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The thermal and field emission of electrons from protrusions on metal surfaces is a possible limiting

factor on the performance and operation of high-gradient room temperature accelerator structures.

We present here the results of extensive numerical simulations of electrical and thermal behavior of

protrusions. We unify the thermal and field emission in the same numerical framework, describe bounds

for the emission current and geometric enhancement, then we calculate the Nottingham and Joule heating

terms and solve the heat equation to characterize the thermal evolution of emitters under rf electric field.

Our findings suggest that heating is entirely due to the Nottingham effect. The time dependence of the rf

field leads to a time dependent tip temperature with excursion that depends weakly on rf frequency.

We build a phenomenological model to account for the effect of space charge and show that space charge

eliminates the possibility of copper tip melting for tips with radii less than 10 �m with vacuum fields on

their surface less than 12 GV=m, and for rf frequencies above 1 GHz.

DOI: 10.1103/PhysRevSTAB.16.092001 PACS numbers: 79.70.+q, 52.80.Vp, 77.22.Jp, 79.40.+z

I. INTRODUCTION

The thermal and field emission of electrons from
metal surfaces is a limiting factor on the performance
and operation of high-gradient room temperature accel-
erator structures [1,2]. Electron emission results in dark
current and has a number of undesirable effects includ-
ing parasitic absorption of rf energy, and excessive heat-
ing and radiation [1]. Moreover, it is believed to be the
precursor to breakdown along with local outgassing and
plasma formation [1,3].

Field emission is traditionally described by the Fowler-
Nordheim equation [4]. Through the use of this formula,
the enhancement of the electric field on a surface can be
predicted from experimental measurements of dark cur-
rent. Typical values of ‘‘effective’’ field enhancement fac-
tor measured by this method are in the range of 40 to 100
[1]. However, the modeling of underlying physical pro-
cesses that contribute to dark current is a long-standing
unsolved problem.

In practice, metal surfaces are not perfectly flat and
clean. The microscopic imperfections cause a large varia-
tion in the local surface electric field. Since the field
emission is an exponentially increasing function of surface
field, strongly emitting sites form where the field is en-
hanced due to local imperfections. If the imperfections are
due to contaminates, oxides and/or adsorbates, then there is
variation in the work function as well. For purposes of this
paper, work function variation due to adsorbate or crystal

face variation is not considered. Metallic protrusions are a
type of surface imperfection that can cause enhanced field
emission and heating. Here, we particularly focus on heat-
ing and the possible melting of protrusion tips, as these are
put forward as precursors to breakdown in the community
[5]. From these considerations we want to model the
processes in a microprotrusion to answer the following
questions: (i) How does the geometry of the protrusion
affect the heating and emission? (ii) How does the tem-
perature of the protrusion evolve and is there a possibility
of tip melting? (iii) How does the rf frequency affect the
temperature rise?
Field emitting structures are widely analyzed both in the

context of dark current, device breakdown, and field emit-
ter technology. Previous studies that inspired our work can
be listed as follows. Wang and Loew gave a tutorial ac-
count of field emission and rf breakdown and showed
elementary calculations related to field enhancement and
subsequent emission in rf fields [1]. Chatterton, in his
theoretical study published in 1966, established limits for
the applied electric field, by considering various geome-
tries for the protrusions [6]. Ancona numerically analyzed
failure in molybdenum field emitters taking Nottingham
heating into account which lays down the methodology
that we followed in this study [7], and finally, Jensen
et al. built an analytically tractable model to describe the
geometry and heating of microprotrusions and their
contribution to dark current [5].
Our approach to determine the temperature rise in mi-

croprotrusions is to break the problem into several distinct,
but interrelated subproblems. These include: (i) the deter-
mination of the electric field outside the protrusion, (ii) the
determination of the rate of electron emission from the
surface of the protrusion including an estimate of the effect
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of the electron space charge on the electric field near the
surface, (iii) the determination of the conduction current in
the protrusion, and (iv) the determination of the tempera-
ture rise due to Joule heating implied by the conduction
current and the Nottingham effect implied by the electron
emission.

The physical processes governing these problems occur
on different time scales and this will motivate a number of
simplifying approximations that will allow these problems
to be solved sequentially. First, because the protrusion is
small in comparison to the vacuum wavelength of the rf
field in the structure, fields outside the protrusion will be
essentially electrostatic and will oscillate following the rf
field. We will assume that the electron space charge field is
a small perturbation to the applied field (except near the
surface of the protrusion) so that the electric field outside
the protrusion is essentially a vacuum field. Finally, wewill
assume that the electrical conductivity of the material
composing the protrusion is high such that the potential
on the surface of the protrusion can be taken to be a
constant (zero) in the calculation of the field outside the
protrusion.

The rate of electron emission from the surface of the
protrusion will be calculated assuming that the surface is
locally flat. Here it is assumed that the variation of the
electric field along the surface occurs on a scale length that
is greater than the atomic dimensions that define the emit-
ting regions. Further, we assume that the electrons transit
through the emitting region rapidly compared with the time
scale for variation of the electric field. The result will be an
emission law that gives the current density of emitted
electrons as a function of the local normal component of
the vacuum electric field, calculated previously, and the
local temperature of the surface. This emission law will be
modified to account for shielding of the emitting surface by
the electron space charge layer. Associated with the emit-
ted current density, there is a heat flux leaving the surface.
The heat flux may be either positive or negative due to the
so-called Nottingham effect [8].

The electric field and conduction current inside the
protrusion will be calculated under the quasistatic assump-
tion that the relaxation time of the conduction current is
much shorter than the period of the rf fields. Essentially, we
assume the dimensions of the protrusion are much less than
the skin depth. This will lead to a Laplace equation for the
potential where the boundary conditions are that the po-
tential goes to zero deep inside the conductor supporting
the protrusion, and the current density emitted from the
surface of the protrusion is given by the previously deter-
mined emission law. Finally, the temperature distribution
throughout the protrusion will be determined by the heat
diffusion equation with the Joule heating of the previously
determined conduction current density serving as a source.
Here the boundary conditions are that the temperature rise
deep inside the conductor supporting the protrusion is

small and that there is a prescribed heat flux on the surface
of the protrusion that is calculated in parallel with the
current emission law.
The remainder of this manuscript is organized as

follows. Section II describes our calculation of the electric
field outside the protrusion. Section III describes the devel-
opment of the emission law to be applied at the surface of
the protrusion. The discussion of our phenomenological
accounting for space charge is contained in Appendix.
In Sec. IV we describe the determination of the current
density in the protrusion, and Sec. V is devoted to the
temperature rise in the protrusion.

II. ELECTRIC FIELDOUTSIDE THEPROTRUSION

We will assume the protrusion can be considered to be a
conically shaped, cylindrically symmetric, piece of con-
ducting material located on top of a flat conducting surface.
We will pick the z axis as the vertical axis of symmetry.
The electric field outside the protrusion is determined by

Laplace’s equation with the following boundary condi-
tions. The potential on the surface of protrusion and on
the surface of the supporting conductor is taken to be zero.
Far above the protrusion, the potential matches that of a
uniform electric field, where Fo ¼ Foẑ represents the time
dependent, normal component of the rf electric field that
would be present if the surface was flat (i.e. no protrusion).
We will solve this problem using a point charge ap-

proach based on the method of images [5]. In this approach
the potential is represented as the sum of the potential
generating the applied field (� ¼ �zFo) and the potential
due to a set of point charges along the z axis located in the
protrusion, and their images located along the z axis in the
conductor below the protrusion. The potential is calculated
as a function of the radial distance from the z axis, � and
the vertical distance from the conducting plane, z. The
charge and its image constitute a dipole. The number of
dipoles in the model is given by the parameter N. We place
the first charge at z1 ¼ ao. The rest of the charges are
placed at steps with sizes decreasing geometrically with
a constant factor r, so that the position of nth charge
becomes zn ¼

P
n
j¼1 r

j�1ao, where 1< n< N. The image

charges are placed at �zn. As a result we obtain the
following formula for the potential:

VNð�; zÞ ¼ Foao

8><
>:�

z

ao
þ ao

XN
j¼1

�jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ðz� zjÞ2

q

� �jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ðzþ zjÞ2

q
9>=
>;: (1)

To determine the relative strength of charges, �n, we
demand that the potential satisfies the following recursion
relation: for each n, n ¼ 1 to N, �n is determined by
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Vnð0; znþ1Þ ¼ 0. For example, if we have the model with a
single dipole , N ¼ 1, to find �1, we demand V1ð0; z2Þ ¼
Foaof�z2=ao þ ao½�1=ðz2 � z1Þ � �1=ðz2 þ z1Þ�g ¼ 0. In
the case N ¼ 2, to find �1 and �2, we solve V1ð0; z2Þ ¼ 0
and V2ð0; z3Þ ¼ 0 sequentially.

An example is shown in Fig. 1 for a particular choice of
these parameters as described in the caption. The thick line
shows the surface of the protrusion (zero potential) and the
thin lines show level curves for other values of the poten-
tial. Only the potential outside the protrusion is of interest
to us. We note that the potential curves outside the protru-
sion, near its tip, are crowded together indicating a strong
enhancement of the electric field near the tip. The maxi-
mum electric field occurs at the tip with a magnitude that is
equal to jrVNj, evaluated at the tip. Most of the electron
emission will occur there. Figure 1 also shows the bound-
ary of protrusions for three different choices of point

charge parameters. For each protrusion, the field enhance-
ment factor �, that is defined as the ratio of geometrically
enhanced electric field at the tip to Fo, is calculated.
Specifically, � ¼ �ðN; rÞ ¼ jF�1

o ð@VN=@zÞj, evaluated at
� ¼ 0 and z ¼ zNþ1. It can be seen that varying these
parameters, potentials can be constructed for protrusions
of differing degrees of pointedness. Finally, we plot in
Fig. 2 the field enhancement factor � for different combi-
nations of the point charge model parameters.

III. EMISSION LAW

The second step in our procedure is to determine the
emitted current density on the surface of the protrusion.
The emission current is a combination of thermal and field
emission, which we take to be described by a general
thermal-field (GTF) emission formula [5].
In this treatment the free electrons in the metal face a

square potential, which may be modified by external fields
and the Schottky effect. One then computes the wave
function in the presence of this potential and calculates
the transmission probability. Given the Fermi-Dirac distri-
bution of electrons, the current can be expressed as an
integral over energy of the product of supply function
and the transmission probability,

JðF; TÞ ¼ q

2�@

Z 1

0
DðEÞfðEÞdE; (2)

where DðEÞ denotes the tunneling or transmission proba-
bility as a function of energy and fðEÞ denotes the electron
supply function as a function of energy. Expressions for
DðEÞ and fðEÞ can be found in Ref. [9]. The resulting
integral in (2) is a function of the local electric field, F, and
the temperature, T, on the surface.
Equation (2) describes electron field emission and

reduces to the Fowler-Nordheim formula in the low tem-
perature limit [4]. In the high temperature low field limit
it describes thermionic emission and reduces to the
Richardson-Laue-Dushman formula [10]. However, there
is a transition region in which both formulas fail to apply.
By using series expansion techniques Murphy and Good
proposed a formula valid for the transition region [9].
(See Coulombe and Meunier for a comparison of the
Murphy-Good formula with its predecessors[11].) Finally
in 2007 Jensen proposed a general thermal-field emission
(GTF) formula for a wide range of temperatures and fields
[12]. Here, instead of employing the analytical expressions
for the GTF current, we resort to numerical evaluation of
Eq. (2). In Fig. 3 we plot the GTF current density obtained
from Eq. (2) at different temperatures for copper, versus
peak electric field at the tip. It should be noted that there is
a bound to the maximum electric field that can be treated in
this model. First, the maximum of the Schottky modified
potential barrier should not drop below the Fermi level. For
example, copper has a work function of 4.5 eV, and the

barrier maximum is � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e3F=ð4��oÞ

p
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FIG. 1. Protrusions constructed with three different values of
N. Increasing N results in sharper tips and thus higher enhance-
ment factors. The three thick lines with different colors describe
the shapes of the following protrusions. Red: r ¼ 0:7, N ¼ 4,
� ¼ 8:0; green: r ¼ 0:7, N ¼ 6, � ¼ 12:4; blue: r ¼ 0:7, N ¼
12; , � ¼ 44:3 Also shown is the contour plot of the electric
potential obtained by using the point charge model for r ¼ 0:7,
N ¼ 12. V ¼ 0 marks the zero equipotential line which con-
stitutes the shape of the protrusion.
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FIG. 2. �, the electric field enhancement factor as a function of
ratio r for three different values of point charge number N.
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vacuum energy [9]. The formula (2) is a good approxima-
tion provided the barrier maximum is above the Fermi
level. This gives a maximum field of around 14 GV=m.
For a background field of 300 MV=m this corresponds to a
field enhancement factor of 47. As an example, for
(ao ¼ 1 �m, r ¼ 0:78, N ¼ 20) we obtain a protrusion
with � � 47. For this protrusion the base radius is
1:59 �m and height is 4:58 �m. Finally, the value of the
electric field at the surface of the protrusion will be modi-
fied (reduced) by the space charge of the emitted electrons.
When extreme electric fields and very high current den-
sities such as those in Fig. 3 are considered, the space
charge effect becomes relevant [13,14]. The creation of a
high density layer of electrons around the emitter tip
reduces the vacuum electric field. The effect of space
charge should be solved consistently, because the space
charge reduced electric field is a function of emission
current, hence ultimately the electric field itself.

In the Appendix we describe a model that we use to
account for this effect. Specifically, we derive a relation
between the electric field at the surface in the absence of
space charge, FV , and the electric field at the surface when
space charge is included, FS. The result of this model is
displayed in Fig. 4 for protrusions at room temperature
with three different radii of curvature of the tip. It can
be seen that the effect of space charge is to limit the field at
the surface, and consequently limit the emitted current
density. To summarize, as previous studies [9,11,15]
already established, the thermionic and field emissions
formulas miscalculate the correct emission from a heated
field enhancing structure. Therefore, we use the general
thermal-field (GTF) emission in this study.

The emission current leads to two mechanisms of heat-
ing, namely, the Joule heating in the bulk of the protrusion
and the Nottingham effect that acts at the surface. The
Nottingham effect is the heating or cooling of an emitting
body due to the flow of electrons through its surface. Each
electron emitted from the conduction band of the metal
surface is replaced by a Fermi level electron. The flow of

electrons brings about a convective heat flux through the
surface. To see the direction of heat flux we look at Eq. (2).
The integrand of (2) is used as a probability distribution
function to calculate the average energy per electron leav-
ing the surface. Equation (3) describes the Nottingham flux
Q, the heat flux escaping through the surface due to the
emitted electrons. If � is the Fermi energy,

QðF; TÞ ¼ 1

2�@

Z 1

0
ðE��ÞDðEÞfðEÞdE ½W=m2�: (3)

The temperature at which the average energy of emitted
electron matches the Fermi energy is called the inversion
temperature, T�. The Nottingham effect causes heating of
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the surface for temperatures below the inversion tempera-
ture and cooling otherwise [15,16]. We use the Nottingham
heat flux as a boundary condition in our solution of the heat
diffusion equation to specify the gradient of temperature
along the surface normal [5].

Figure 5 shows the behavior of the Nottingham flux with
respect to external electric field and temperature. Some
immediate observations are the following. (i) The transi-
tion temperature is above the melting temperature, there-
fore the Nottingham effect is always a heating effect as far
as the solid state is concerned. (ii) The Nottingham flux is
almost constant over the range of temperature below melt-
ing, which means heating is constant over time and no run
away is possible due to the Nottingham effect. (iii) The
Nottingham flux falls sharply as the electric field de-
creases, which means Nottingham effect contributes only
at the tip.

IV. CURRENT DENSITY IN THE PROTRUSION

Inside the protrusion we assume the current density and
electric field are related by Ohm’s Law J ¼ �E, where �
is a spatially uniform electrical conductivity. The condition
that charge density does not accumulate in time, r � J ¼
�@�=@t ¼ 0, then yields a Laplace equation for the elec-
trostatic potential. Here we assume the dimensions of the
protrusion are less than the skin depth. We apply the
following boundary conditions to the assumed azimuthally
symmetric protrusion. The radial current density at the axis
is zero due to symmetry. The electric potential is assumed
to be zero deep in the base supporting the protrusion.
Finally, the normal component of the electric field at the
surface inside the protrusion is determined such that the
normal current density matches the emission current
calculated in Eq. (2).

To solve the Laplace equation we use a finite element
method with triangular elements [17,18]. The triangular

grid is employed so that variations of the potential near the
tip can be resolved accurately and efficiently. The system is
solved and the solution is plotted using MATLAB� [19].
Figure 6 shows the false color images of the square of the
current density inside the metal. The figure indicates that
the Joule heating term is concentrated in the tip area. As an
example, for a protrusion with 1 �m base radius, half
maximum of the heating term occurs at 12 nm below the
tip of the protrusion.

V. TEMPERATURE RISE IN THE PROTRUSION

In the previous section, the current density inside the
metal was obtained. Using this we calculate the volumetric
Joule heating. The temperature rise in the protrusion as a
function of time [�Tðr; z; tÞ] is then obtained by solving the
heat diffusion equation with the volumetric Joule heating
term as a source and the following boundary conditions.
The radial temperature gradient on the axis is zero and the
temperature rise is zero on the bottom of the base. The
boundary condition on the protrusion surface is determined
by the Nottingham heat flux defined in Eq. (3). Specifically,
	@�T=@xn ¼ Q, where 	 is the thermal conductivity. The
thermal conductivity, 	, depends on the relaxation time of
scattering and thus the temperature. However, here 	 is
assumed to be temperature independent. This assumption is
validated both through simulations and another study by
Jensen et al. [20]. The space dependent part of the heat
equation is calculated by using the finite element method.
The resulting ordinary differential equations are solved in
time using MATLAB� ode15s [19].
The temporal variation of the rf electric field comes into

play while solving these equations. Specifically, both the
Joule heating term and the Nottingham heat flux oscillate
periodically in time with a period equal to that of the rf

FIG. 6. jJj2 in ½A=�m2�2 for ao ¼ 1 �m, r ¼ 0:85, N ¼ 21,
Fo ¼ 300 MV=m.
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shown with the dashed line. The dotted lines show the evolution
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cases, respectively, when space charge is neglected.
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signal. The result is that the temporal variation of the
temperature rise, �T, consists of a periodic variation
superimposed on a slow temperature rise due to the average
heating. Figure 7 shows the temperature at the tip of a
protrusion during the last cycle of 100 ns pulse for two
different frequencies, f ¼ 1 GHz and f ¼ 10 GHz. Other
parameters are indicated in the caption, and time is
normalized to the rf period. The temporal pulse envelope
of the rf in this case is a square wave. As a consequence,
the temperature variation during cycle is nearly the same
for all cycles in a pulse. Thus, the maximum tip tempera-
ture is essentially determined during the course of a single
cycle. Also shown in Fig. 7 are the cycle averaged tem-
perature rise, which is the same for both the 1 and 10 GHz
cases, and the temperature rise during the first cycle if
space charge affects are not included in the model. In
this latter case the temperature quickly rises to the melting
temperature Tm ¼ 1357 K. Thus, space charge is an essen-
tial component of the model. The maximum temperature
excursion depends weakly on frequency, with the tempera-
ture rise in the 1 GHz case exceeding that of the 10 GHz
case. The trend with frequency is less dramatic than would
be expected based on dimensional analysis of the one-
dimensional heat equation. Specifically, if Trf is the period
of the rf, one would expect the amount of heat deposited
during a cycle, U to scale as U� Trf for a given rf field
amplitude. In one dimension, the heat will diffuse a dis-

tance proportional to �� T1=2
rf . Thus, the temperature rise,

in one dimension, will scale as U=�� T1=2
rf . The observed

scaling with period is weaker. This is due to the pointed
nature of the tip. As the width of the protrusion increases
with distance from the tip, the volume over which the heat
is spread, �V, increases with penetration depth. We expect
the temperature rise to scale as �T �U=�V, where for a
conical tip �V ��3. Figure 8 shows the spatial distribu-
tion of the temperature rise at the time of the peak excur-
sion in the two cases. For these cases the ratio of
temperature rise is �T1 GHz=�T10 GHz ¼ 1:70. Based on a
conical tip we could expect �T1 GHz=�T10 GHz ¼
10=ð1:7Þ3 � 2:0 which is consistent with the simulation.

To have a better understanding of the role of the
Nottingham flux, we compare the volumetric equivalent
of heating (PN) caused by it, to the volumetric Joule
heating PJ ¼ J2=�. Assuming a semispherical tip of ra-
dius rT , integrating the heat flux over the surface and
dividing by the volume of the tip we find an equivalent
volumetric heating rate SN ¼ 3Q=rT . As seen in Fig. 5,
Q � 30 W=�m2, for an enhancement factor of � � 44
and background field of Fo ¼ 300 MV=m. Assuming a tip
radius of 100 nm, we find 3Q=rT � 900 W=�m3. We now
take the ratio of the two volumetric heat sources: PN=PJ �
3�Q=rTJ

2. For the same value of � background field and
tip radius, we find PJ ¼ J2=� � 13:5 W=�m3 giving
PN=PJ � 66:6. This ratio decreases as temperature or
electric field on the tip increases. When the range of our
data is concerned, its minimum value is approximately 52.
This implies that Nottingham heating dominates Joule
heating at the tip. The dominance of Nottingham heating
over the Joule heating was shown before also by Ancona in
the treatment of thermal failure of field emitter tips [5,7].
The above order of magnitude calculation was validated by
comparing the temperature at the tip with and without
Joule heating; the difference is less than 0.5%.
Figure 9 summarizes the dependence of the maximum

change in tip temperature on various parameters, such as
protrusion size, field enhancement factor, and rf frequency.
Notice that, although the emission law is independent of rf
frequency, high frequency causes less heat accumulation
and hence lower swings of tip temperature. Similarly, the
quantity ao that determines the protrusion size as seen in
Eq. (1) does not affect emission and the vacuum electric
fields. However, it affects the tip temperature by modifying
the space charge behavior.

VI. CONCLUSIONS

In this study we have performed extensive numerical
simulations of electrical and thermal behavior of field
emission on metal protrusions, which are believed to be a
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source of dark current and a cause of breakdown in high-
gradient accelerating structures. After unifying the thermal
and field emission in the same numerical framework, we
calculated the Nottingham and Joule heating terms and
solved the heat equation to characterize the thermal evo-
lution of emitters under rf electric field. Noteworthy con-
clusions can be listed as follows: (i) The contribution of
Joule heating is negligible compared with the contribution
of the Nottingham effect. The Nottingham heating effect is
approximately independent of temperature in the region of
interest. (ii) The largest temperature rise occurs at the tip of
the protrusion. The temperature excursion is nearly peri-
odic in times, with period given by the rf. The peak
temperature rise is several times the average rise, and the
peak rise is relatively insensitive to rf period. Increasing
the period from 0.1 nsec (10 GHz) to 1.0 nsec (1 GHz)
results in a factor 1.7 increase in the tip temperature.
(iii) For the tips considered there is a strong space charge
suppression of the emitted current. This reduces the like-
lihood of tip melting. Specifically, we find that for protru-
sions with base radii ao > 10 nm the electric field at the tip
FS must exceed 12 GV=m for a copper tip to melt during
the 1.0 nsec period of an rf cycle. As seen from Fig. 4 this
level of field is reached only when the vacuum field at the
tip satisfied FV > 15 GV=m. For an rf field Fo ¼
300 MV=m this requires an enhancement factor � � 50.
In the absence of the space charge suppression of current
the tips considered here, FV ¼ 14 GV=m, would melt in a
single rf cycle. (iv) The emitted current increases with base
dimension ao. Figure 10 suggests hIirf � a1:6o , and current
density J � a�0:4

o consistent with our space charge model
of the Appendix. (v) Temperature rise increases with base
radius with a scaling obtained from Fig. 9 estimated to be
�T � a0:9o .

The importance of space charge in suppressing current
and heating raises questions not addressed in the present
study. Specifically, will gas emission, ionization, plasma
production, and ion bombardment of the tip modify our
results? Effects leading to plasma creation could lead
to charge neutralization and increase the current to the

protrusion. Back bombardment by ions could also increase
the tip temperature. Finally, we note that microscopic
processes modifying the surface of a tip even before it
melts have not been considered in our studies and are an
important topic for future study.
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APPENDIX: THE SPACE CHARGE EFFECT

In this study we use a modified version of the Child-
Langmuir Law to account for electron space charge. The
Child-Langmuir Law describes the steady current that
flows from a planar cathode plate to a planar anode a
distance xD from the cathode at fixed potential Va when
emission is space charge limited. The model includes the
Poisson equation for the electrostatic potential UðxÞ:

d2

dx2
UðxÞ ¼ jJj

�0vðxÞ ¼ 
jJjU�1=2; (A1)

along with boundary condition Uðx ¼ 0Þ ¼ 0 and
UðxDÞ ¼ UD, where, J is the current density emitted
from the surface of the cathode and vðxÞ is the velocity
of electrons at point x. Energy conservation dictates

vðxÞ ¼ ½2eUðxÞ=m�1=2, where e is the fundamental charge

and m the electron mass. Introducing the constant 
 ¼
½m=ð2eÞ�1=2=�o leads to the second equality in (A1). In the
space charge limited case the value of current density is
determined by the condition dU=dxjx¼0. To incorporate
emission one can use a relation of the form of (2) where we
set J ¼ JðFS ¼ dU=dxj0; TÞ.
Barbour et al. have done this by using the Fowler-

Nordheim emission and Child’s equation together and
provided a comparison with experiment [13]. For a histori-
cal review and a general mathematical formulation, the
reader is encouraged to read the recent article by Forbes
[21]. Numerical approaches are also employed to solve
equilibrium equations for space charge limited flow for
sharp edges and conical points of emitters [22].
In our case, we have to address two issues to incorporate

space charge in our model. First, we have a 3D emitter with
nontrivial geometry, and second, there is no well defined
anode that fixes the domain and boundary condition as in
(A1). We address these as follows: Noting that the protru-
sion emits most of the current from the tip, we will ignore
the emission from the rest of the protrusion. Moreover, for
a highly curved tip, the electron current will spread radially
as it flows away from the tip. Consequently, the electron
density will drop rapidly with distance along the vertical
axis of the protrusion away from the tip. Hence, the tip
radius will serve as a scale with which we measure the
region where the space charge is assumed to affect the
emission. We will, thus, assume that one tip radius away
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from the tip, the electric field reaches its vacuum value.
This will serve as a boundary condition on the electric
field, in the one-dimensional equation. The separation
distance xD is now equal to the tip radius rT .

In summary we solve Eq. (A1) with the boundary
conditions

Uð0Þ ¼ 0; (A2a)

@xUjxD � FV; (A2b)

where FV is the vacuum field, and we define

FS ¼ dU=dxj0: (A2c)

The emission law is used to determine jJj ¼ JðFS; TÞ.
The solution of (A1) is standard. Writing dðdU=dxÞ2 ¼
2
JU�1=2dU and integrating, one finds dU=dx ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
JU1=2 þ F2

S

q
. Integration from x ¼ 0 [where

Uð0Þ ¼ 0] to x ¼ rT (where dU=dx ¼ FV) yields

12
2J2rT ¼ ðF3
V � F3

SÞ � 3F2
SðFV � FSÞ; (A3)

which can be viewed as a transcendental equation for the
field on the emitter (FS) once the emission law JðF; TÞ is
prescribed. The right-hand side of (A3) is a monotonically
decreasing function of FS and the left-hand side is a
monotonically increasing function of FS. Thus, we can
expect a single solution satisfying 0< FS < FV . A solu-
tion of the transcendental equation for three different
tip radii rT and the generalized emission law, Eq. (2),
at room temperature is shown in Fig. 4. We note in
the limit in which the emission current is large such that
FS � FV , we recover a form of the Child-Langmuir law,

J ¼ F3=2
V =
ð12rTÞ1=2.
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