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An rf Wien filter (WF) can be used in a storage ring to measure a particle’s electric dipole moment

(EDM). If the WF frequency equals the spin precession frequency without WF, and the oscillating WF

fields are chosen so that the corresponding transverse Lorentz force equals zero, then a large source of

systematic errors is canceled but the EDM signal is not. This effect, discovered by simulation, can be

called the ‘‘partially frozen spin’’ effect.
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I. INTRODUCTION

The sensitivity of electric dipole moment (EDM) mea-
surements of charged particles can benefit from the high
intensities of polarized protons and deuteron beams avail-
able in storage rings like RHIC at Brookhaven National
Laboratory (BNL) in the USA and COSY at Jülich in
Germany. There are a number of different approaches to
such measurements, based on different manipulations of
the spin precession frequency. The spin precession fre-
quency of a particle in any electromagnetic storage ring

equals (under condition ~� � ~B ¼ ~� � ~E ¼ 0)

~! ¼ ~!a þ ~!edm

¼ � e

mc

�
a ~Bþ

�
a�m2c2

p2

� ~E� ~v

c

�

� e

mc

�
�

2
ð ~Eþ ~�� ~BÞ

�
; (1)

!edm ¼ � e�

2mc
ð ~Eþ ~�� ~BÞ; (2)

d~s=dt ¼ ð ~!a þ ~!edmÞ � ~s: (3)

Equation (3) is a spin rotation equation. a ¼ ðg� 2Þ=2,
and � plays the same role for the particle electric dipole
moment as the g factor plays for the magnetic dipole
moment:

d ¼ �

2

e

mc
s; � ¼ g

2

e

mc
s; (4)

with s ¼ @ for spin 1 and s ¼ @=2 for spin 1
2 particles. For

muons, protons, and deuterons, respectively,

d� ¼ �� � 4:67� 10�14 e cm;

dp ¼ �p � 5:26� 10�15 e cm;

dd ¼ �d � 5:26� 10�15 e cm:

(5)

Consider first an all-magnetic ring without WF. In such a
ring, Eq. (1) becomes

~! ¼ � e

mc

�
a ~Bþ �

2
ð ~�� ~BÞ

�
: (6)

In this case, ~!edm is perpendicular to ~!a. Thus, in the
presence of a nonzero �, the spin precession axis is tilted
by an angle ��=2a with respect to the direction of the

magnetic field ~B. This angle is at the microradian level for
a deuteron EDM of 10�21 e cm and is more than 10 times
smaller for a proton EDM of the same magnitude. Because

of the EDM tilt, ! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

a þ!2
edm

q
. It can be shown (we

will not do so here) that when !a � !edm � 0, ! � !a,
the radial spin component acquires a small constant-in-
time term proportional to!edm=!a in addition to the usual,
oscillating term. The vertical spin component acquires, in
addition to the usual constant-in-time term, a small term
oscillating with frequency ! and amplitude sL0!edm=!,
where sL0 is the amplitude of the longitudinal spin com-
ponent. The time average of these oscillations equals zero,
so it is rather difficult to measure EDM effects in such a
ring. Nevertheless, this was done as a part of the BNL
muon g-2 experiment [1]; the achieved limit on the muon
EDM is jd�j< 1:9� 10�19 e cm.

Separate EDM experiments with an accuracy
�10�29 e cm have been proposed at BNL [2,3]. They
require construction of dedicated electric rings (for protons)
or electromagnetic rings (for deuterons) and are based on
the idea of a frozen spin ring [4], in which!a ¼ 0 by design.
In Eq. (1), above, only the second square bracket term is not
zero. Both the radial ð!edmÞR and the longitudinal sL in
Eq. (3) are constant in time, so that the vertical spin compo-
nent grows, ðd~s=dtÞV ¼ ð ~!edm � ~sÞV , instead of being
constant or oscillating together with the magnetic dipole as
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in all-magnetic rings. [In theory, an EDM oscillates also
in a frozen spin ring, now, mostly as sinð!edmtÞ; see
Eqs. (24)–(29), below. However, we expect that ð!edmtÞ�1
and therefore that the growth of the vertical spin component
will be approximately linear in time.]

Rabi-type resonance experiments have also been pro-
posed [5,6]. In such experiments, !a � 0 so that the
horizontal components of spin perform the usual magnetic
moment precession and !edm oscillates in resonance with
it, making ð ~!edm � ~sÞV of Eq. (3) and hence ðd~s=dtÞV
nonzero. To produce this resonance, either the longitudinal
velocity, �L[5], or the electric field [6] of Eq. (2) oscillates
with the frequency of sL.

The new approach proposed and investigated here is
neither the frozen spin method, since !a � 0, nor the
Rabi-type spin resonance method, since we do not use
a resonance between oscillating ~!edm and oscillating ~s.
Our approach involves slightly modifying an existing
storage ring by adding rf Wien filter(s) to its lattice in
order to probe the particle EDM with an accuracy of at
least 10�25 e cm.

II. THE RF WIEN FILTER METHOD

The idea is to measure EDM by combining radial elec-
tric and vertical magnetic rf fields in the standard Wien

filter configuration, ~E ¼ ~B� ~v=c [7], oscillating with the
spin resonance frequency. Such a configuration eliminates
the filter fields’ own Lorentz force, thus canceling the
source of the largest systematic error associated with the
method. Unfortunately, this configuration also cancels
the Rabi-type resonance between the !edm and the spin
because, according to Eq. (2), the oscillating part of !edm

equals zero together with the oscillating part of the Lorentz
force. When we run spin tracking, however, we observe an
unexpected effect: the rf Wien filter running at one of the
spin tune resonances, 1þ a�, appears to be very effective
in probing the particle EDM [8]. We will refer to such an
rf-WF as a magic Wien filter (mWF).

This phenomenon can be qualitatively explained.
Without an mWF, the oscillation mode of the spin’s planar
components is the usual g -2 mode. But in the presence
of the mWF’s resonant fields, each planar component
acquires (among other new modes) a zero-frequency
mode. This means that each planar component now has a
part that is constant in time (‘‘frozen’’). The !edm is

unaffected by the mWF; !edm / ~�L � ~BV , where ~BV is
the main, constant part of the magnetic field. As a result,

the constant EDM torque ðe�=2mcÞð ~�L � ~BVÞ � ð ~sLÞfrozen
is able to rotate spin around the radial axis. A parasitic
resonance rotation of the spin by the particle magnetic
moment does not simultaneously occur, because the de-
signed mWF fields modulate only the magnitude of the g-2
frequency vector without changing its direction, which
ideally is perpendicular to the ring plane.

The immediate question arises of how, exactly, such a
zero-frequency spin mode can appear. The answer is the
following. Since the modulation frequency of the (g-2)
frequency equals that very g-2 frequency, the resulting
spin g-2 oscillations are obviously a superposition of an
infinite number of integer g-2 modes, N!a0’s, and only of
such modes. The main mode is N ¼ 1, the initial g-2
mode. The next biggest mode is N ¼ 0. This zero g-2
frequency mode is none other than the frozen spin mode
whose appearance makes EDM observable. In the original
idea of the frozen spin [4], the g-2 spectrum contains only
the N ¼ 0 mode. Here we have many modes and use one
of them, the N ¼ 0 mode, for the EDM observation. The
mWFmethod can thus be called the ‘‘partially frozen’’ spin
method [9].
To demonstrate the corresponding calculations in the

most transparent way, we assume that the EM fields of
many mWF’s are distributed uniformly along the equilib-
rium orbit. By design, these fields contain only a vertical
magnetic component, bV , and a radial electric component,
eR; both components oscillate synchronously with the non-
perturbed part of the g-2 frequency, !a0:

bV ¼ bV0 cos!a0t; (7)

eR ¼ eR0 cos!a0t; (8)

with the condition

eR0 ¼ �bV0: (9)

This condition guarantees that the transverse Lorentz
force—radial and, ideally, vertical—produced by the
mWF’s equals zero. Thus, ideally, particle movement in-
side and outside of these mWF’s is not perturbed. (It should
be noted, however, that the free synchrotron and betatron
oscillations of the particles lead to dispersion of the !a0

values, and hence to shortening the spin coherence time.
This well-known and generally understood problem of any
EDM experiment requires a detailed analysis depending on
a lattice; we do not make such an analysis here. It should
also be noted that a particle’s kinetic energy, �mc2, can
slightly oscillate with frequencies!a0 �!R þ k!C due to
the radial betatron oscillations and the work produced by

the radial electric field, ~E � ~v. These forced oscillations of
energy are averaged to zero by a proper choice of betatron
frequencies. Here, we neglect this effect.)
Since the EDM is very small, we first solve our spin

equations without EDM. Then we apply this solution to the
equation for sV . The spin equation without EDM but with
fields (7) and (8) becomes

d~s=dt ¼ ~!a � ~s; !a ¼ !a0 þ!rfðtÞ; (10)

!a0 ¼ a�!C, in a magnetic ring. !rfðtÞ is defined by

substituting bV and eR for ~B and ~E of Eq. (1)
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!rfðtÞ ¼ � e

mc

�
abV þ

�
a� 1

�2 � 1

�
ð��eR=cÞ

�

¼ � e

mc

1þ a

�2
bV0 cos!a0t: (11)

From (10) and (11), we get the following equations for the
longitudinal (L) and radial (R) spin components,

dsL=dt ¼ �!a0sR þ sR
ebV0
mc

1þ a

�2
cos!a0t; (12)

dsR=dt ¼ !a0sL � sL
ebV0
mc

1þ a

�2
cos!a0t: (13)

Neglecting the oscillating terms, we get the familiar solu-
tion corresponding to the above-mentioned N ¼ 1 mode,

sL � sL0 cos!a0t; sR � sL0 sin!a0t: (14)

This is the zero approximation for sL, sR. For a reason that
will be clear later, the phase of these free oscillations is
chosen (at injection) to be the same as the phase of the
mWF fields. Ideally, the phase must be the same for all
particles (i.e., must be a coherent polarization beam).

Substituting this N ¼ 1 mode for sL in the last term

of (13), we get �sL0
ebV0
mc

ð1þaÞ
�2

ð1þcos2!a0tÞ
2 , with half of this

expression being a constant in time. But dsR=dt of Eq. (13)
cannot be proportional to a constant in time since the spin
magnitude cannot be bigger than 1. Therefore, the constant
half of our expression must be canceled by the first term
on the right side of Eq. (13). It follows from this that sL
possesses an N ¼ 0 mode induced by the mWF fields; let
us call it sLm (m for ‘‘magic’’):

sL � sL0 cos!a0tþ sLm; (15)

sLm ¼ sL0
2!a0

ebV0
mc

ð1þ aÞ
�2

: (16)

This is our first-order approximation for sL containing
N ¼ 0 and N ¼ 1 modes. In (16), due to our choice of
phase in (14), we have the maximal possible frozen part of
the longitudinal spin component induced by the given
mWF fields.

Other choices of the spin phases in Eqs. (14) would give
us smaller magic sLm values. Thus, the optimal phase of
the field oscillations must be the same as the phase of the
coherent oscillations of the particles’ longitudinal spin
components.

Herewe give the complete solution of Eqs. (12) and (13),
omitting successive-approximation calculations of other
modes:

sL ¼ sL0 cos�; sR ¼ sL0 sin�; (17)

� ¼ !a0t� ebV0
mc!a0

ð1þ aÞ
�2

sin!a0t: (18)

When the second term at the right side of (18) is much
smaller than 1,

cos�� cos!a0tþ ebV0
2mc!a0

ð1þaÞ
�2

ð1� cos2!a0tÞ

� 1

4

�
ebv0ð1þaÞ
mc!a0�

2

�
2
cos!a0tð1� cos2!a0tÞþ �� � :

(19)

The first-order approximation (15) and (16) follows from
the general solution (17) and (18).

III. THE EDM SIGNAL AND
SYSTEMATIC ERRORS

In Eq. (2), the EDM rotation frequency connects vertical
and longitudinal spin components, so in Eq. (1) all three
components are interconnected. However, when investigat-
ing very small changes of the vertical spin component,
�sV � 1, it is sufficient to use the simple approximation
in which we deal only with the vertical spin component:

�
dsV
dt

�
EDM

¼ e

2mc
�f�ER � eRðtÞ

þ �½BV þ bVðtÞ	gsL0 cos�
� e�

2mc
sL0ð�ER þ �BVÞ cos�; (20)

where E and B are the off-mWF fields of the ring. From
(20) and (19), after averaging the oscillating terms,

�
dsV
dt

�
EDM

¼ �
ebV
4mc

ð1þ aÞ
�2

sL0
eð�ER þ �BVÞ

mc!a0

: (21)

In a purely magnetic ring, eð�ERþ�BVÞ=mc!a0!�=a.
To deal with systematic errors directly connected with

this method, we must first make the particles’ trajectories
maximally insensitive to the interconnected mWF EM field
amplitudes. This means canceling their Lorenz force in
both radial and vertical directions. With neither radial nor
vertical Lorentz force, perturbations of the mWF fields will
contain only terms

eVðtÞ ¼ ��bRðtÞ ¼ ��bR0 cos!a0t: (22)

There remains a small perturbation, acting only inside the
mWF’s, which imitates the EDM:

�
dsV
dt

�
sys

¼ ebR0
2mc

ð1þ aÞ
�2

sL0: (23)

This false signal—a systematic error—is well defined
and depends on � differently from the EDM signal. This
difference can be used to reduce the error.
It should be noted that the linear-in-time growth of the

vertical spin component described by Eqs. (21) and (23) is
the linear approximation of the start of a long-wave sinu-
soid. The validity of the linear approximation (23) is well
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confirmed by the simulations; see Figs. 1–5. That it is the
start of a sinusoid can be shown as follows.

Let us take the ideal case of a particle moving along
the equilibrium orbit in the presence of a mWF and an
EDM. From Eqs. (1) and (2), ~!a ¼ ð0; 0; !aVÞ, ~!edm ¼
ð!eR; 0; 0Þ, where L, R, V are the longitudinal, radial, and
vertical coordinates. So Eq. (3) can be rewritten as

dsL
dt

¼ �!aVsR þ!eRsV; (24)

dsR
dt

¼ !aVsL; (25)

dsV
dt

¼ �!eRsL: (26)

[The precise solution of Eqs. (24)–(26) with constant !aV ,
!eR is qualitatively outlined above, after Eq. (6).] In the
presence of the mWF, however, !aV depends on time and
these three equations cannot be analytically solved with
precision. We can get a solution by taking into account the
fact that !eR is small and constant in time. In the zero
approximation, (i.e., !eR ¼ 0), we get the solution for sL,
sR, (15)–(18). Substituting solution sLm for sL into (26) and
then integrating (26), we get the linear approximation for
sV [assuming the initial condition sVð0Þ ¼ 0]:

sV ¼ �sLmð!eRtÞ; (27)

with sLm from (16). Substituting the solution for sV (27)
into (24) and taking into account only sLm and terms
growing in time, we get the quadratic approximation
for sL:

FIG. 1. The vertical spin component, sV , normalized to 1, vs
time for the deuteron, assuming an EDM of 10�18 e cm when
the magic Wien filter is on, � ¼ 0. In red, the momentum is
0:7 GeV=c, green 1:4 GeV=c, blue 2:1 GeV=c, and magenta
2:8 GeV=c. The EDM signal is the slope of the vertical spin
component as a function of time. The vertical oscillations are at
the g-2 frequency, as expected. This figure is similar to Fig. 3 for
protons, but contains only a part of the full curve, since the EDM
effect for deuterons is bigger than for protons (for the parameters
given in the text).

FIG. 2. The vertical spin component, sV , normalized to 1, vs
time for the deuteron, assuming a misalignment angle of
0.1 milliradian when the magic Wien filter is on. In red, the
momentum is 0:7 GeV=c, green 1:4 GeV=c, blue 2:1 GeV=c,
and magenta 2:8 GeV=c. The EDM-like background signal
(systematic error) is the slope of the vertical spin component
as a function of time.

FIG. 3. The vertical spin component, sV , normalized to 1, vs
time for the proton, assuming an EDM of 10�18 e cm when
the magic Wien filter is on, � ¼ 0. In red, the momentum is
0:7 GeV=c, and green 1:4 GeV=c. The EDM signal is the slope
of the vertical spin component as a function of time. We show
only two cases for clarity. The vertical oscillation is at the proton
g-2 frequency, which is an order of magnitude larger than the
corresponding deuteron frequency.
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sL ¼ sLm � 1

2
sLmð!eRtÞ2: (28)

Substituting this for sL in (26), we get the cubic ap-
proximation for sV :

sV ¼ sLm

�
�!eRtþ 1

6
ð!eRtÞ3

�
; (29)

and so on, with sV ! �sLm sinð!eRtÞ þ higher-order
terms and terms not growing in time. The presence of
the long-wave EDM sinusoid is obvious.

IV. SPIN TRACKING SIMULATION RESULTS

The spin tracking simulation reported here is based
on combined beam and spin dynamics equations [10]. It
originated in a preliminary simulation [8] whose counter-
intuitive results were then confirmed and explained by theo-
retical analysis [9]. The current simulation was designed to
thoroughly test that analysis. It showed that the linear ap-
proximation just mentioned is valid with sufficiently high
accuracy. It likewise confirmed the validity of another theo-
retical simplification: limiting analysis to uniformly distrib-
uted mWF fields, even though mWFs can in practice be
distributed in discrete locations along a ring. (Later, this
confirmation would itself be confirmed theoretically by a
different technique, which showed that both continuous and
discrete distributions result in the same EDM signal [11].)
Our formulas for the EDM signal and the systematic

error are
�
dsV
dt

�
EDM

¼ e�

4mc
eR0

1þ a

a�2
sL0; (30)

which is equivalent to Eq. (21) and
�
dsV
dt

�
SYS

¼ þ e

2mc
eV0

1þ a

��2
sL0; ~eV0 ¼ ~eR0 � ~�;

(31)

which is equivalent to Eq. (23). We have one single mWF
in our simulation. � in Eq. (31) is the misalignment angle
of this mWF relative to its ideal vertical axis. The differ-
ential equations [10] used for tracking are

d ~�

dt
¼ e

mc�
½ ~Eþ ~�� ~B� ~�ð ~� � ~EÞ	; (32)

d~s

dt
¼ e~s

mc
�
��
aþ 1

�

�
~B� a� ~�

�þ1
ð ~� � ~BÞ�

�
aþ 1

�þ1

�
~�� ~E

þ�

2

�
~Eþ ~�� ~B�� ~�ð ~� � ~EÞ

�þ1

��
; (33)

with the EDM term added in the spin precession. We use
Runge-Kutta integration and a time step size of the order
of 0.5 ps.
The (magnetic) ring radius in the simulation is 20 m; the

field-focusing index, n ¼ �ð@B@xÞR=B, is 0.01. (In a future

experiment, a rather weak vertical focusing will probably
be needed to better manipulate the spin perturbations.) The
rf electric field (RFE) amplitude is 30 MV=m, with the
single dipole 10 cm long and the nonperturbed E field in
the radial direction. The RFB is always matched such that
the Lorentz force equals zero in the mWF (i.e., 30 MV=m

FIG. 5. The deuteron and proton results from tracking. The red
corresponds to an EDM of 10�18 e cm and green to systematic
error due to a misalignment angle of 0.1 milliradian for the
deuteron. The blue corresponds to an EDM of 10�18 e cm and
magenta to systematic error due to a misalignment angle of
0.1 milliradian for the proton.

FIG. 4. The vertical spin component, sV , normalized to 1, vs
time for the proton, assuming a misalignment angle of 0.1 milli-
radian when the magic Wien filter is on. In red, the momentum
is 0:7 GeV=c, green 1:4 GeV=c, blue 2:1 GeV=c, and magenta
2:8 GeV=c. The EDM-like background signal (systematic error)
is the slope of the vertical spin component as a function of time.
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divided by �). The nonperturbed RFB field direction is
vertical.

Figures 1 and 2 show the EDM signal and systematic error
for the deuteron with arbitrarily assumed � ¼ 2� 10�4;
Figs. 3 and 4 show the corresponding cases for the proton
(with the assumed � ¼ 1:876� 10�4). The EDM level is
assumed to be 10�18 e cm for both deuteron and proton. The
misalignment angle � is (arbitrarily) assumed to be 0.1 milli-
radian. Time is shown in seconds; the initial condition is
always sVð0Þ ¼ 0; total spin is always normalized to 1. The
mWF modulation tune used is 1þ a�; a is the anomalous
magnetic moment. (The initial radial spin component
influences only the resonance phase. In this simulation, we
have always chosen the phase that gives the biggest EDM
signal.)

Figure 5 shows the deuteron and proton results in one
graph.

Tables I and II, above, show the agreement between
the tracking results from simulation (shown in Fig. 5)
and Eqs. (30) and (31). The agreement is excellent. As
predicted by (30) and (31), the ratio of the EDM signal to
the systematic errors (produced by the mWF’s misalign-
ment) for a specific particle is proportional to velocity �.
This correlation can be used to correct errors.

V. CONCLUSION

The agreement between our analytical results and
results from tracking for the mWF proves that we correctly
understand the partially frozen spin phenomenon.
Thus, it can be used in a draft design to measure EDM,
disregarding details of mWF filter distribution along the

ring. Tables I and II and Eqs. (30) and (31) indicate that the
best choice of particle momentum will be around or
slightly higher than 1 GeV=c, where the EDM signal is
not as small as for higher momenta and the ratio EDM/SYS
(proportional to velocity �) is also acceptable. By contrast,
at � � 1 the EDM signal goes down as 1=�2 does.
Moreover, we lose the correlation between systematic error
and �, which is an important tool for correcting that error.
From independent consideration of the polarimetry prob-
lems, it is not advisable to deal with momenta below
0:7 GeV=c.
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Peng, C.C. Polly, J. Pretz, R. Prigl, G. zu Putlitz, T. Qian, S. I.
Redin, O. Rind, B. L. Roberts, N. Ryskulov, S. Sedykh, Y.K.
Semertzidis, P. Shagin, Yu.M. Shatunov, E. P. Sichtermann,
E. Solodov, M. Sossong, A. Steinmetz, L.R. Sulak, C.
Timmermans, A. Trofimov, D. Urner, P. von Walter, D.
Warburton, D. Winn, A. Yamamoto, and D. Zimmerman,
Phys. Rev. D 80, 052008 (2009).

[2] Storage Ring EDMCollaboration, AGS Proposal, Search for
a Permanent Electric Dipole Moment of the Deuteron
Nucleus at the 10�29 e � cm Level (2008), http://www.
bnl.gov/edm/files/pdf/deuteron_proposal_080423_final.pdf.

[3] StorageRingEDMCollaboration, AProposal toMeasure the
ProtonElectricDipoleMomentwith10�29 e � cmSensitivity
(2011), http://www.bnl.gov/edm/files/pdf/proton_EDM_
proposal_20111027_final.pdf.

[4] F. J.M. Farley, K. Jungmann, J. P. Miller, W.M. Morse,
Y. F. Orlov, B. L. Roberts, Y.K. Semertzidis, A. Silenko,
and E. J. Stephenson, Phys. Rev. Lett. 93, 052001 (2004).

[5] Yuri F. Orlov, William M. Morse and Yannis K.
Semertzidis, Phys. Rev. Lett. 96, 214802 (2006).

[6] F. Rathmann and N. Nikolaev, Proc. Sci., STORI11
(2011) 029.

[7] Handbook of Accelerator Physics and Engineering, edited
by Alexander Wu Chao and Maury Tigner (World
Scientific, Singapore, 1999), Secs. 2.7.3, 7.4.2.

[8] Yannis K. Semertzidis, RFE and RFB effects. EDM Note
with simulation tracking (2012), http://www.bnl.gov/edm/
files/pdf/YkS_two_RF_2012_0208.pdf.

TABLE II. Comparison between tracking results and analyti-
cal estimations for the proton case, in rad=s.

Momentum

[GeV=c]
EDM

tracking

EDM

analytical

Systematic

error

tracking

Systematic

error

analytical

0.7 0.357 0.357 1.135 1.137

1.4 0.174 0.172 0.393 0.396

2.1 0.0934 0.093 0.192 0.195

2.8 0.0566 0.0563 0.1135 0.1135

TABLE I. Comparison between tracking results and analytical
estimations for the deuteron case, in rad=s.

Momentum

[GeV=c]
EDM

tracking

EDM

analytical

Systematic

error

tracking

Systematic

error

analytical

0.7 �1:00 �1:00 0.41 0.41

1.4 �0:74 �0:73 0.175 0.17

2.1 �0:50 �0:51 0.096 0.097

2.8 �0:36 �0:35 0.063 0.06

MORSE, ORLOV, AND SEMERTZIDIS Phys. Rev. ST Accel. Beams 16, 114001 (2013)

114001-6

http://dx.doi.org/10.1103/PhysRevD.80.052008
http://www.bnl.gov/edm/files/pdf/deuteron_proposal_080423_final.pdf
http://www.bnl.gov/edm/files/pdf/deuteron_proposal_080423_final.pdf
http://www.bnl.gov/edm/files/pdf/proton_EDM_proposal_20111027_final.pdf
http://www.bnl.gov/edm/files/pdf/proton_EDM_proposal_20111027_final.pdf
http://dx.doi.org/10.1103/PhysRevLett.93.052001
http://dx.doi.org/10.1103/PhysRevLett.96.214802
http://www.bnl.gov/edm/files/pdf/YkS_two_RF_2012_0208.pdf
http://www.bnl.gov/edm/files/pdf/YkS_two_RF_2012_0208.pdf


[9] Yuri F. Orlov, On the partially-frozen-spin method. EDM
Note, (2012). http://www.bnl.gov/edm/files/pdf/YOrlov_On_
partially-frozen-spin_3_21_12.pdf.

[10] J. D. Jackson, Classical Electrodynamics (Wiley,
New York, 1975), 2nd ed., p. 559.

[11] Kolya [N.N.] Nikolaev, Duality of the MDM-transparent
RF-E flipper to the transparent RF Wien-filter at all
magnetic storage rings. EDM Note, (2012), http://
www.bnl.gov/edm/files/pdf/NNikolaev_Wien_RFE.pdf.

RF WIEN FILTER IN AN ELECTRIC DIPOLE MOMENT . . . Phys. Rev. ST Accel. Beams 16, 114001 (2013)

114001-7

http://www.bnl.gov/edm/files/pdf/YOrlov_On_partially-frozen-spin_3_21_12.pdf
http://www.bnl.gov/edm/files/pdf/YOrlov_On_partially-frozen-spin_3_21_12.pdf
http://www.bnl.gov/edm/files/pdf/NNikolaev_Wien_RFE.pdf
http://www.bnl.gov/edm/files/pdf/NNikolaev_Wien_RFE.pdf

