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We present a new model-independent dynamic feedback technique, rotation rate tuning, for automati-

cally and simultaneously tuning coupled components of uncertain, complex systems. The main advan-

tages of the method are: (1) it has the ability to handle unknown, time-varying systems, (2) it gives known

bounds on parameter update rates, (3) we give an analytic proof of its convergence and its stability, and

(4) it has a simple digital implementation through a control system such as the experimental physics and

industrial control system (EPICS). Because this technique is model independent it may be useful as a real-

time, in-hardware, feedback-based optimization scheme for uncertain and time-varying systems. In

particular, it is robust enough to handle uncertainty due to coupling, thermal cycling, misalignments,

and manufacturing imperfections. As a result, it may be used as a fine-tuning supplement for existing

accelerator tuning/control schemes. We present multiparticle simulation results demonstrating the

scheme’s ability to simultaneously adaptively adjust the set points of 22 quadrupole magnets and two

rf buncher cavities in the Los Alamos Neutron Science Center (LANSCE) Linear Accelerator’s transport

region, while the beam properties and rf phase shift are continuously varying. The tuning is based only on

beam current readings, without knowledge of particle dynamics. We also present an outline of how to

implement this general scheme in software for optimization, and in hardware for feedback-based control/

tuning, for a wide range of systems.
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I. INTRODUCTION

A. Motivation

It is rarely possible to build exact, deterministic input to
output models for complex physical systems such as
particle accelerators. It is especially difficult when the
behavior of the system is influenced by many coupled
parameters. Since accelerators have many coupled parame-
ters, they are prime candidates for genetic algorithm (GA)
and multiobjective genetic algorithm (MOGA) based mul-
tidimensional, nonlinear optimization schemes. In fact,
MOGAs and GAs have been used to successfully optimize
many aspects of particle accelerators, such as magnet and
radio frequency (rf) cavity design [1], photoinjector design
[2], damping ring design [3], storage ring dynamics [4],
global optimization of a lattice [5], neutrino factory design
[6], simultaneous optimization of beam emittance and
dynamic aperture [7], and free electron laser linac drivers
[8]. A thorough review of GA for accelerator physics
applications is given in [9].

After an accelerator design has been finalized and the
accelerator has been constructed, one often encounters

time-varying and nonlinear coupling effects between the
imperfectly manufactured and misaligned/unknown orien-
tation components of the accelerator. In theory, accelerator
design takes a certain level of uncertainty into account. In
practice however, most accelerators require postmanufac-
ture and postinstallation tuning. This is especially the case
for facilities with limited real-time diagnostics and noise
measurement. In this case components may have to be
retuned after each shutdown or change in operating con-
ditions. Effects such as unknown hysteresis curves and
time-varying component thermal cycling also add to sys-
tem uncertainty. A particular problem faced by many
accelerator systems is the arbitrary phase shift of the rf
systems, a time-varying uncertainty, requiring time con-
suming tuning such as phase scans. The method presented
here is demonstrated to automatically adapt for time-
varying properties, such as phase shift. A combination of
the global optimization abilities of GAs, with a local,
model-independent feedback technique such as the one
presented here, has the potential to improve accelerator
design and performance.

B. Results of the paper

In this work, we present a simple, model-independent
technique, which can aid in parameter tuning because it
does not, by design, assume any particular system model
for optimizing/tuning and therefore may be implemented
in hardware to automatically fine-tune multiple parameters
and help mitigate unmodeled disturbances and component
imperfections.
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For implementation, the user first defines a measurable
cost function, C, to be minimized, whose analytic form
may be unknown, such as the total particle loss along the
length of a particle accelerator. The components pi of the
vector p ¼ ðp1; . . . ; pmÞ are parameters by which the cost
may be influenced, such as the power source current set-
tings feeding the quadrupole magnets in the accelerator
lattice. The rotation rate (RR) tuning law is

piðnþ 1Þ ¼ piðnÞ þ�
ffiffiffiffiffiffiffiffiffi
�!i

p
cosf!in�þ kC½pðnÞ�g: (1)

Initial settings pð1Þ are chosen as usual, based on a physics
model and a MOGA or other numerical optimization tech-
nique. The initial cost, C½pð1Þ�, is calculated after the first
run and new parameter values pð2Þ are set according to (1).
The waiting time between implementation n and nþ 1 is
chosen depending on component response/settling rates,
data acquisition rates, and the rate of time variation of
system components due to disturbance. Intuitively, � is
the magnitude of a high frequency (!i) dither being intro-
duced into the system’s dynamics, k is the gain of the
controller/tuning algorithm, and � is a time interval for
digital implementation. The choices for the values of !i,
�, k, and � are discussed in detail in Sec. III.

We demonstrate, through a multiparticle simulation of
the Los Alamos Neutron Science Center (LANSCE) low
energy beam transport region, RR’s ability to handle un-
certainty by tuning up a 22 quadrupole lattice, and the
phases of two rf buncher cavities, by minimizing a cost
which is based on beam current loss along the transport
region and the first two tanks of the drift tube linac, for a
time-varying beam and time-varying rf phase drifts.

The RR approachmay also be used as a simple numerical
optimizer, in which adding new parameters pmþ1; pmþ2; . . .
to (1) does not add significantly to computation time.
Multiobjective optimization is implemented by replacing
a single cost, C, with a combination C ¼ C1 þ � � � þ Cn,
for any number of costs, such as C1 being total beam loss,
C2 being total transverse beam size, etc. Also, different
parameters may be updated based on different rates and
costs (as in Sec. IVA), where components having different
sensitivities may require different values of ki and �i. For
example, we may implement

piðnþ1Þ¼piðnÞþ�
ffiffiffiffiffiffiffiffiffiffiffi
�i!i

p
cosf!i�nþkiCi½pðnÞ�g; (2)

for notational simplicity, we stick to single values of
k, �, and C throughout the analysis performed, which is
applicable in the same manner to the above, more general
scheme (2). Imposing restrictions on the parameters is
straightforward and implemented as described in Sec. III.

As shown in the analysis in Sec. II B, the scheme (1) is
chosen so that, with proper choices of!, k, �, and�, (1) is
the finite difference approximation of

_p i ¼ ffiffiffiffiffiffiffiffiffi
�!i

p
cosf!itþ kC½pðtÞ; t�g; (3)

which on average follows the same trajectory as the system

_�p i ¼ � k�

2

@C½ �pðtÞ; t�
@ �pi

; (4)

where the convention used here and throughout the remain-

der of the paper is _p ¼ @p
@t .

RR is related to dithering-based optimization/stabilization
schemes, known in control theory as extremum seeking (ES),
which have been used for optimizing unknown outputs
of known, stable systems, by tuning known controllers.
Originally introduced in 1922 [10], an overview of its devel-
opment is available in [11]. Recently, ES has been extended to
perform stabilization and optimization of unknown, possible
unstable systems [12]. RR is a further improvement and
modification of those results [13].

C. Optimization schemes

There are many existing model dependent numerical
methods for multidimensional/multiparameter optimiza-
tion, such as GA, MOGA, Newton-Raphson and gradient
descent based on the analytic form of rC. Many optimi-
zation methods are actually built into existing accelerator
design codes [14].
The main strength of RR is its model-independent nature

and ability to deal with multiple parameters simulta-
neously, even for time-varying systems, such as thermal
cycling, or unexpected component damage. Some very
simple, but computationally intensive and inefficient,
model-independent methods are grid and random point
searches, especially for systems with many parameters.
Gradient descent, based on a numerical approximation of
an unknown rC is another model-independent approach,
but especially in the case of a multiparameter, noisy cal-
culation of C, may face difficulties, whereas RR is both
robust to noise in C and does not need to try and estimate
rC. Only samples CðnÞ are required.
Simplex fitting, in the sense that it samples many different

directions inmultidimensional parameter space, has themost
in common with RR. A major benefit of RR is that its
complexity does not growwith parameter number, regardless
of the number of parameters being tuned. The scheme basi-
cally depends on three choices, the values of k, !, and �.
Regarding noisy data, the RR scheme is, on average, not
influenced by noise, unless it happens to both match an RR
parameter’s perturbation frequency and be large in magni-
tude relative to that perturbation.Also, noise is easily handled
by standard methods, such as averaging and filtering.

D. Limitations

Although RR is model independent and able to tune
many parameters simultaneously, unlike GA, it is a local
technique, similar to gradient descent, and may become
trapped in local minimums. Therefore, we plan on explor-
ing (in future work) a combination of GA and RR, in which
a GA is first used for global optimization followed by RR
for local, in-hardware tuning, to make up for modeling
errors and time variation.
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E. Organization

In Sec. II we give an explanation for the choice of the
update scheme (1). In Sec. III we explain how to choose all
RR parameters and describe digital implementation for
general systems. In Sec. IV, we demonstrate the scheme’s
ability to handle uncertainty by tuning a 22 quadrupole
lattice as well as two rf buncher cavities, in a simulation of
the LANSCE accelerator transport region and first two
tanks of the drift tube linac, for a varying input beam and
drifting phase shifts. Finally, in Sec. V we provide back-
ground regarding RR analysis.

II. TUNING METHOD

A. Physical motivation

It is well known that by adding a fast, small oscillation
into a system’s dynamics, unexpected stability properties
may be achieved. The classic example is of the inverted
pendulum, whose vertical equilibrium point may be stabi-
lized by rapidly vertically oscillating the pendulum’s pivot
point. The dynamics of this process were first analytically
described in the 1950s by Kapitza [15]. The RR scheme
has some similarities to this approach, in that we introduce
high frequency oscillations into a system in order to force
certain points of the state space to become stable equilib-
rium points towards which the system’s trajectory con-
verges. By abstracting this to a general state space and
choosing such a point to be the minimum of a cost func-
tion, we are able to tune a wide range of systems towards
various performance goals.

We start with a simple example, we do not introduce any
destabilizing terms in (5) and (6), which are discussed in
remark 1. To give a simple 2D overview of this method, we
consider finding the minimum of a measurable function
Cðx; yÞ, for which we cannot simply implement a gradient
descent for the trajectory of ½xðtÞ; yðtÞ� because we are
unaware of its analytic form. We propose the following
adaptive scheme:

@x

@t
¼ ffiffiffiffiffiffiffiffi

�!
p

cos½!tþ kCðx; yÞ� (5)

@y

@t
¼ ffiffiffiffiffiffiffiffi

�!
p

sin½!tþ kCðx; yÞ�: (6)

Note that although Cðx; yÞ enters the argument of the
adaptive scheme, we do not rely on any knowledge of the
analytic form of Cðx; yÞ, we simply assume that its value is
available for measurement at different locations ðx; yÞ.

The velocity vector,

v ¼
�
@x

@t
;
@y

@t

�
¼ ffiffiffiffiffiffiffiffi

�!
p fcos½�ðtÞ�; sin½�ðtÞ�g; (7)

where �ðtÞ ¼ !tþ kC½xðtÞ; yðtÞ�, has constant magnitude,
k v k¼ ffiffiffiffiffiffiffiffi

�!
p

, and therefore the trajectory ½xðtÞ; yðtÞ�
moves at a constant speed. However, the rate at which
the direction of the trajectories’ heading changes is a
function of !, k, and C½xðtÞ; yðtÞ� expressed as

@�

@t
¼ !þ k

�
@C

@x

@x

@t
þ @C

@y

@y

@t

�
: (8)

Therefore, when the trajectory is heading in the correct
direction, towards a decreasing value of C½xðtÞ; yðtÞ�, the
term k @C

@t is negative so the overall turning rate @�
@t (8) is

decreased. On the other hand, when the trajectory is head-
ing in the wrong direction, towards an increasing value of
C½xðtÞ; yðtÞ�, the term k @C

@t is positive, and the turning rate is

increased. On average, the system ends up approaching the
minimizing location of C½xðtÞ; yðtÞ� because it spends more
time moving towards it than away.
The ability of this direction-dependent turning rate

scheme is apparent in the simulation of system (5) and
(6), in Fig. 1. The system, starting at initial location
xð0Þ ¼ 1, yð0Þ ¼ �1, is simulated for five seconds with
update parameters ! ¼ 50, k ¼ 5, � ¼ 0:5, and Cðx; yÞ ¼
x2 þ y2. We compare the actual system’s (5) and (6)
dynamics with those of a system performing gradient
descent:

@ �x

@t
� � k�

2

@Cð �x; �yÞ
@ �x

¼ �k� �x; (9)

@ �y

@t
� � k�

2

@Cð �x; �yÞ
@ �y

¼ �k� �y; (10)

whose behavior our system mimics on average, with the
difference

max
t2½0;T�

k½xðtÞ; yðtÞ� � ½ �xðtÞ; �yðtÞ�k (11)
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FIG. 1. The subfigure in the bottom left shows the rotation

rate, @�
@t ¼ !þ @Cðx;yÞ

@t , for the part of the trajectory that is bold

red, which takes place during the first 0.5 seconds of simulation.
The rotation of the parameters’ velocity vector vðtÞ slows down
when heading towards the minimum of Cðx; yÞ ¼ x2 þ y2, at
which time k @C

@t < 0, and speeds up when heading away from the

minimum, when k @C
@t > 0. The system ends up spending more

time heading towards and approaches the minimum of Cðx; yÞ.
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made arbitrarily small for any value of T, by choosing
arbitrarily large values of !. The derivation of this
relationship and of the rate of the gradient descent are
given in Sec. V.

Towards the end of the simulation, when the system’s
trajectory is near the origin, Cðx; yÞ � 0, and the dynamics
of (5) and (6) are approximately

@x

@t
� ffiffiffiffiffiffiffiffi

�!
p

cosð!tÞ ) xðtÞ �
ffiffiffiffi
�

!

r
sinð!tÞ; (12)

@y

@t
� ffiffiffiffiffiffiffiffi

�!
p

sinð!tÞ ) yðtÞ � �
ffiffiffiffi
�

!

r
cosð!tÞ; (13)

a circle of radius
ffiffiffi
�
!

p
, which is made arbitrarily small by

choosing small values of � or large values of!. A detailed
overview of how to choose the values k, �, and ! is given
in Sec. III. Convergence towards a maximum, rather than a
minimum, is achieved by replacing k with �k.

B. General RR scheme

For general tuning, we consider the problem of locating
an extremum point of the function Cðp; tÞ: Rn � Rþ ! R,
for p ¼ ðp1; . . . ; pnÞ 2 Rn, which we can measure the
value of, but whose analytic form is unknown. For nota-
tional convenience, in what follows we sometimes write
CðpÞ or just C instead of C½pðtÞ; t�.

The explanation presented in the previous section used
sinð�Þ and cosð�Þ functions for the x and y dynamics to give
circular trajectories. The actual requirement for conver-
gence is for an independence, in the frequency domain,
of the functions used to perturb different parameters, such
as sines or cosines of distinct frequencies. In what follows,
replacing cosð�Þ with sinð�Þ throughout, or mixing sinð�Þ
and cosð�Þ terms makes no difference.

Theorem 1.—Consider the setup shown in Fig. 2 (for
maximum seeking we replace k with �k):

_p i ¼ ffiffiffiffiffiffiffiffiffi
�!i

p
cos½!itþ kCðp; tÞ�; (14)

where !i ¼ !0ri such that ri � rj 8 i � j. The trajec-

tory of system (14) approaches the minimum of Cðp; tÞ,
with its trajectory arbitrarily close to that of

_�p ¼ � k�

2
rC; �pð0Þ ¼ pð0Þ (15)

with the distance between the two decreasing as a function
of increasing !0. Namely, for any given T 2 ½0;1Þ, any
compact set of allowable parameters p 2 K � Rm, and
any desired accuracy �, there exists !?

0 such that for all

!0 >!?
0 , the distance between the trajectory pðtÞ of (14)

and �pðtÞ of (15) satisfies the bound
max

p; �p2K;t2½0;T�
kpðtÞ � �pðtÞk< �: (16)

Proof 1.—By expanding

cosð!itþkCÞ¼ cosð!itÞcosðkCÞ�sinð!itÞsinðkCÞ; (17)

we rewrite the pi (1 � i � n) dynamics as

_pi ¼ ffiffiffiffiffiffi
!i

p
cosð!itÞ

ffiffiffiffi
�

p
cosðkCÞ

� ffiffiffiffiffiffi
!i

p
sinð!itÞ

ffiffiffiffi
�

p
sinðkCÞ; (18)

and apply corollary 1 with respect to !0 and � ¼ 0:5. The
trajectory of system (14) uniformly converges to the tra-
jectory of

_�pi ¼ � k�

2

@Cð �p; tÞ
@ �pi

fcos2½kCð �p; tÞ� þ sin2½kCð �p; tÞ�g

¼ � k�

2

@Cð �p; tÞ
@ �pi

; (19)

where we have used the fact that mismatched terms of the
form cosð!itÞ sinð!jtÞ, 8 i, j, and terms of the form

cosð!itÞ cosð!jtÞ, and sinð!itÞ sinð!jtÞ, 8 i � j weakly,

uniformly converge to zero. Combining all the pi compo-
nents we get

_�p ¼ � k�

2
rC: (20)

Remark 1.—The stability of this scheme is verified by
the fact that an addition of an unmodeled, possibly desta-
bilizing perturbation of the form fðp; tÞ to the dynamics of
_p results in the averaged system:

_�p ¼ fð �p; tÞ � k�

2
rC; (21)

which may be made to approach the minimum of C, by
choosing k� large enough relative to the values of
kðrCÞTk and kfð �p; tÞk. Detailed stability analysis is avail-
able in [12].
Remark 2.—Although it is glossed over in the averaging

analysis presented above, if one looks into the details of the
proof of theorem 2, in the case of a time-varying max/min
location p?ðtÞ of Cðp; tÞ, there will be terms of the form

1ffiffiffiffi
!

p
��������
@Cðp; tÞ

@t

��������; (22)

which are made to approach zero by increasing !.
Furthermore, in the analysis of the convergence of the error
peðtÞ ¼ pðtÞ � p?ðtÞ, there will be terms of the form

C(p
1
,...,p

n
,t)

u
i

p
i
(t)

cos(•)
i

i t

C

k

1
s

FIG. 2. Tuning of the ith component pi of p ¼ ðp1; . . . ; pnÞ 2
Rn. The symbol 1s denotes the Laplace transform of an integrator,

so that in the above diagram piðtÞ ¼ pið0Þ þ
R
t
0 uið�Þd�.
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1

k�

��������
@Cðp; tÞ

@t

��������: (23)

Together, (22) and (23) imply the intuitively obvious fact
that for systems whose time variation is fast, in which the
minimum towards which we are descending is quickly
varying, both the value of ! and of the product k� must
be larger than for the time-invariant case.

Remark 3.—In the case of different parameters having
vastly different response characteristics and sensitivities
(such as when tuning both rf and magnet settings in the
same scheme), the choices of k and � may be specified
differently for each component pi, as ki and �i, without
change to the above analysis.

III. GUIDELINES FOR DIGITAL
IMPLEMENTATION

A. Cost and constraints

The first step is to choose tunable machine parameters,
p ¼ ðp1; . . . ; pmÞ and a cost function to be minimized,
C ¼ C½p1ðtÞ; . . . ; pmðtÞ; t�. Next, constraints for all pa-
rameters are chosen:

p max¼ðp1;max; . . . ;pm;maxÞ; pmin¼ðp1;min; . . . ;pm;minÞ:
Implementing initial parameter settings pð1Þ, which are
chosen based on the physics model and numerical meth-
ods, allows one to calculate C½pð1Þ�. The iterative update
scheme is then

piðnþ1Þ¼piðnÞþ�
ffiffiffiffiffiffiffiffiffi
�!i

p
cosf!in�þkC½pðnÞ�g; (24)

which is based on the finite difference approximation of the
derivative:

piðtþ �Þ � piðtÞ
�

� @pi

@t
¼ ffiffiffiffiffiffiffiffiffi

�!i

p
cosf!itþ kC½pðtÞ; t�g;

(25)

which, according theorem 1 will drive the system towards a
minimum of C. The constraints are implemented by check-
ing the updated parameters at each step and confining them
to their bounds if necessary:

IF piðnþ 1Þ> pi;max; THEN piðnþ 1Þ ¼ pi;max;

IF piðnþ 1Þ< pi;min; THEN piðnþ 1Þ ¼ pi;min:

B. Choice of !, �, k, and �

It is important that !i � kC, so that the adaptive
scheme is operating on a faster time scale then and able
to adapt to time variation of the cost function. Because RR
depends on distinguishing between different frequency
components of the cost, the !i should be chosen within
such bounds such that it is possible to implement a small
enough � obeying

� � 2�

20�maxf!ig ; (26)

ensuring that at least 20 iterations (10� the Nyquist
sampling rate) are required to perform one complete cosine
oscillationintheiterativescheme(24).Choosingsmallervalues
of � results in smoother parameter oscillation and more iter-
ativestepsrequiredforconvergence,largervaluesof�speedup
the convergence, but may destabilize the overall scheme.
According to theorem 1, the only requirement on the

choices of!i is that they are big enough and distinct, but in
practice, the more harmonically independent they are (such
as !i � 2!j for all i � j) the better. The sensitivity to

frequency independence is different for every system and
depends on the coupling between different components.
One simple method is to choose a scaling factor, !0, and
!i ¼ !0ri, where the values ri are distinct.
The update scheme (24) is only valid as a finite differ-

ence approximation as in (25) if� 	 1 and!i �
ffiffiffiffi
�

p
; kC.

Taking into account (26), we choose a large value of !0,
relative to kC, typically at least

minf!ig
kC½pð1Þ� > 20; (27)

is a safe choice, where C½pð1Þ� is the initial cost calculated
based on initial parameter settings pð1Þ.
The rate of convergence is proportional to the product

k�, increasing either k or� speeds up convergence, as long
as they are not too big relative to the value of!0, so that the
finite difference is an accurate approximation of the de-
rivative. If, after !0 has been chosen, the convergence is
too slow, or if a local minimum is suspected, k or �may be
increased, with the possible need to increase !0 as well.
The vector p is moving through the parameter space Rm in

ellipses with approximate major axes of magnitude
ffiffiffi
�
!

p
,

increasing � causes larger steady state parameter oscilla-
tions, which is not a problem if the adaptation is turned off
following successful convergence.
The choices described above may vary from system to

system based on sensitivity and initially may be an iterative
process. A good approach is to first fix values of k and �,
define the various relationships (26) and (27), and increase
!0 if necessary until the scheme is stable. Once conver-
gence begins, if it is too slow, or if the cost is not sensitive
enough, k and � may be increased, with a possible neces-
sity to increase !0 as well to maintain stability.

C. Digital resolution

Although the analytic form of CðnÞ may be unknown, at
each iteration the parameters are perturbed by quantities
with known bounds:

0�j� ffiffiffiffiffiffiffiffiffi
�!i

p
cosf!in�þkC½pðnÞ�gj��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�!max

p
: (28)

For a system with nb bits of resolution, and maximum
bounds 
Mi on the parameter settings, if �, �, and !i
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are chosen such that �
ffiffiffiffiffiffiffiffiffi
�!i

p � N � Mi

2nb , then, as cosð Þ
varies between 0 and 1, it is possible for the parameter

value to take N discrete steps of minimum resolution Mi

2nb .

D. Normalization of parameters

Different parameters pi may require individual values of
ki and �i, in which case normalizing the parameters to
within ½�1; 1� bounds may be useful. For example, at each
step n, one may compute the cost CðnÞ based on parameter
settings pðnÞ, then translate into the scaled parameters
psðnÞ:

ps;iðnÞ ¼
2½piðnÞ � Cp;i�

Dp;i

; (29)

where Cp;i ¼ pi;maxþpi;min

2 and Dp;i ¼ pi;max � pi;min, bound-

ing each parameter within ½�1; 1�. We then perform the
RR update,

ps;iðnþ 1Þ ¼ ps;iðnÞ þ �
ffiffiffiffiffiffiffiffiffiffiffi
�i!i

p
cosf!in�þ kiC½pðnÞ�g;

(30)

force the scaled parameters to satisfy the constraints �1
and 1, and transform back into unscaled parameter values
in order to calculate the cost for the next iteration:

piðnþ 1Þ ¼ ps;iðnþ 1ÞDp;i

2
þ Cp;i: (31)

IV. TUNING 22 QUADRUPOLE MAGNETS
AND 2 BUNCHER CAVITIES

In this section we present simulation results of using the
RR scheme to tune up the 22 quadrupole magnets and two
buncher cavities in the Los Alamos linear accelerator Hþ
transport region, a simplified schematic of which is shown
in Fig. 3. The simulations were done using a graphics
processing unit–accelerated online beam dynamics

simulator [16,17], which is being developed to predict
beam properties along the linac using real-time machine
parameters. It can serve as a virtual beam experiment
environment and contribute to the cost being minimized
by the RR optimizer, by providing pseudo-real-time esti-
mates of beam sizes and current information in parts of the
machine where diagnostics are not available. Currently
being demonstrated on the LANSCE low energy beam
transport (LEBT) and drift tube linac (DTL), simulating
a bunch of 32K macroparticles through the LEBT or DTL
takes fractions of a second, which is 40 times faster than
the simple CPU version of the code.

A. Magnet tuning for beam transport

In a first, simple demonstration of the technique, we
perform a simulation of only the LEBT, with all initial
magnet current set points set to 0A, and allowed to tune up
based purely on the RR scheme as described above, in
which the four costs (j ¼ 1; 2; 3; 4) being minimized,

Cj ¼ ðIj � 0:013Þ2; (32)

were the square of the difference between initial beam
current 0:013A and total current making it through various
parts of the transport region, at which diagnostics are
available. With reference to Fig. 3, the current is sampled
at four locations, I1, following Q6, I2 following Q10, I3
followingQ18, and I4 at the end of the transport region. The
magnets (i ¼ 1; . . . ; 22) were then updated according to

Qiðnþ 1Þ ¼ QiðnÞ þ ffiffiffiffiffiffiffiffiffi
�!i

p
�cos½!i�nþ kSiðnÞ�; (33)

where Si ¼ C4 þ C3 þ C2 þ C1 for Q1–Q6, Si ¼
C4 þ C3 þ C2 for Q7–Q10, Si ¼ C4 þ C3 for Q11–Q18,
and Si ¼ C4 for Q19–Q22, so that magnets only saw costs
which they were able to influence. For the tuning parame-
ters, we chose k ¼ 250000, so that the amplified costs kSj
in (33) took values between 0 and 300. The!i were chosen
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as !0ri, with !0 ¼ 1000 and ri uniformly distributed
between 2.5 and 3.7, � ¼ 2�

20!22
, and � ¼ 15. With these

values, !min

kCmax
> 20.

Figure 4 shows the evolution of the surviving beam
current at the end of the transport region during the RR
tuning scheme. Figure 5 shows the evolution of the magnet
current inputs. Figure 6 shows the rms beam size through
various parts of the transport region at the end of RR
tuning, and Fig. 7 compares the RR found magnet settings
to that of the tune up in 2011.

This example demonstrates some of the strengths and
limitations of the scheme, and the importance of cost
function choice. Although the cost has been minimized
and almost all current is making it to the end of the
transport region, the beam is beginning to diverge and in
this form would not be matched to the DTL following the
transport region. In practice it is of course better to start
with physics-model based initial parameters; this simula-
tion was conducted starting with all magnet settings at zero

in order to fairly demonstrate the model-independent abili-
ties of the RR scheme. The next simulations start with the
2011 tune up for the magnet settings and use current
monitors following two tanks of the DTL, in which case
surviving beam corresponds with well-matched beam.

B. Magnet and rf buncher cavity tuning

To demonstrate the use of this scheme for fine-tuning of
machine settings, we used machine settings found during
the 2011 tune up procedure, but with a slightly different
beam and incorrectly phased buncher cavities. The mag-
nets were initialized to the values recorded from one of the
2011 machine turn on tuning periods. We set the phase
settings for the buncher and prebuncher to zero, which
typically must be retuned at each turn on, by a phase
scan, to take care of arbitrary phase shift.
We used only the surviving current at the end of the

second tank of the drift tube linac to create our cost; our
tuning procedure for the parameters was

Qiðnþ1Þ¼QiðnÞþ ffiffiffiffiffiffiffiffiffiffiffi
�i!i

p
�cos½!in�þkCðnÞ�; (34)

where �i ¼ �m for the magnets and �i ¼ �b for the
buncher phases. In both cases

CðnÞ ¼ ðIend � 15 mAÞ2:

For the tuning parameters, we chose k ¼ 605000, �m ¼
25, �b ¼ 550. The !i were chosen as !0ri, with !0 ¼
2000 and ri uniformly distributed between 2.5 and 4.3,
� ¼ 2�

20!24
. With these values, !min

kCmax
> 35.

With an initial beam current of 15 mA, the typical
surviving current after machine tune up is roughly 80%
or 12 mA. After 2000 simultaneous iterations on these 24
parameters (22 quads, 2 buncher phases), the surviving
current at the end of tank 2 was 12.25 mA. The results of
the optimization procedure are shown in Figs. 8–12. From
Figs. 9 and 10 we see that only minor adjustments are made
to magnet settings compared to the rf phases. Figure 11
shows that the transverse beam size has further focused
throughout the transport region and the transverse match to
the DTL has slightly improved. Figure 12 compares sur-
viving beam current at the end of tank 2 of the DTL before
and after tuning.
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C. Adaptation to time-varying phase delay
and beam characteristics

In order to demonstrate the adaptive tuning abilities of
the scheme, we started with matched beam settings and
varied both the characteristics of the input beam and added
a time-varying phase drift to each buncher cavity.
Figure 13 shows the initial and final beam properties at

the entrance to the transport region, during which RR
adaptive tuning maintains beam focus and matching.
Figure 14 shows the phase shift of the bunchers with and
without tuning. These changes took place starting at step
1000 and finished at step 19000, with beam properties
staying constant before and after the interval. Also, during
this beam changing process, the phase of the first buncher
was made to drift by 30 deg and that of the second by
35 deg, as seen in Fig. 14.
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The drift of beam characteristics and buncher phase
shifts took place over 18000 time steps, which for a con-
servative magnet/phase update rate of 1 Hz translates into
drastically changing accelerator and beam properties over
the course of just 5 hours. All tuning parameters were
maintained exactly the same as in the previous example.

Figure 15 shows the evolution of the magnet gradients
throughout the process and Fig. 16 compares the initial and

final beam profiles. In Fig. 17 we see that adaptive RR
tuning is able to maintain �12 mA of surviving beam
during the time-varying beam and phase, whereas almost
all of the beam is lost without tuning.

V. ANALYTIC BACKGROUND

We briefly recall the functional analysis result of
Kurzweil and Jarnik [18], which allows one to relate the
trajectories of a highly oscillatory system to those of a
simplified Lie bracket averaged system.
Theorem 2 [18].—For T 2 ½0;1Þ, and a compact set

K � Rn, consider a sequence (k 2 N) of sets of n coupled
differential equations (x ¼ ðx1; . . . ; xnÞ):

_x ¼ fðx; tÞ þXn
i¼1

giðx; tÞ’i;kðtÞ; xð0Þ ¼ x0; (35)

where _x denotes @x
@t and the functions fðx; tÞ, giðx; tÞ, and

’i;kðtÞ are continuous and Lipschitz, and their first and

second derivatives are continuous and bounded. If the
functions ’i;kðtÞ are continuous and their integrals satisfy

�i;kðtÞ ¼
Z t

0
’i;kð�Þd� ! 0 uniformly as k ! 1; (36)

and there exists measurable functions �i;jðtÞ such that

lim
k!1

Z t

0
’j;kð�Þ�i;kð�Þd� ¼

Z t

0
�i;jð�Þd�; uniformly;

(37)

then, for all t 2 ½0; T� and x 2 K, the sequence of solu-
tions of (35),

xkðtÞ ¼ x0 þ
Z t

0

�
fðxk; �Þ þ

Xn
i¼1

giðxk; �Þ’i;kð�Þ
�
d� (38)

converges uniformly with respect to k, over ðx; tÞ 2
K � ½0; T� to the solution xðtÞ satisfying

_x¼fðx;tÞ� Xn
i;j¼1

�i;jðtÞ½Dgiðx;tÞ�gjðx;tÞ; xð0Þ¼x0: (39)

Corollary 1.—For T 2 ½0;1Þ, and any compact set
K � Rn such that the functions fðx; tÞ, hiðx; tÞ, giðx;tÞ sat-
isfy the assumptions of theorem 2, for any � > 0, there exists
M such that for all k >M, the trajectory xðtÞ of the system

_x¼fðx;tÞþXn
i¼1

hiðx;tÞk̂�i cosðk̂2�i tÞ�Xn
i¼1

giðx;tÞk̂�i sinðk̂2�i tÞ;

(40)

and the trajectory �xðtÞ of the system
_�x¼ fð �x;tÞ�1

2

Xn
i�j

�
@gj

@ �x
hi�@hi

@ �x
gj

�
; �xð0Þ¼xð0Þ; (41)

satisfy the convergent trajectories property:
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max
t2½0;T�

kxðtÞ � �xðtÞk< �; (42)

where k 2 N, ri 2 R such that ri � rj, and k̂i ¼ rik.

Proof 2.—Theorem 2 is satisfied for

’i;k ¼ k̂�i cosðk̂2�i tÞ; �i;kðtÞ ¼ 1

k̂�i
sinðk̂2�i tÞ;

’̂i;k ¼ �k̂�i sinðk̂2�i tÞ; �̂i;kðtÞ ¼ 1

k̂�i
cosðk̂2�i tÞ;

and

�i;j ¼

8>>><
>>>:

1
2 : mixed terms ’i;k�̂j;k; ’̂i;k�j;k s:t: i ¼ j

0: mixed terms ’i;k�̂j;k; ’̂i;k�j;k s:t: i � j

0: all nonmixed terms ’i;k�j;k; ’̂i;k�̂j;k:

VI. CONCLUSIONS AND FUTURE WORK

Because of the global optimization ability of MOGAs
and the simple, fast, abilities of RR, we think that a combi-
nation of RR andMOGA techniques can be a very powerful
numerical optimization method, in which once the neigh-
borhood of a global optimal solution has been determined
by MOGA, RR may be implemented for fine-tuning, and
finally in hardware to compensate for unmodeled system
characteristics. In the future, following upgrades to the
LANSCE digital control system and network, we plan to
test this algorithm on various accelerator components.
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