyÞ

þ sgnðy� y0Þ 1

�2

�

2�0
e�jmðy�y0Þj: (B43)

The source transverse impedance is

Zs
y ¼ � 1

iq��c

@Fy

@y0
ðx ¼ y ¼ 0 ¼ y0 ¼ 0Þ

¼ � 1

���ck

Z 1

0
d�m

@ �

@y0
ðy0 ¼ 0Þ: (B44)

Finally, the ideally conducting beam pipe impedance is

Zs1
y ¼ � 1

���ck

Z 1

0
d�m

@ �1

@y0
ðy0 ¼ 0Þ

¼ i

�2

Z0

2��

Z 1

0
d�me�mbcschmb ¼ i

�2

Z0

2��b2
�2

12
;

(B45)

again in agreement with Laslett’s calculations [24].
The witness transverse impedance is

Zw
y ¼ � 1

iq��c

@Fy

@y
ðx ¼ y ¼ 0 ¼ y0 ¼ 0Þ

¼ � 1

���ck

Z 1

0
d�m2�: (B46)

Note that in the ultrarelativistic limit, i.e., when m ¼ �,
Zw
y ¼ �Zw

x , in agreement with the Panofsky-Wenzel

theorem.

APPENDIX C: 6N INDEPENDENT
VARIABLES ALGORITHM

Although it is not necessarily the most efficient way to
calculate the potentials, we present here a straightforward

approach which considers all 6N variables, ��i, �Axi, �Ayi,

@�i, @Axi, @Ayi, i ¼ 1; N, to be independent. This ap-

proach offers a broader view of the equations’ structure
and might turn to be useful for numerical optimization and
parallelization for problems where large N is required for
convergence.
The fixed gauge condition, Eq. (22), on the surface reads

tx@jj �Ax þ nx@Ax þ ty@jj �Ay þ ny@Ay ¼ 0: (C1)

The electromagnetic fields at the wall reads

�E z ¼ i
k

�2
��; (C2)

�E x ¼ �tx@jj ��� nx@�� i! �Ax; (C3)

�E y ¼ �ty@jj ��� ny@�� i! �Ay; (C4)

Z0
�Hx ¼ �ty@jj ��þ �ny@�� ick �Ay; (C5)

Z0
�Hy ¼ ��tx@jj ��� �nx@�þ ick �Ax; (C6)

Z0
�Hz ¼ cðtx@jj �Ay þ nx@Ay � ty@jj �Ax � ny@AxÞ: (C7)

The boundary conditions [Eqs. (56) and (57)] imply

i
k

�2
���Rz

Z0

�ðtxny� tynxÞ@�� ikc
Rz

Z0

ðtx �Ay� ty �AxÞ¼0;

(C8)
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�@jj ���
�
j!tx�Rt

Z0

cty@jj
�
�Ax�

�
j!tyþRt

Z0

ctx@jj
�
�Ay

þRt

Z0

cðny@Ax�nx@AyÞ¼0: (C9)

The equations (C1), (C8), and (C9), together with
Eqs. (30)–(32) yield

MP ¼ S (C10)

with

M00 M01 0 0 0 0

0 0 M12 M13 0 0

0 0 0 0 M24 M25

0 0 M32 M33 M34 M35

M40 0 M42 M43 M44 M45

M50 M51 M52 0 M54 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

��

@�

�Ax

@Ax

�Ay

@Ay

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
¼

� ��0

0

0

0

0

0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

(C11)

where P¼ð ��;@�; �Ax;@Ax; �Ay;@AyÞ and S¼ð� ��0;0;0;

0;0Þ are vectors of length 6N. Mmn represents a N � N
block matrix, with the specific values

M00 ¼ M12 ¼ M34 ¼ D� I; (C12)

M01 ¼ M13 ¼ M35 ¼ �G; (C13)

M32ij ¼ txi@jjði; jÞ; (C14)

M33ij ¼ nxi�ði; jÞ; (C15)

M34ij ¼ tyi@jjði; jÞ; (C16)

M35ij ¼ nyi�ði; jÞ; (C17)

M40ij ¼ �@jjði; jÞ; (C18)

M42ij ¼ �j!txi�ði; jÞ þRti

Z0

ctyi@jjði; jÞ; (C19)

M43ij ¼ Rti

Z0

cnyi�ði; jÞ; (C20)

M44ij ¼ �j!tyi�ði; jÞ �Rti

Z0

ctxi@jjði; jÞ; (C21)

M45ij ¼ �Rti

Z0

cnxi�ði; jÞ; (C22)

M50ij ¼ i
k

�2
�ði; jÞ; (C23)

M51ij ¼ �Rzi

Z0

�ðtxinyi � tyinxiÞ�ði; jÞ; (C24)

M52ij ¼ ikc
Rzi

Z0

tyi�ði; jÞ; (C25)

M54ij ¼ �ikc
Rzi

Z0

txi�ði; jÞ: (C26)
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