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In this paper we describe two methods that demonstrate an energy evolution at the ends of a long bunch.

The first method is a nondestructive diagnostic that extends the response matrix technique, to provide

insight into the time-sliced transverse behavior of a coasting bunch in a ring. This method uncovers

intense beam physics from the resulting longitudinal energy variations at the ends of a rectangular bunch.

Measurements of the tune profile, using this method, agree with analytical predictions resulting in a

percent error of 0.32% and 2.45% (head and tail respectively). Measurements and calculations presented

in this paper are presented for a beam with an intensity of 0.901 (beam current of 21 mA). The head and

the tail tunes, averaged over four ring chambers, also illustrate the intensity variation axially along the

bunch. This is exhibited through tune-shift measurements at the ends of the bunch. As confirmed through

calculations, the measured tune shift at the head is smaller than the tail. This results from the sum of both

the transverse coherent tune shift from image forces with the component from longitudinal space charge.

The sum of the two components produces a smaller tune shift at the head of the beam and a larger

tune shift at the tail. The second method presented in this paper optically illustrates the centroid

‘‘cork-screwing’’ motion within the beam ends, at a single location on the ring. The motion is resolvable

using this diagnostic since it is capable of axially time-slicing regions of the beam with different energies.

The difference between the two methods presented is that the first is a nondestructive diagnostic that can

be extended to multiple turns whereas the second method is a destructive first turn imager.
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I. INTRODUCTION

Accelerator research has seen a recent shift towards an
emphasis on increasing beam intensity or luminosity rather
than just energy [1]. This shift has resulted in the increased
importanceof considering the impact of space charge, aswell
as other sources of emittance growth that can limit beam
intensity [2]. Achievable luminosities can often be limited by
beambehavior at the low-energy endof themachine, even for
accelerator systems where space charge and emittance
growth are negligible for the bulk of the accelerator.

The longitudinal self-forces in these beams are continu-
ally evolving. Any externally applied focusing forces must
evolve accordingly for the beam to remain in a local
equilibrium. This is to avoid the excitation of longitudinal
space-charge waves and degradation of beam quality [3,4].
Applying the necessary waveforms needed to maintain the
shape of these intense beams requires knowledge of both
the current and velocity distribution of the beam, since
these characteristics determine the wave structure.

Induction accelerators, in particular linear accelerators,
are able to attain high intensities by utilizing wideband
induction modules [4,5] that manipulate the longitudinal
velocity distribution along the beam. The neutralized drift

compression experiment (NDCX-II) at Lawrence Berkeley
National Laboratory is currently planning to longitudinally
confine, compress, and accelerate an intense ion beam in
order to obtain a subnanosecond pulse for warm dense
matter (WDM) and inertial fusion energy (IFE) studies.
To accomplish this, the pulsed waveforms in each of the
induction modules are tailored to achieve a complex timing
schedule derived from simulations. Experimental diagnos-
tics will measure current, energy, and transverse profiles to
refine the simulation models.
While a relatively short machine like NDCX-II repre-

sents a significant milestone in the study of intense beams
for IFE; a much longer full-scale higher energy machine is
required. Construction of a long full-scale experiment will
require a substantial amount of time before it can access
some of the novel physics, like wave reflection. A prom-
ising approach to exploring this area of physics has been
demonstrated in the University of Maryland Electron Ring
(UMER) which uses a scaled ring topology to access the
physics of intense beams over long path lengths. UMER
has demonstrated the ability to access tens of kilometer
scale propagation lengths (>3� 104 alternating gradient
periods), whereas current linear machines have generally
been limited to hundreds of meters in length.
UMER is a scaled high-intensity circular induction ac-

celerator dedicated to the study of long path-length trans-
verse and longitudinal space-charge-dominated beam
physics using electrons. The typical UMER beam has an
average energy of 10 keV, 1 �m transverse emittance, and
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a variable current in the range of 0.5–100 mA. A long
(100 ns) rectangular beam is injected into the ring that fills
approximately half the circumference. We then allow the
bunch to elongate axially by disabling the longitudinal
containment fields (rf). The ring also contains multiple
diagnostics that measure position, current, and beam size
over many turns. Though an electrostatic energy analyzer
capable of measuring energy profiles is pending, it is a
destructive first turn diagnostic [6].

In this paper, we report on two diagnostics that demon-
strate an energy evolution at the ends of a long bunch. The
first diagnostic extends the response matrix technique to
provide insight into the time-sliced transverse behavior of a
coasting bunch in a ring. This diagnostic, capable of being
extended to multiple turns, uncovers intense beam physics
from the resulting longitudinal energy variations at the
ends of a rectangular bunch. We also illustrate the phe-
nomena at the ends, using a destructive first turn diagnostic
that images the ‘‘cork-screwing’’ motion. With these two
diagnostic tools, we have been able to infer the basic shape
of the longitudinal energy profile along the bunch. In
Sec. II we present a summary of the predictions from a
one-dimensional cold fluid model, describing essential
features of beam elongation. This includes calculations
of the energy gained and lost at the head and tail as well
as simple calculations of the correlated tune along the
beam. The calculations also include the coherent contribu-
tion due to image forces. In Secs. III and IV, we describe
measurements of betatron tune and transverse centroid
displacement along the beam, as the bunch freely expands
within the first turn from space charge and the absence of
longitudinal focusing. Section V discusses the results and
conclusions, including potential methods for expanding the
first measurement to a multiturn diagnostic for the longi-
tudinal containing fields.

II. LONGITUDINAL BEAM EROSION IN A RING

The longitudinal dynamics of a space-charge-dominated
beam can be adequately characterized using the one-
dimensional cold fluid theory [7]. This is a valid approxi-
mation in the long wavelength regime since the beam is
found to have a very low longitudinal thermal velocity
from accelerative cooling in the source and a length that
is long compared to the pipe radius [2,8]. If a beam is
injected with constant charge line density and constant
velocity, self-fields will push particles in the beam ends
away from the central region. This will cause both ends of
the beam to expand, in the beam frame, at a rate of 2cs;
where cs is the longitudinal space-charge wave velocity,

cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qg�o=4�"o�

5
om

p
, q is the electron charge, m the

electron mass, �0 the Lorentz factor, "0 the permittivity of
free space, and the variable g is the geometry factor
accounting for the pipe shielding of the longitudinal
self-fields [7–10]. One caveat of this simple model is
that it neglects the variation in g factor at the beam ends,

but it has been found experimentally to be an adequate
approximation [4].
The expansion is also accompanied by a rarefaction of

the beam ends, eroding into the beam at a rate of cs (an
illustration is shown in Fig. 1).
Figure 1 illustrates the charge line density and energy

profile as a function of time. The profile starts from an initial
rectangular beam (shown in blue) distribution at s ¼ 0 and
ends at a distance s ¼ s1 (shown in black) [2,7]. A particle at
the leading edge of the beam head undergoes an energy gain
of�E ¼ 2mcsðvo þ csÞ. The leading edge of the beamhead
occurs where the charge line density goes to zero. The
opposite is true for a particle at the tail. A particle at the
leading edge of the beam tail undergoes an energy loss of
�E. This has been shown using a destructive electrostatic
energy analyzer on a short linear experiment [11].
A schematic diagram of the ring, including ring cham-

bers 9, 11, 13, and 15 (RC9, RC11, RC13, and RC15) is
displayed in Fig. 2.
The primary diagnostics employed to measure trans-

verse position are the beam position monitors (BPMs)
located at RC9, RC11, RC13, and RC15 as well as a fast
phosphor screen located at RC15. The nominal machine
and beam parameters for the experiments presented in this
paper are listed in the Appendix.
The current and velocity profiles, calculated from the

solutions to the cold fluid equations, are shown below as a
function of time within the first turn (Fig. 3). The profiles
are calculated from the source up to the location of RC9
(7.02 m), RC11 (8.30 m), RC13 (9.58 m), and RC15
(10.86 m).
The current and velocity profiles illustrate the elongation

of the bunch. The head of the beam at RC9 is 7.8 ns in
length. The same is true for the length of the tail at RC9. As

FIG. 1. Beam charge line density and energy profile snapshot
illustrations as a function of time, starting from an initially
rectangular beam distribution at s ¼ 0 (shown in blue). The
curves in black are the same as in blue but at a distance s ¼
s1 from the source.
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the beam propagates further around the ring, the head and
tail accounts for a larger fraction of the overall bunch
length. The head of the beam is 12.1 ns long at RC15.
This is a 55% increase in length from RC9. Once again, the
same is true for the tail of the beam. The maximum
velocity at the leading edge of the head is approximately
vhead � vo þ 2cs, where vo is the beam velocity [2]. The
minimum velocity at the leading edge of the tail is ap-
proximately vtail � vo � 2cs.

Using this one-dimensional model, we can infer the
approximate shift in centroid tune at the leading edges of
the head and tail of the beam. When the coherent contri-
bution from image forces is included in the calculations,
the tune profile becomes asymmetric. This means that the

tune shift at the head of the bunch is not equal to the tune
shift at the tail of the bunch. This will be shown analyti-
cally within this section of the paper and illustrated experi-
mentally in the following section.
In a circular machine, variations in energy or momentum

cause a displacement in both the equilibrium orbit through
the dispersion function and a shift in the betatron tune
through the natural chromaticity [12,13]. The natural chro-
maticity of the lattice � is the averaged result of all
chromatic aberrations around the machine from pure di-
pole and quadrupole elements [12]. The chromaticity is
used, in this case, to approximate the tune shift at the
leading edge of the head as well as the tail. The tune shifts
are measured from the leading edge to the midregion of the

FIG. 3. Analytical current and velocity profiles calculated using the self-similar one-dimensional solution on the first turn, at RC9,
RC11, RC13, and RC15 for the 21 mA beam.

FIG. 2. Lattice optics diagram with RC9, RC11, RC13, and RC15 circled.
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beam, assuming the beam is divided into three regions
(head, midregion, and tail). Using the nominal ring pa-
rameters listed in Table I, the analytical longitudinal space-
charge wave velocity is 1:276� 106 m=s and thus the
calculated tune shift at the leading edge of the beam head
would be �0:345 using Eq. (1). The tune shift at the
leading edge of the beam tail would beþ0:345. The polar-
ity difference is a result of particle acceleration at the beam
head and particle deceleration at the beam tail:

��head;tail ¼ �
�p

po

� ��
2cs
vo

: (1)

Equation (1) assumes the beam is nonrelativistic. Next, we
calculate the analytical zero-current tune profiles at four
locations in the ring. The calculations assume no contribu-
tion from image forces at this point [4]. The tune depen-
dence on velocity for N focus-drift-defocus-drift (FODO)
cell periods in a ring is shown in Eqs. (2) and (3):

�o ¼ N�o

2�
;

�o ¼ N

2�
cos�1

�
cos� cosh�þ L

l
�ðcos� sinh�

� sin� cosh�Þ � 1

2

�
L

l

�
2
�2 sin� sinh�

�
; (2)

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qBo

�mavo

s
l; (3)

where � represents the focusing strength of the lenses as
defined in [8], l the magnet effective length, L the drift
space within the FODO cell, and N the total number of
FODO cells in the ring [8].

Figure 4 displays the calculated tune profiles at RC9,
RC11, RC13, and RC15. The shift in tune at the leading
edge of the head is �0:324 and the shift in tune at the
leading edge of the tail is þ0:360. Note the positive tune
shift at the tail of the beam and the negative tune shift at the

head of the beam. This polarity difference corresponds to
particle acceleration at the head and deceleration at the tail
of the beam.When bothmagnitudes are averaged,we obtain
a result that agrees with the simple chromaticity calculation
[using Eq. (1)] resulting in a percent error of 0.87%.
The tune shift induced from transverse space-charge

forces has a coherent as well as an incoherent component.
The coherent tune shift, due to image forces from a dis-
placed beam in a surrounding pipe [8], can be calculated
using Eq. (4):

��coh ¼ �
�

1

ð	�Þ3
1

Io

�
R

b

�
2
�

Ib
�xo; �yo

; (4)

where the peak current is defined by Ib, the average radius
of the machine is defined by R, the beam pipe radius is
defined by b, the relativistic correction is defined by 	�,
and the zero-current tune in both x and y is defined either
by �xo or �yo, respectively [14]. The coherent component

effectively reduces the tune from external quadrupole fo-
cusing, by this current dependent effect. Reference [14]
describes the measured coherent tune shift, over a wide
range of beam currents, in more detail. In this paper, we
maintain our focus on the coherent contribution. The cal-
culated values of incoherent tune shift, incoherent tune
depression, and beam intensity are listed in Tables I and
II of the Appendix for the reader.
Figure 5 displays the calculated tune profiles that in-

clude the coherent contribution at RC9, RC11, RC13, and
RC15. The tune at the leading edge of the head is 6.345 and
the tune shift is�0:196. The tune at the leading edge of the
tail is 7.029 and the tune shift at the tail is þ0:488.
The coherent contribution is a current dependent effect,

which means that the region of the beam with the most
current will have the largest contribution. At the leading
edges of the beam ends, the tune shift from this contribu-
tion also approaches zero as the current approaches zero.
When this tune shift is included with the longitudinal
space-charge contribution presented, in Fig. 4, it results

FIG. 4. Analytical zero-current tune profiles calculated on the first turn for the 21 mA beam, at RC9, RC11, RC13, and RC15.
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in the asymmetric profile shown in Fig. 5. This is recog-
nized with a smaller tune shift at the beam head and a
larger tune shift at the beam tail. The following section
presents a diagnostic used to measure the tune profile
axially along the bunch, capturing the three regions de-
scribed above.

III. BETATRON TUNE PROFILE
MEASUREMENTS ALONG A BEAM

The midregion of the rectangular beam is approximately
monoenergetic, thus allowing for various methods to be
utilized when measuring tune in that portion of the bunch.
Two common methods employed at University of
Maryland are the four-turn formula and a fitting method
[12,15]. The four-turn formula utilizes four turns at a single
beam position monitor (BPM) to measure the fractional
component of tune. The fitting method utilizes multiple
BPMs around known locations on the ring to measure the

integer and fractional component of tune. The difficulty
with either of these methods when measuring tune outside
of the midregion is the fact that the beam ends evolve as the
bunch propagates. The path-length dependent evolution of
the beam ends impacts the centroid due to the discussion
presented in the previous section. This dynamic compli-
cates the measurement methods described above [4].
An alternate method of experimentally measuring tune

is to impose small dipole perturbations around the ring,
while keeping the measurement point fixed. This is ac-
complished by measuring the amplitude of the induced
shift in betatron phase at a BPM from each of the dipole
perturbations [16]. This method, commonly part of the
response matrix analysis used for machine optimization
[17–19], allows the measurement point to remain fixed
while the perturbation point is varied along the ring.
Utilizing this method, we were able to avoid the path-
length dependence. The measurement points were also
RC9, RC11, RC13, and RC15. The perturbed dipoles

FIG. 6. Measured perturbed horizontal centroid motion (within the midregion of the beam using a 2 ns window) around the ring
using a single beam position monitor (BPM at RC15, zero radians). The measured tune is 6:541� 0:062 with a fit goodness of 0.99.
The average error per point is 0:1 mm=A.

FIG. 5. Analytical tune profile (including coherent contribution) calculated on the first turn for the 21 mA beam, at RC9, RC11,
RC13, and RC15.
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were D1 to D29 (where D29 is the last dipole prior to
RC15). For each chamber, there were 15 dipoles per-
turbed. This allowed the beam to complete at least two
betatron oscillations, obtaining sinusoidal fits with good-
nesses greater than or equal to 95%. The goodness is the
coefficient of determination or R2 of the fit. A perfect fit
has a goodness of 100%.

The current in each dipole was varied from Inom �
0:2 A to Inom þ 0:2 A (approximately � 10% of the
nominal current) in 0.05 A steps, where Inom is the
nominal current. A line was fitted to the data with slope
m ¼ �x=�I, where �x is the change in transverse posi-
tion (not equilibrium orbit) from nominal and �I the
change in dipole current from nominal. We extracted
the tune of the perturbed centroid motion by fitting a
sinusoidal function to the slopes measured at each dipole
along the length of the accelerator. The circumference of
the accelerator is measured in radians (RC15 is the
location of zero radians). The data, presented in Fig. 6,
is taken within the midregion of the bunch averaged over
a 2 ns window.

Figure 6 displays the slopes measured at each
dipole along the length of the accelerator. The fitted
tune (to the data presented in Fig. 6) is 6:541� 0:062
with a fit goodness of 0.99. The same measurement
obtained identical results at three other chambers. The
error bars were obtained by taking the difference
between the best fit and the 95% confidence bounds
defined by the fitting algorithms in MATLAB. The error
bar of �0:062 is the averaged result measured axially
along the bunch.

We then extend this measurement by shifting the 2 ns
window along the axial length of the beam, from head to
tail. Shifting the window also extends the response matrix
analysis in the longitudinal direction, obtaining betatron
tune profiles along the rectangular bunch. Figure 7 displays

a single BPM plate as a time-to-beam correlation for the
tune profile comparisons.
Comparisons of bunch head and tail lengths (shown in

Fig. 7) with calculations presented in the previous section
indicate that the agreement at RC9 has a percent error of
3.8%. Comparisons at RC15 indicate a percent error of
11.6%. We suspect that the disagreement with measure-
ments at RC15 is due to noisy BPM electronics. This is in
contrast to the less noisy BPM at RC9.
Figure 8 displays the tune profile measured at RC9,

RC11, RC13, and RC15. As presented in Sec. II, the
tune decreases at the head of the beam (shown in
Fig. 8) and increases at the tail. The head tunes average
over the four ring chambers is 6:325� 0:062, and the
average of the tail tunes is 6:857� 0:062. This corre-
sponds to a �0:216 shift in tune at the head of the beam
and a þ0:316 shift at the tail. The measurements agree
with the computed values presented in Sec. II that
include the coherent contribution, resulting in a percent
error of 0.32% and 2.45% for the head and tail,
respectively.
The measurement technique has also shown to be

robust enough to resolve the tune in laboratory environ-
ments with noise on most BPMs (as illustrated with the
�100 MHz signal on all the BPM plates). The following
section presents a destructive first turn diagnostic that
resolves the head and tail cork-screwing motion at the
beam ends.

IV. SLICED PHOSPHOR SCREEN
MEASUREMENTS ALONG A BEAM

As discussed in Sec. II, longitudinal space charge alters
the energy at the beam ends when no longitudinal confin-
ing fields are used [4,11,20,21]. Ring dispersion then
causes a centroid displacement that is correlated axially
along the length of the bunch [22]. In order to imageFIG. 7. Top BPM plate at RC9, RC11, RC13, and RC15.

FIG. 8. Horizontal tune as a function of beam length, measured
using a single beam position monitor at RC9, RC11, RC13, and
RC15.
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this motion, we use a combined 2.4 ns phosphor screen
and 3 ns gated 16-bit PIMAX2 ICCD camera installed at
RC15. This allows us to measure the transverse beam
displacement as a function of axial position along the
bunch. This diagnostic is able to sequentially resolve
3 ns sliced images. Figures 9 and 10 display the results
measured on the RC15 phosphor screen for the head
and tail, respectively. The integrated camera images are

sequentially delayed by 2 ns axially along the bunch,
beginning just before the beam and ending just after.
The measured head and tail lengths are approximately
a factor of 5 longer than the sliced resolution on the first
turn.
The beam head exhibits a cork-screwing motion of the

charge distribution (shown in Fig. 9) over the consecutive
sliced images.

FIG. 9. 3 ns gated camera images of the 21 mA beam head, measured at RC15 as a function of time along the beam pulse.
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The tail of the beam also exhibits a similar movement of
the charge distribution. A calibrated transverse centroid
measurement is shown in Fig. 11.

The maximum overall horizontal and vertical displace-
ment caused by the beam head and tail regions is
6:00� 0:07 and 2:21� 0:07 mm, respectively. The blue
points (shown in Fig. 11) at the origin are the movement of
the beam midregion by 0:64� 0:07 mm. The centroid

measurement clearly displays the cork-screwing motion
at the ends of the beam, illustrated by the green and red
loops, for the head and tail, respectively. This centroid
motion results when an off equilibrium particle, in both
the horizontal and vertical plane, performs a helical motion
as different particle energies are sampled axially along the
bunch. The motion is resolvable at one diagnostic location
due to the electronic delay imposed with the measurement

FIG. 10. 3 ns gated camera images of the 21 mA beam tail, measured at RC15 as a function of time along the beam pulse.
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apparatus. This measurement technique allows us to opti-
cally sample different axial slices (or different energies)
along the bunch. In the case of the beam described in this
paper, were able to resolve the three distinct regions of the
bunch (head, midregion, tail).

V. CONCLUSION

We have presented two methods that use the ring char-
acteristics to give insight into the energy evolution of the
beam ends of a space-charge dominated beam. The first
method is an extension of the nondestructive response
matrix diagnostic, which resolves a tune profile axially
along the bunch. The tune shift measured at the head of
the beam was �0:216 and the tune shift at the tail of the

beam was þ0:316. Comparisons with calculations that
include the coherent contribution from image forces agree
with a percent error of 0.32% and 2.45% for the head and
tail, respectively. The asymmetry in the head and tail tune
shifts illustrates the summation of both contributions from
longitudinal space charge and that from transverse image
forces. The second method is a first turn destructive diag-
nostic that is used to optically resolve the ‘‘cork-screwing’’
motion axially along the bunch, at a fixed location (RC15).
The measurement displays the centroid motion that results
when an off equilibrium particle, in both planes, performs a
helical motion as different particle energies are optically
sampled axially along the bunch.
Extending the first method to measure these profiles over

multiple turns (using fast pulsed dipoles) would also give us
optimization information for longitudinal containment.
This could be implemented using a fast turn-by-turn adap-
tive wideband rf system, which would create the corrective
longitudinal fields to reduce the energy gained at the head of
the bunch and increase the energy lost at the tail of the bunch
[2,4]. As pointed out in Sec. II, the longitudinal dynamics of
the bunch is current dependent and changes with current
loss during propagation over many turns [2]. When operat-
ing UMER as a storage ring, the rf system used to contain
the bunch must also evolve with the loss rate. This is
necessary to avoid the excitation of space-charge waves at
the beam edges, as has been shown in Ref. [2].
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APPENDIX

FIG. 11. Centroid measurements from the 3 ns gated camera
images of the 21 mA beam, measured as a function of beam
length at RC15. We subtract the position where (0, 0) refers to
the centroid of the beam center from all data points. (Calibration
was 0:07 mm=pixel in both x and y.)

TABLE I. UMER main ring parameters.

Beam energy (keV) 	 ¼ v=c
Initial pulse

length (ns)

Average ring

radius (m)

Lap time

(ns)

Repetition

rate (Hz)

9.967 0.19467 100.82 1.8335 197.39 60.0

FODO period (m) N FODO Periods

l-magnet effective

length (m)

L-drift
space (m)

Zero-current

tune �o

Peak gradient

(G=cm=A)

0.32 36 0.0447 0.16 6.669 3.8019
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TABLE II. Parameters for a beam with a current of 21 mA.

Beam current

(mA)

Beam radius

(mm)

Pipe radius

(mm)

Initial emittance

(mm-mr)

Incoherent

tune shift

Incoherent tune

depression ð�=�oÞinc
21.0 5.142 25.4 30.23 �4:57 0.314

Intensity parameter


 ¼ 1� ð�=�oÞ2inc Coherent tune shift g factor Natural chromaticity � Dispersion (cm)

0.901 �0:128 3.154 �7:9 4.6
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