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A 1D nonlinear theory of a free electron laser (FEL) with a helical wiggler and an axial guide

magnetic field is developed based on averaged equations of the electron motion. By averaging we

separated two different cases of the e-beam/rf-wave interaction. The first one corresponds to the

traditional wiggler synchronism (resonance) of rf wave with the electrons moving along stationary

helical trajectories. The second one corresponds to combination resonances distinguishing by excitation

of oscillation of the electrons near the stationary helical trajectory. Comparative analysis of the FEL

operation in different regimes has been studied under the traditional wiggler synchronism condition. It

was shown that FELs operated far from cyclotron resonance (including a reversed guide field orientation)

possess low sensitivity to the initial velocity spread in the driving beam resulting in high electron

efficiency. In contrast, under the weak guide field (the gyrofrequency is less than the bounce frequency)

of a conventional orientation, the FEL efficiency is restricted by a significant increase in the transverse

velocity of the electrons during the interaction with the rf wave that results in violation of the

synchronism conditions and is accompanied by electron current losses. An additional mechanism of

FEL efficiency enhancement under the conventional guide field orientation in the conditions when the

gyrofrequency is higher than the bounce frequency, based on the dependence of the effective mass of the

oscillating electrons on their energy, was demonstrated. Results of the theoretical analysis are compared

with the results of experimental studies of FEL oscillators. The specific features of energy extraction

from the electron beam under condition of an abnormal Doppler effect in the case of the combination

resonance are described. This regime is beneficial to increase radiation frequency keeping wiggler period

and electron energies.
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I. INTRODUCTION

Free electron lasers (FELs) with a guide magnetic
field are well established sources of powerful pulsed radia-
tion of millimeter and submillimeter wavelengths bands.
Experimental studies of such devices [1–12] have demon-
strated effective operation with multimegawatt power level
at millimeter wavelengths under high Doppler frequency
up-shift.

In development of previous experimental results several
successful experiments have been carried out recently ex-
ploiting different configurations of electron beams and
wiggler fields [13–18]. In [13,14] FEL based on planar
wiggler and driven by a large-size sheet electron beam
was studied. In this experiment a two-dimensional (2D)
distributed feedback realized by 2D Bragg resonators
has been used for spatial synchronization of the radiation.
In [14–16], a novel feedback mechanism has been
applied to the coaxial scheme of FEL with magnetically

guided tubular electron beam and axial symmetric
wiggler.
A more traditional FEL scheme driven by a pencil-like

electron beam oscillating in a helical wiggler and an axial
guide magnetic field has been realized in [17,18] based on
linear induction accelerator LIU-3000 (JINR, Dubna,
Russia). This FEL operates at Ka band with output power
at the level of �20–30 MW and high electron efficiency
(up to 25%–30%). Narrow spectrum width and stability of
the single-mode generation regime allow application of
this device for testing high-gradient accelerating structures
[19]. In accordance with previous experimental studies
[1–12], it was observed that performance of FELs of the
mentioned type has strong dependence on strength and
orientation of the guide magnetic field. In particular, elec-
tron efficiency both for amplifier [6,7] and oscillator
[17,18] schemes in regimes with a reversed guide magnetic
field remarkably exceeds efficiency in the case of a con-
ventional guide field orientation.
The high potential of the FEL with a guide magnetic

field encouraged rather intensive theoretical studies during
the past three decades [20–31]. The operating regime in
this type of a FEL is determined by the ratio between the
bounce frequency �b ¼ 2�vk=dw of the forced particles

oscillation in the helical wiggler field (dw is a wiggler
period and vk ¼ �kc is the particles axial velocity) and
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the gyrofrequency!H ¼ eH0=�mc of its eigenoscillations
in the uniform axial magnetic field H0 as well as by the
conditions required to pump transverse oscillations in the
tapered wiggler section. Obviously, for an effective energy
extraction from the electron beam, one needs to provide a
particle motion with relatively constant axial velocity dur-
ing the rf interaction. It may be achieved when an adiabati-
cally tapered entrance for wiggler field is used. The
adiabatic condition for the length of the wiggler entrance
lin has the form ��������ð!H ��bÞ linvk

��������� 2�: (1)

It should be noted that an adiabatic wiggler field entrance is
optimal for intense relativistic electron beam transporta-
tion and utilized in the majority of FEL experiments with a
guide magnetic field [1–19]. Under this condition in the
tapered wiggler section the forced oscillations on the
bounce frequency (bounce oscillations) are mainly excited
in the electron beam with minimal admixture of ‘‘para-
sitic’’ eigenoscillations on the gyrofrequency. As a result,
in the regular wiggler section, where the wiggler field
amplitude becomes constant, the electrons move along
stationary helical trajectories with a constant axial velocity
or oscillate around this trajectory with the frequency �
given by Eqs. (14) and (15) (see below). In this region the
electrons are able to generate the rf wave of the frequency
! and the longitudinal wave number h under the traditional
wiggler resonance,

!� hvk � �b; (2)

which were observed in all mentioned experiments and
studied in the most previous theoretical works [2,20–27].
At the same time the generation under the additional
combination resonances

!� hvk � �b �� (3)

is also possible [28,29]. The radiation under condition (3)
is accompanied by excitation of the small oscillations of
electrons at the frequency � in the vicinity of the equilib-
rium stationary helical trajectories that is typical for an
abnormal Doppler effect [32].

The present paper is devoted to the nonlinear theory of
FELs with a guide magnetic field. Comprehensive analysis
of the electron trajectories in the combined wiggler and
axial guide magnetic field in the frame of both 1D and 3D
models was carried out in [22–27]. Based on such trajec-
tory analysis we extended this theory to describe the non-
linear stage of the interaction. We should emphasis that
such an approach to derivation of the average motion
equations, which is used in our paper, is originated from
the theory of cyclotron resonance masers [33,34]. The
averaged equations in the presence of the rf wave are
obtained under the assumption that nonperturbed motion
of electrons in the wiggler field takes place along stationary

helical trajectories or near such a trajectory. The method of
variation of arbitrary constants in equations which describe
helical trajectory under the action of rf field is used. As a
result, the consistent 1D nonlinear theory of FEL with
guide magnetic field has been developed and averaged
nonlinear equations for the electron-wave interaction
under resonance conditions (2) and (3) have been obtained.
We should note that previous theoretical investigations of
the nonlinear dynamics of this type of an FEL are per-
formed mainly by using a computer simulation of the full
(nonaverage) equations of the electron-wave interaction or
based on some simplified physical consideration (assump-
tion of relatively small changes of electron energies, large
detuning from the cyclotron resonance, etc.). In our paper
we propose a more regular and universal method for deri-
vation of the full motion equations that can be valid, in
particular, not only for regimes with small changes of
electron energies but in the regimes with high electron
efficiency as well. The proposed average approach makes
it possible to describe specific features of the rf interaction
for different FEL operating regimes and to explain some
experimental facts.
This paper is organized as follows. The motion of a

magnetically guided electron beam in the tapered helical
wiggler section is discussed in Sec. II. In Sec. III the
proposed averaged approach to FEL’s equations is de-
scribed. In Sec. IV linear and nonlinear stages of the rf
interaction under the conditions of the wiggler resonance
(2) are studied for the different regimes of FEL operation
determined by the ratio between the bounce frequency and
gyrofrequency of the electrons. Results of the theoretical
analysis are compared with the data of the linac driven
FEL-oscillator experiments [17–19]. For combination
resonances (3) the specific features of energy extraction
from the electron beam under the condition of an abnormal
Doppler effect are described in Sec. V. The possibility to
advance the FEL into short-mm wavelengths exploiting
combination resonance (3) is discussed. In the Appendix
some details of the averaging procedure are presented.

II. ELECTRONS MOTION IN THE PUMPING
WIGGLER SECTION

Let us consider a thin pencil-like electron beam moving
near the axis of a helical wiggler where the magnetic field
is circularly polarized and may be presented as

~H w ¼ HwðzÞ½ ~x0 cosðhwzÞ þ ~y0 sinðhwzÞ�; (4)

where hw ¼ 2�=dw and HwðzÞ is amplitude of the wiggler
field, which is smoothly varying along the axial z coordi-
nate to describe tapering of the field at the wiggler en-
trance. We assume that the radius of the transverse
oscillations of the electrons rb ¼ v?=�b is relatively
small:
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hwrb ¼ �?
�jj

� 1 (5)

(v? ¼ �?c is the particles transverse velocity). In this case
we can neglect the transverse inhomogeneity of the wiggler
field and adopt the 1D model for the electron trajectories
(compare with [27]). Motion of the beam electrons in the
wiggler field (4) and a homogeneous axial guide magnetic

field ~H0 ¼ H0 ~z0 is described by the equations

dpþ
dZ

� if
pþ
pjj

¼�i�we
iZ;

dpjj
dZ

¼Re

�
i
pþ
pjj

�we
iZ

�
; (6)

where the dimensionless variables are used:Z ¼ hwz,pþ ¼
ðpx þ ipyÞ=mc, pjj ¼ pz=mc, px;y;z are the Cartesian com-

ponents of the electrons momentum, �w ¼ eHw=hwmc2

and f ¼ !H0=hwc, !H0 ¼ eH0=mc is nonrelativistic
gyrofrequency.

Taking into account the conservation of a particle kinetic
energy in a magnetic field,

E ¼ �mc2 ¼ mc2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

k þ jpþj2
q

¼ const;

and representing the solution of (6) in the form pþ ¼
ðp1 þ ip2ÞeiZ, where p1;2 are real, we get the following

system of equations:

dp1

dZ
¼ p2

0
@1� fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � 1� p2
1 � p2

2

q
1
A;

dp2

dZ
¼ ��w � p1

0
@1� fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � 1� p2
1 � p2

2

q
1
A: (7)

Equation (7) can also be presented in the canonical form,

dp1

dZ
¼ � @H

@p2

;
dp2

dZ
¼ @H

@p1

; (8)

with the Hamiltonian

H ¼ ��wp1 � p2
1 þ p2

2

2
� f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1� p2

1 � p2
2

q
: (9)

In the regular wiggler section, where the wiggler field
amplitude is constant �w ¼ const, the equation H ¼
const determines the particle orbits on the phase plane
ðp1;p2Þ (see Fig. 1). Equilibrium state p1;2�,

p1�

0
@1� fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � 1� p2
1�

q
1
A ¼ ��w; p2� ¼ 0; (10)

corresponds to the electron motion in the wiggler along the
steady-state helical trajectory.

The dependence of the transverse momentum at the
steady-state trajectory p?� 	 p1� on the magnitude of
the axial magnetic field f is given in Fig. 2. For the strong
axial magnetic fields f > fcr (i.e. when the gyrofrequency

!H exceeds the bounce frequency �b), the electrons have
only one equilibrium state [see Fig. 1(a)] while for weak
axial magnetic fields f < fcr (i.e. !H <�b) there exist
three equilibrium states. The bifurcation value of the axial
magnetic field
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FIG. 1. The electron orbits on the phase plane ðp1; p2Þ at the
different strengths of guide magnetic field: (a) f > fcr and
(b) f < fcr (� ¼ 5, �w ¼ 0:1).
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FIG. 2. The absolute value of electron transverse momentum
p?� at the equilibrium helical trajectory as a function of guide
magnetic field strength f (� ¼ 5, �w ¼ 0:1).
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fcr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

q 0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
w

�2 � 1

3

s 1
A3

2

(11)

can be found from (10) under the condition df=dp1� ¼ 0.
To determine stability of the equilibrium states (10), let

us introduce the minor perturbations �1;2 as

p1 ¼ p1� þ �1; p2 ¼ �2; (12)

and assuming �1;2 � p?� linearize Eq. (7):

d�1

dZ
¼ �2

�
1� f

pjj�

�
;

d�2

dZ
¼ ��1

�
1� f

pjj�
� fp2

?�
p3
jj�

�
;

(13)

where pjj� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1� p2

?�
q

is the axial momentum at the

steady-state trajectory. Equation (13) is of a harmonic
oscillator with the oscillation frequency:

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1� f

pjj�

��
1� f

pjj�
� fp2

?�
p3
jj�

�s
: (14)

According to relations (10) and (14), stable equilibrium
states (centers, �2 > 0) belong to curves I and II in Fig. 2
(following [27] we will refer to these equilibrium states as
groups of stationary orbits I and II), while unstable saddles
(�2 < 0) take place on curve III (compare with Fig. 1).

Thus, Eq. (14) defines the frequency of electron oscil-
lation around the helical stationary trajectory,

� ¼ hwvjj�: (15)

In the case when the gyrofrequency and bounce frequency
are sufficiently shifted apart from each other and when the
wiggler field amplitude is small as

�2
wf

j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p � fj3 � 1; (16)

the relation (14) may be reduced to

� ¼
��������1� fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � 1
p ��������

0
@1� �2

wf

2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p � fÞ3

1
A: (17)

In the dimension term it means that the frequency of
electron oscillation around the helical stationary trajectory
is in fact the beat frequency between the gyro-oscillation
and bounce oscillation:

� � j�b �!Hj: (18)

Let us now consider the process of pumping the trans-
verse oscillations for the electrons in a smoothly up-
tapered wiggler section. If the condition of adiabaticity is
fulfilled, i.e. ���������

�w

d�w

dZ

��������� 1;

where � ¼ 2�=� is the period of electron oscillations in
the phase plane, then the area embraced by the electron
phase trajectory is preserved:

J ¼
I

p1dp2 ¼ const: (19)

We assume that at the wiggler entrance z ¼ 0, where the
wiggler field tends to zero, the electrons move along the
wiggler axis, i.e., in the variables used they are in the
equilibrium state (p1� ¼ 0; p2� ¼ 0) and J ¼ 0. Then,
with the increase in the wiggler field amplitude �w due
to the adiabatical invariant preservation (19), the electrons
stay in the equilibrium state, which shifts along the ordi-
nate (i.e. along the p1 axis) in the plane ðp1;p2Þ. This
corresponds to the excitation of the electron oscillation at

the bounce frequency. For a strong axial magnetic field f >ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p
(i.e. f > fcr at �w ¼ 0) when there is a single

equilibrium state II positioned on the positive semiaxis
p1� > 0 [Fig. 1(a)], the above process of pumping the
bounce oscillations takes place up to any value of �w. In

contrast, for a weak magnetic field f <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p
bounce

oscillations are also excited for the electrons with the
growth of �w but only at the initial stage. In this case, on
the phase plane the electrons are in the equilibrium state I
which are positioned on the negative semiaxis p1� < 0
[Fig. 1(b)]. However, increase in the wiggler field results
in decrease of the parameter fcr [see formula (11)] and,
finally, when the wiggler field reaches the critical value,

�cr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2ð�2 � 1Þ23

qr 0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

�2 � 1
3

s 1
A; (20)

the condition f ¼ fcr is met. At this point the bifurcation
resulting in the confluence of the center and the saddle
takes place on the phase plane. As a result, the condition of
adiabaticity is broken because the period of particles mo-
tion � in the vicinity of the separatrix tends to infinity.
With the further increase in the wiggler field, when �w

becomes higher than the critical value given by (20), both
the center and the saddle vanish and the phase plane
becomes identical to that shown in Fig. 1(a). In this region
of �w on the phase plane, the electrons move along the
trajectory embracing the area on the phase plane equal to
that under the separatrix at the point of bifurcation. The
motion of the electrons in real space becomes biperiodical
with variable axial velocity and represents a combination
of bounce oscillation and gyro-oscillation.1

If the electrons possess cyclotron oscillations before
they entered the wiggler (i.e. possess nonzero initial pitch
angle at the wiggler entrance) p1;2ðz ¼ 0Þ � 0, then these

1When the wiggler field would be spatially switched off, the
electrons acquire only the cyclotron oscillations. Using the
described mechanism, the method of a high-quality helical
electron beam formation for the cyclotron autoresonance masers
(CARMs) can be realized.
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oscillations will be preserved during the motion within the
wiggler as well. On the phase plane it corresponds to small
particle oscillations near the equilibrium state. The ampli-
tude of these oscillations can be found using the condition
of preservation of the phase area at the initial (z ¼ 0) and
final (z ¼ lin) stages.

Nonadiabaticity of the wiggler field tapering can be con-
sidered as another possible reason for cyclotron oscillation
excitation near the equilibrium states. To prevent excitation
of parasitic cyclotron oscillations, the length of the tapered
wiggler section should be increased when !H and �b

approach one another [as it follows from condition (1)].
Figures 3 and 4 give the results of numerical simulation

of Eq. (7) for particle motions in the tapered wiggler section

which agree well with the results of the above analytical
consideration. Figure 3 shows the electron transverse ve-
locity pumped in the wiggler �? ¼ v?=c ¼ p?=� (where

p? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ p2

2

q
is the dimensionless electrons transverse

momentum) versus the axial coordinate z for the fixed
length of tapered section lin and different correlation
!H=�b (i.e. f=fcr) and amplitude of the wiggler field
�w, which provide the samevalue of the transverse velocity.
At the fixed lin amplitude of the parasitic cyclotron oscil-
lations is increased when the gyrofrequency approaches
the cyclotron resonance value !res

H � �b (see Fig. 3).
Obviously, to improve quality of the helical electron
beam formation (i.e. decrease the value of the parasitic
cyclotron oscillations) one has to shift apart from the cy-
clotron resonance to the high ‘‘positive’’ axial magnetic
fields or to the ‘‘negative’’ axial magnetic fields in Fig. 2.
The first case corresponds to a conventional guide field
orientation and the second case is a so-called reversed guide
field regime [6,7]. In the last regime (marked by the ‘‘�’’
sign here and further), the rotation of the electrons in the
helical wiggler field is opposite to the cyclotron rotation in
the guide field. Curve 1 in Fig. 3 corresponds to this regime,
and we see that amplitude of parasitic oscillation is negli-
gibly small. For conventional orientation to provide the
same suppression of parasitic oscillation, the absolute value
of the magnetic field should be in several times higher.
For a fixed ratio !H=�b suppression of the parasitic

cyclotron oscillations can be achieved by increasing the
length of the tapered wiggler section. For the guide mag-
netic field, which is not too close to the cyclotron reso-
nance, a 5–7 period tapering of the wiggler is sufficient for
the parasitic cyclotron oscillations to be less than 10% of
the bounce oscillations (��cycl=�?� 
 0:1).

It is known that the main factor decreasing the FEL
efficiency is a spread in the parameters of the driving
beams. Usually in high-power microwave generators the
electrons are injected from the equipotential cathode and
the energy spread in such a beam is relatively small. The
so-called initial position spread caused by finite width
(diameter) of the beam may be prevented by using the
wigglers with the improved homogeneous transverse struc-
ture [35]. Suppression of the initial velocity spread, which
for the intensive relativistic electron beams can be esti-
mated as ��jj0=�jj0 � 1%–5%, seems to be a more com-

plicated problem in experimental realization of powerful
millimeter generators.
Influence of the initial velocity spread on the quality of

the electron beam pumped in a tapered wiggler section for
different operating regimes (different ratio !H=�b) is
shown in Fig. 4. Different curves in Fig. 4 correspond to
the trajectories of electrons having the same energies and
longitudinal velocities but different azimuthal angles to the
axis at the wiggler entrance. It is evident from Fig. 4(a) that
in the regimes far from the cyclotron resonance these
electrons in the regular wiggler section oscillate around a
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0.3 β T

z /dw

1
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3
4

FIG. 3. Trajectory of electrons �?ðzÞ in the wiggler with up-
tapered entrance for different guide field strength f:
(1) f=fcr ¼ �0:4, �w ¼ 1:0; (2) f=fcr ¼ 0:4, �w ¼ 0:4;
(3) f=fcr ¼ 0:65, �w ¼ 0:25; (4) f=fcr ¼ 0:85, �w ¼ 0:15
(� ¼ 3, lin=d ¼ 5).
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FIG. 4. Trajectory of electrons �?ðzÞ having the same absolute
value of initial transverse velocity but different azimuthal angles
to the axis at the wiggler entrance (� ¼ 3, lin=d ¼ 5):
(a) f=fcr ¼ �0:4, �w ¼ 1:0 and (b) f=fcr ¼ 0:65, �w ¼ 0:25.
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stationary helical trajectory [given by (10)] in accordance
with the analytical consideration of particle motion in the
phase plane described above. Particles with different initial
azimuthal angles possess only different phases of the
oscillations. Amplitude of these oscillations is equal to
the initial parasitic transverse velocity �?par at the wiggler

entrance [Fig. 4(a)]. It is important to emphasize that
in the regular wiggler section all the particles possess
approximately equal average (over the beating period
!H ��b) transverse and, hence, longitudinal velocities.
As a result, during the interaction with the rf wave in the
regular wiggler section the resonance condition (2) is
practically the same [with accuracy �2

?par, compare with

formulas (36)–(38) further] for all the beam fractions and,
obviously, the same conditions for energy extraction. The
analysis of the e-beam/rf wave interaction described below
confirms the low sensitivity to initial velocity spread in the
regimes far from the cyclotron resonance.

In the regimes closer to the cyclotron resonance for a
fixed length of the tapered section, the amplitude of the
particle oscillations around the helical trajectory increases
[Fig. 4(b)]. Simultaneously, the period of the beating of the
gyro-oscillation and bounce oscillation is also increased.
Both these factors result in an increase in the difference
of the average value of transverse and longitudinal veloc-
ities for different electrons. This leads to different interac-
tion conditions (2) for different beam fractions and a
decrease in the efficiency of energy extraction during the
rf interaction.

III. AVERAGE APPROACH TO
ELECTRON-WAVE INTERACTION

Let us consider here the interaction between the
beam electrons and the rf field of a high-Q cavity posi-
tioned within the regular wiggler section. We suppose
that synchronous with the electrons component of the rf
field in a cavity has a structure of a plane circularly
polarized wave and can be presented by the vector
potential

Aþ ¼ Ax þ iAy ¼ AsðzÞei!t�ihz: (21)

The motion of electrons in the wiggler field (4) and the rf
wave (21) in the presence of the axial guide magnetic field
can be described by the following equations:

dp1

dZ
¼p2

�
1� f

pjj

�
�
�
�

pk
�1

�
Im½�se

i��;
dp2

dZ
¼��w�p1

�
1� f

pjj

�
þ
�
�

pk
�1

�
Re½�se

i��;
d�

dZ
¼ 1

pjj
Re½ðip1þp2Þ�se

i��;
d�

dZ
¼g

�
�

pjj
�1

�
�1;

(22)

where � ¼ !t� hz� hwz is the electron phase with
respect to the synchronous wave, h ¼ !=c, �s¼ehAs=

hwmc2 is the dimensionless signal amplitude, pjj¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�1�p2

1�p2
2

q
and g¼!=hwc is the Doppler frequency

up-conversion factor. Under resonance condition (2) this
factor is estimated as

g � 2

��2 þ �2
?=�

2
jj
� 1:

The FEL studies are basically concentrated on a descrip-
tion of regimes with high frequency up-conversion g � �2.
Obviously, in this case the electron transverse velocity
should be restricted by the condition

�? 
 ��1 (23)

that leads to fulfillment of criterion (5) and justifies ex-
ploiting of the 1D model.
Boundary conditions to Eq. (22) for a monoenergetic

electron beam, which is unmodulated at the entrance of the
interaction space Z ¼ Z0, have the form

p1ðZ ¼ Z0Þ ¼ p10; p2ðZ0Þ ¼ p20;

�ðZ0Þ ¼ �0; �ðZ0Þ ¼ �0 2 ½0; 2�Þ:
(24)

The electron efficiency is given by the relation

� ¼ 1

2�

Z Z

Z0

�0 � �

�0 � 1
d�0: (25)

Let us assume that at the entrance of the interaction
space the electrons move along the steady-state helical
trajectory (10) or near this trajectory and the signal wave
amplitude is so

�s

�0�0
� 1; (26)

that the change in electron energy during the period 2�=�
is relatively small. In such an approximation it is appro-
priate to introduce the current (depending on the electron
energy) equilibrium state p?�ð�Þ which is determined by
relation (10), and represent the transverse momentum as

p1 ¼ p?�ð�Þ þ �1; p2 ¼ �2; (27)

where �1;2 describe small oscillations of the electrons

around the steady-state trajectory (10).
Approximation (27) allows expansion of the right sides

of Eq. (22) over j�1;2j � jp?�j. This approach is described
in the Appendix. The analysis carried out demonstrated
that the reduced equations depend on the electron phases �
and � ¼ R

Z
Z0
�dZ in synchronous wave and wiggler field.

As a result, we can average these formulas in the condi-
tions of the resonances (2) or (3) (see Appendix for details)
and get the simplified equations which describe electron-
wave interactions under these resonances.
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IV. WIGGLER RESONANCE BETWEEN THE
ELECTRONS AND THE RF WAVE

Under the condition of the wiggler resonance (2) the
average motion equation (A8) may be presented as

d�

dZ
¼ ��sp?�

pjj�
sin�; (28a)

d�

dZ
¼ g

�
�

pjj�
� 1

�
� 1þ �s�p?�

p3
jj�R�

cos�

þ g�

2p2
jj�p?�

jCþ0j2p?0

pjj0
(28b)

(the sign of averaging ‘‘�’’ is omitted here and further).
From Eq. (A10), one can see that if before entering the

interaction space the electrons in the regular wiggler section
move along the equilibrium helical trajectory Cþ0 ¼ 0 then
CþðZÞ 	 0. It means that under the traditional wiggler
resonance (2) during the process of the interaction with the
signal wave electrons stay in equilibrium trajectory; how-
ever parameters of this trajectory are altered in accordance
with the change in the electron energy �. As a result, for the
electronsmoving along the steady-state trajectory (Cþ 	 0)
the averaged equations of the electronmotion are reduced to
two equations (28), which may be presented in a canonical
form:

d�

dZ
¼ �@H

@�
;

d�

dZ
¼ @H

@�
(29)

with the Hamiltonian

H ¼
Z �

�0

�
g

�
�

pk�
� 1

�
� 1

�
d�� �sp?�

pk�
cos�

¼ g

�
pk� � �þ p?�

�
1

pk�
� 1

2f

��
� �� �sp?�

pk�
cos�:

The dependencies of p?�ð�Þ, pjj�ð�Þ, and �ð�Þ in

Eqs. (28) and (29) are assigned implicitly through the rela-
tions (10) and (14). When gyrofrequency and bounce fre-
quency are sufficiently different and when the transverse
momentumof the electrons in thewiggler is small compared
to the axialmomentum [i.e. condition (16) is satisfied], these
dependencies may be presented in the explicit form:

p?��� �w

1�!H0=��b

; pjj� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�1

q
; ��1�!H0

��b

:

(30)

Under these simplification Eq. (28) can be reduced to the
form

d�

dZ
¼ �s�wffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2�1
p ð1�!H0=��bÞ

sin�;

d�

dZ
¼�g�1þ g�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2�1
p þ g��2

w�2�s�w�cos�

2ð�2�1Þ3=2ð1�!H0=��bÞ
:

(31)

In this form the motion equations for a FEL with a guide
magnetic field can be obtained within the framework of the
averaged approach based on the ponderomotive force for
magnetically guided electrons in thewiggler and rf fields [29].

A. Small-signal approximation

In the small-signal regime �s ! 0 the equations (28) for
the electrons moving along the steady-state trajectory
(Cþ	0) may be solved using the method of consecutive
approximations. Following this method in the first approxi-
mation (whichdoes not vanishunder averagingover the initial
electron phases and proportional to�2

s), we get the following
expression for the efficiency of the small-signal regime:

�s:s: ¼ �2
sL

2

1� ��1
0

�;

� ¼
�
Lg	0

p2
?0

8�2
0p

2
jj0

d

d�

�
sin�

�

�
2 � �wp?0

2p4
jj0�

2
0

�
sin�

�

�
2
�
;

(32)

where�¼�L is the transient angle, �¼gð�0=pjj0�1Þ�1
is the initialmismatch from thewiggler resonance,L ¼ hwl, l
is the length of the interaction space.
For a FEL with high-Q resonator the power balance

condition in a stationary regime of oscillations is valid:

!W

Q
¼ I�

mc2

e
ð�0 � 1Þ; (33)

whereW is the energy stored in the resonator of the quality
Q. In the small-signal regime substituting expression (32)
in Eq. (33) we find the starting current of the oscillations,

Istart ¼ mc3

e

S

2�0
lQ�
: (34)

Note that to get Eq. (34) we supposed the rf wave inside the
resonator of length l and the cross section S as a standing
wave having transverse homogeneous profile. It is impor-
tant to note that expression (32) is identical to the one
obtained in [28] in linear approximation directly from
Eq. (22) under the assumption of the wiggler resonance (2).
The first term in the expression for� in (32) describes the

e-beam/rf-wave energy exchange under the inertial bunch-
ing caused by the dependence of the longitudinal velocity of
electrons vjj� ¼ c�jj� on their energy �. This term is pro-

portional to the inertial bunching parameter [2,21],

	 ¼ ��
d��1

jj�
d�

¼ ��
d

d�

�

pjj�
¼ ��wð�w � p3

?�Þ
p2
?�p

3
jj��

2
: (35)

This parameter is inversely proportional to the effective
longitudinal mass of the electron oscillators Mk ¼
dE=dpk� ¼ mc2=	�2

k�. Note that in [22–27] a similar pa-

rameter is called the magnetic coupling parameter.
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The second term for parameter � in (32) is responsible
for an e-beam/rf-wave interaction caused by a so-called
force bunching. This bunching mechanism associated with
the dependencies of p?�ð�Þ, pjj�ð�Þ in Eq. (28a) for elec-

trons energy and the term proportional to �s in Eq. (28b)
for electrons phase. Note that both mechanisms give equal
contribution to the second term in the expression for � in
Eq. (32). The force bunching leads to the absorption of
energy by the electrons from the rf wave for a group of
stationary orbits II (where p?0 > 0) and conversely to
the generation of radiation for the group I orbits (where
p?0 < 0). Within the framework of the averaged equations
(28) this is explained by the fact that for the stationary
orbits I during the rf interaction the pitch factor p?�=pjj� of
the decelerating electrons increased and they start to inter-
act with the rf wave more effective than the accelerating
electrons. As a result, on average over the initial phase �0
deceleration prevails over acceleration. With the stationary
orbits II the situation is just opposite, i.e., the pitch factor
for decelerated electrons decreases and the particles accel-
eration and electromagnetic energy absorption prevail.

Let us now include in the consideration the electrons,
which possess small oscillations around the steady-state
helical trajectory. As it was shown in Sec. II, the electrons
undergo these oscillations in the regular wiggler section if
the adiabaticity of the wiggler entrance is violated or the
electrons possess the initial cyclotron oscillations at the
wiggler entrance. In this case the boundary conditions at
the beginning of the interaction space have the form (A5c),
i.e. CþðZ ¼ Z0Þ ¼ Cþ0 � 0. For these electrons in a
small-signal regime the last term in the right side of Eq.
(28) contributes in the effective mismatch from the wiggler
resonance

�eff ¼ g

�
�0

pk0
� 1

�
� 1þ g�0

2p3
jj0
jCþ0j2 (36)

and also results in appearance of an additional term in the
expression for the efficiency of the small-signal regime
(32):

�s:s: ¼ �2
sL

2

1� ��1
0

�
�þ gp2

?0jCþ0j2
16�0p

7
jj0

�
1þ �2

0

�
1þ fp?0

�wpjj0

��

� d

d�

�
sin�

�

�
2
�
: (37)

Thus, this term makes a contribution in the process of
inertial bunching of the electrons. Comparing (37) with
(32) and (35) we see that the effective bunching parameter
	eff for the electrons oscillating around the steady-state
helical trajectory equals

	eff ¼ 	þ �jCþ0j2
2p5

jj�

�
1þ �2

�
1þ fp?�

�wpjj�

��
: (38)

Thus, according to (28) and (36)–(38) the initial para-
sitic transverse oscillations Cþ0 present in the beam at the

entrance of the interaction space results in the appearance
of additional terms proportional only to jCþ0j2 in the
motion equations. This leads to a weak dependence of
efficiency on the velocity spread (i.e. spread over the value
Cþ0) for an FEL with a guide magnetic field. The computer
simulations of the nonlinear stage of e-beam/rf-wave in-
teraction presented below confirm this conclusion.

B. Nonlinear stage of e-beam/rf-wave interaction

To analyze the nonlinear stage of interaction between
the electrons and the rf wave several specific regimes of
FEL operation have to be separated.

1. Regimes far from the cyclotron resonance including a
reversed guide field regime

When the gyrofrequency of the electrons differs greatly
from the cyclotron resonance with bounce oscillations, i.e.,
in regimes with a strong guide field at the stationary orbits II
or with weak and reversed (marked by sign ‘‘�’’) guide
field at the group I orbits, the dependencies p?�ð�Þ, pjj�ð�Þ,
	ð�Þ, etc. become very weak (compare with Figs. 2 and 5).
This results in a small change of these values during the rf
interaction and allows in nonlinear motion equations (28) to
be replaced by its initial values, i.e. p?;jj� ¼ p?;jj0.
Moreover, if the interaction length is high enough,

L	g� � 1; (39)

and the rf-field amplitude is not too large (26) then the
inertial bunching becomes dominant and the second term in
(32) becomes negligible. Thus, in these regimes we can also
neglect the term proportional to �s in the equation for the
electron phases (28b). Simultaneously, under condition (39)
the changes in the electron energies are relatively small
[compare with relation (43) below]. In these assumptions
Eq. (28) can be simplified and presented in a pendulumlike
form (compare with [2]):
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FIG. 5. The bunching parameter 	 (solid line) and frequency
up-conversion coefficient g (dashed line) at the equilibrium
helical trajectory for the groups of orbits I and II as a function
of guide magnetic field strength f (� ¼ 5, �w ¼ 0:1).
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dw

dZ
¼ �sp?0

�0pjj0
sin�;

d�

dZ
¼ �eff þ g	effw; (40)

wherew ¼ ð�0 � �Þ=�0 is relative variation of the electron
energy. Introducing the new variables

� ¼ ðZ� Z0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�s	effgp?0

�0pjj0

s
; u ¼ w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g	eff�0pjj0
�sp?0

s
;

�
_ ¼ �eff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0pk0

�s	effgp?0

s
;

it is easy to minimize the number of independent parame-
ters and reduce (40) as

du

d�
¼ sin�;

d�

d�
¼ �

_ þ u sign	: (41)

The efficiency in the new variables is determined by the
relations

� ¼ �
_

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�sp?0

g	eff�0pk0

s
; � ¼ 1

2�

Z 2�

0
ud�0: (42)

The maximum of the normalized efficiency �
_ � 1:37 is

reached at �opt � �1:3 sign	 and �opt � 3:9. According

to (42), the total efficiency at constant amplitude of the rf
wave and pitch angle of the electrons p?0=pjj0 is deter-

mined by the bunching parameter 	eff . In the regimes,
when the guide magnetic field is far from the cyclotron
resonance value fcr � � (i.e. !H � �b), for the electrons
moving along the helical equilibrium trajectory the bunch-
ing parameter is given by 	 � ��2 (Fig. 5). In this regime
under the high Doppler up-conversion g � �2 � 1 the
electron efficiency is defined by the number of bounce
oscillations N (i.e. number of the wiggler periods) in the
interaction length [2],

� � 1

	gN
� 1

N
: (43)

Computer simulations of the e-beam/rf-wave interaction
using the nonlinear equations (A8) as well as using full
(nonaverage) equations (22) confirm results of the above
analysis. Figure 6 presents results of the computer simula-
tions for an ‘‘ideal’’ (i.e. without any spread of parameters)
electron beam moving along the helical equilibrium tra-
jectory and interacting with the rf wave of constant ampli-
tude within the interaction region in the regime of a
reversed guide magnetic field. (Note that in all further
considerations the point ‘‘0’’ corresponds to the beginning
of the rf interaction, i.e. Z ¼ Z0.) These simulations dem-
onstrate that for a mildly relativistic electron beam �0 � 3
relatively high efficiency � � 15%–20% can be achieved
at the interaction (cavity) length corresponding to the
number of the bounce oscillations N � 5–7 for the pitch
factor of electrons p?�=pjj� � ��1

0 � 0:3, which coincides
well to the estimation given by (43). Note also that the

normalized radius of electron oscillations Rb ¼ hwrb in
this case amounts to Rb � 0:04–0:05 that in accordance
with (5) and (23) corroborate validity of the model used.
An advantage of the FEL operation in the regimes far

from the cyclotron resonance is the low sensitivity to the
initial velocity spread in the beam (compare with [36,37]).
In Sec. II it was shown that in these regimes the electrons,
which possess at the wiggler entrance the same energies
and longitudinal velocities but different azimuthal angles
to the axis, inside the interaction region oscillate around
the equilibrium helical trajectory with the same amplitude,
which is approximately equal to their initial parasitic
transverse velocity �?par [see Fig. 4(a)]. In the framework

of Eq. (28) all these particles possess the same value
jCþ0j ¼ �0�?par and, therefore, identical energy extrac-

tion during the rf interaction. Therefore, to analyze an
electron beam with velocity spread it is sufficient to con-
sider only those beam fractions which have different values
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FIG. 6. FEL with a reversed guide field driven by ideal elec-
tron beam. Dependence on longitudinal coordinate of
(a) electron efficiency as well as (b) transverse velocity,
(c) energy, and (d) phase with respect to the rf wave for electrons
with different initial phases (the hatched zones represent decel-
erated phases): �0 ¼ 2:6, �w ¼ 0:5, �s ¼ 0:15, f ¼ �1:2,
	0 ¼ 0:22, g ¼ 6:5, � ¼ �0:16.
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of the initial parasitic transverse velocity �?par and to

exclude the fractions which have different phases of the
initial transverse velocity. Figure 7 presents dependencies
of the electron efficiency for the beam fractions having
different values of the initial transverse velocity �?par at

the entrance of the interaction space [i.e. values Cþ0 in the
Eq. (28)]. Computer simulation shows that even for an
initial parasitic velocity which is equal to half of the
operating velocity, i.e. jCþ0j=p?0 ¼ 50% (under the pa-
rameters given in Fig. 7 this corresponds to the initial
longitudinal velocity spread ��jj0=�jj0 � 5%), the elec-

tron efficiency is approximately the same for all the beam
fractions. The total FEL efficiency averaged over all the
fractions (in the simulations we assume equal numbers of
particles with different initial parasitic velocities from
0 to ��?par at the wiggler entrance) versus the value of

the initial velocity spread ��?par=�?� is given in Fig. 8

(curve ‘‘a’’). Even for an electron beam with a rather large
initial parasitic transverse velocity ��?par=�?� � 50% a

decline of FEL efficiency averaged over all the fractions
does not exceed �1%–2% of the efficiency of a FEL
driven by an ideal electron beam.
It is appropriate here to compare the sensitivity to ve-

locity spread for the different well-known version of the
relativistic electron maser like cyclotron autoresonance
maser (CARM). In this device for electron beam forma-
tion, a scheme similar to a FEL is used: rectilinear (with the
accuracy of the initial velocity spread) electron beam
guided by an axial magnetic field is generated by a rela-
tivistic gun and then the operating transverse velocity of
the particles is imparted by a relatively short (nonadiabat-
ical) pumping systems (kickers) and remained constant
after that in a uniform axial magnetic field [38,39].
Influence of initial velocity spread on the quality of helical
electron beam formation for CARMs was studied in [38]. It
was shown that in the kickers electrons having initially the
same energies and longitudinal velocities but different
azimuthal angles to the axis at the entrance get different
transverse and, hence, longitudinal velocities when passing
through the pumping system. The maximum difference in
the transverse velocities for different fractions is equal to
the double initial parasitic transverse velocity 2�?par, in

contrast with FEL operating in the regimes far from the
cyclotron resonance, where the difference in the average
transverse velocity for different fractions is in the
order of �2

?par [see Fig. 4(a) and compare with Eqs. (28)

and (36)–(38)]. A big difference (in comparison with the
FEL) in velocities of different fractions results in violation
of the rf-resonance conditions producing a significant re-
duction in the efficiency of CARMs (see [36] for details).
In accordance with the above consideration the com-

puter simulations of the e-beam/rf-wave interaction [36]
show that for a CARM (Fig. 8, curve ‘‘c’’) an initial
parasitic transverse velocity equals to 20% of the operating
transverse velocity leads to a decrease of efficiency by a
factor of 2. Note that the parameters for the FEL and the
CARM in the simulations given in Fig. 8 were chosen to be
same in frequencies as well as in energies and pitch angles
of the electrons. Therefore, computer simulations demon-
strate a potentially higher ability of the FEL with a guide
magnetic field in comparison with CARMs to achieve a
higher efficiency and, therefore, a higher microwave power
when driven by electron beams with ‘‘real’’ dispersion of
parameters.

2. Regimes of weak guide field (!H <�b) of a
conventional orientation

In such regimes the axial guide magnetic field is closer
to its resonant value (i.e. the gyrofrequency is close to the
bounce frequency) compared with the reversed guide field
regimes. As a result, in the tapered wiggler section of fixed
length the amplitude of the electron oscillations around
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FIG. 7. FEL with a reversed guide field. Dependence of
electron efficiency on longitudinal coordinate (for parameters
given in Fig. 6) for the beam fractions with different initial
parasitic transverse velocity at the entrance of the interaction
space. The maximum initial parasitic transverse velocity equals
50% of the operating transverse velocity.
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FIG. 8. Influence of initial velocity spread. The electron effi-
ciency averaged over all the beam fractions versus the initial
parasitic transverse velocity presented in the beam: (a) FEL with
reversed guide field for parameters given in Fig. 6; (b) FEL with
conventional guide field for parameters given in Fig. 10; (c) CARM
of the same frequency, electron energy, and pitch factor.

N. S. GINZBURG AND N.YU. PESKOV Phys. Rev. ST Accel. Beams 16, 090701 (2013)

090701-10



the stationary helical trajectory in the regular wiggler
section as well as the spatial period of this oscillation
(length of cyclotron-bounce beating) increases (compare
with Figs. 3 and 4). As it follows from relation (38) the
inertial bunching parameter for the electrons oscillating
around the steady-state helical trajectory (for which
Cþ0 � 0) is higher as compared with the electrons moving
along this trajectory (for which Cþ0 ¼ 0). According to
Eqs. (41) and (42), efficiency of energy extraction from
oscillating around the helical trajectory electrons is lower.
Therefore, the cyclotron oscillations in the driving beam,
which are excited and increased in the regimes close to the
cyclotron resonance (when the condition of the adiabaticity
of the wiggler entrance is violated), result in a decrease in
the FEL efficiency. Note that the optimal mismatch from
the wiggler resonance decreases in this case [compare
with (36)].

As discussed before, a specific feature of the regimes of
weak guide field with a conventional orientation, i.e., for
the group of stationary orbits I, is the increase in the
transverse velocity of the electrons during the process of
the rf interaction. The dependence of the transverse veloc-
ity on electron energy becomes very strong when the
gyrofrequency approaches the bounce frequency. The
strong change in the transverse velocity of the electrons
near the cyclotron resonance is an additional reason for
violation of the synchronism conditions during rf interac-
tion. This fact is illustrated by Fig. 9 where the arrows
show the change in the transverse velocity for decelerated
particles in different regimes. In the regimes of weak
conventional field close to the resonance value a decrease
in electrons energy is accompanied by a large increase in
their transverse velocity. As a result, the decelerated parti-
cles may fall on the wall of the microwave cavity, which
will lead to beam current losses during the rf interaction
(compare with [26]).

Computer simulations by Eq. (28) confirm that in this
region of parameters during the rf interaction decelerated
electrons experience an increase in their transverse

velocities [Fig. 10(b)]. Transverse velocity of the spinning
electrons grows up very fast and such electrons interrupt
their synchronous interaction with the wave. For this
reason the 1D trajectory model can be also effectively
used for description of these regimes. The direct 3D simu-
lations carried out in [37] corroborate this conclusion.
It is important that the process of rf interaction becomes

more sensitive to the initial velocity spread (Fig. 11). For the
regime simulated in Figs. 10 and 11, the presence of para-
sitic initial velocity in the beam of 15% of the operating
transverse velocity results in a decrease of the efficiency by
a factor of about 1.5. Note that in some other regimes with a
conventional guide field an even higher drop of FEL effi-
ciency was observed. In particular, decrease in efficiency is
much more dramatic when the inhomogeneities of the
wiggler and the rf field were taken into account [37].
Therefore, an FEL operated in regimes with weak conven-
tional guide field is more sensitive to the initial velocity
spread (see Fig. 8, curve ‘‘b’’) as comparedwith the regimes
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FIG. 9. The transverse velocity at the equilibrium helical tra-
jectory for the electrons of different energies versus guide field.
The arrows illustrate a change of transverse velocity for decel-
erated particles in different regimes.
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FIG. 10. FEL with a weak conventional guide field driven by
an ideal electron beam. Dependence on longitudinal coordinate
of (a) electron efficiency as well as (b) transverse velocity,
(c) energy, and (d) phase with respect to the rf wave for electrons
with different initial phases: �0 ¼ 2:6, �w ¼ 0:15, �s ¼ 0:15,
f ¼ 1:2, 	0 ¼ 0:25, g ¼ 6:5, � ¼ �0:28.
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far from the cyclotron resonance including a reversed guide
field regime. Note also that the optimal interaction length in
this region of parameters also increases.

We should emphasize that regimes of weak guide field
with a conventional orientation are characterized by strong
dependence of initial conditions. The parameters of the
interaction can be chosen so that the electrons, which
increase their transverse velocities, would get to the wall
of the system and, therefore, would be excluded from the
energy exchange just before they would come into accel-
erating phase. A similar effect when the drop of beam
current is accompanied by the increase of electron effi-
ciency was described in [26] based on the full (nonaverage)
equations.

In conclusion, let us note that the parameters in the
simulations used above were chosen to be close to the
parameters of the FEL experiments carried out in collabo-
ration between JINR (Dubna, Russia) and IAP RAS
(Nizhny Novgorod, Russia) based on linac LIU-3000
(0:8 MeV=200 A=200 ns). In these experiments (see
[17,18] for details) the operating transverse velocity �? �
0:2 was pumped in a helical wiggler of 6 cm period. A
selective feedback at the frequency about 30 GHz was
realized by use of Bragg resonators (a two-mirror Bragg
resonator [37] either a Bragg resonator with a step of phase
of corrugation [17]). For the conditions of the experiments
the dimensionless parameters, for example, �w ¼ 0:5 and
f ¼ �1:0 correspond to Hw ¼ 1 kOe and H0 ¼ �2 kOe,
respectively.

The results of theoretical consideration presented in
Sec. IVA and IVB coincide well with the results of the
experiments. In particular, maximum efficiency of
�20%–30% was obtained in under the reversed guide
field orientation [17,18]. The efficiency achieved in this
experiment is a record for millimeter-wave FEL oscillators
[2,8–12].We have to note that these values are even slightly
higher than those calculated in Fig. 6 for parameters close to
the experimental values. This can be explained by the

longitudinal rf-field structure in the Bragg resonators (es-
pecially in a resonator with step of phase of corrugation)
being more optimal for the extraction of energy from the
electron beam as compared to a constant rf-field profile
inside the interaction region which was used in the simula-
tions. Decrease in the FEL efficiency was observed in
conventional guide field regimes with the strength less
than the cyclotron resonance value (unfortunately, the con-
ditions of the discussed experiments did not allow the FEL
to operate with a guide field over the resonance value). It is
important to note that in the regimes close to the cyclotron
resonance the process of rf generation was accompanied
with a remarkable loss in beam current [37] caused by
electrons which hit the wall of the transport channel when
interacting with the rf wave.

3. Regimes of strong guide field (!H � �b)
of conventional orientation

The attractive feature of the FEL with a guide magnetic
field is the possibility of effectively varying the inertial
bunching parameter, i.e., the effective longitudinal mass of
the electron oscillators (see Fig. 5). In particular, at the
group II stationary orbits when the gyrofrequency slightly

exceeds the bounce frequency, i.e. f � �0ð1þ �2=3
w Þ, the

value of the bunching parameter tends to zero 	 ! 0
(effective mass tends to infinity). According to (43) this
fact would increase FEL efficiency [21,29].
However, in high-efficiency regimes the condition of

inertial bunching domination [Eq. (39)] is violated and
the full (nonlinear) averaged equations of motion (28)
have to be used. In analysis of these equations the depen-
dence of the bunching parameter on the electron energy
(see Fig. 12) becomes important [29,40]. If the parameters
of the system are chosen so that the point 	0 in Fig. 12
corresponds to the initial electron energy �0, then it is
evident from this diagram that the bunching parameter
for decelerated electrons would decrease in absolute value
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Z

FIG. 11. FEL with a weak conventional guide field.
Dependence of electron efficiency on longitudinal coordinate
(for parameters given in Fig. 10) for the beam fractions with
different initial parasitic transverse velocity at the entrance of the
interaction space. The maximum initial parasitic transverse
velocity equals 15% of the operating transverse velocity.
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FIG. 12. The bunching parameter 	 as a function of electron
energy � at �w ¼ 0:1 and different values of guide magnetic
field f: (1) f ¼ 10; (2) f ¼ 5:85; (3) f ¼ 5:65; (4) f ¼ 5:5.
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while that for accelerating particles would increase. The
bunching parameter [see (35)] characterizes the magnitude
of the change in the axial velocity of the electrons as the
electron energy changes. Therefore, the decelerated parti-
cles would stay in synchronism and extract the energy to
the rf wave for a longer time as compared to the accelerated
particles, which would absorb the rf-wave energy. In
Fig. 13 we can clearly see that the particles are divided
into two fractions. The first fraction possesses a small
parameter 	 and is kept in a decelerating phase of the rf
wave for a long time while the energy of particles of the
second (accelerating) fraction, whose parameter	 is large,
quickly oscillates. Note that an FEL operated in the regime
described above is also more sensitive to the initial velocity
spread (Fig. 14).

The described method of selective discrimination of
accelerated electrons results in the increase of the electron
efficiency as compared with regimes far from the cyclotron

resonance [compare solid and dashed lines in Fig. 15(a)].
This mechanism of efficiency enhancement is even more
remarkable in an FEL-amplifier scheme [40]. Note also that
the initial value of the parameter 	0 in the considered
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FIG. 13. FEL with a strong conventional guide field driven by
an ideal electron beam. Dependence on longitudinal coordinate
of (a) electron efficiency as well as (b) transverse velocity,
(c) energy, and (d) phase with respect to the rf wave for electrons
with different initial phases: �0 ¼ 5:0, �w ¼ 0:1, �s ¼ 0:05,
f ¼ 5:6, 	0 ¼ �0:06, g ¼ 36, � ¼ 0:05.
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FIG. 14. FEL with a strong conventional guide field.
Dependence of electron efficiency on longitudinal coordinate
(for parameters given in Fig. 13) for the beam fractions with
different initial parasitic transverse velocity at the entrance of the
interaction space. The maximum initial parasitic transverse
velocity equals 15% of the operating transverse velocity.

(a)

(b)

FIG. 15. The dependence of (a) maximum efficiency �max as
well as (b) optimal value of parameters 	

opt
0 , �opt, and Lopt on

the amplitude of the signal wave �s (�0 ¼ 5, �w ¼ 0:1) in a
FEL oscillator with a strong conventional guide field (solid line)
and a reversed guide field for the same pitch factor of the
electrons [dashed line in (a)].
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regime is negative (i.e. with the decrease in the electrons
energy the axial velocity increases), and its optimal value

	
opt
0 increases with the increase in the rf-field amplitude

[Fig. 15(b)].We should also emphasize that a relatively high
initial value of the bunching parameter is favorable for self-
excitation conditions and decreases the starting current of
the FEL oscillator [2] [compare with (32) and (34)].

Note, however, that the strength of the axial guide
magnetic field in the regime described above is rather close
to the resonance value. This fact complicates the experi-
mental realization of the FEL in such a regime. Obviously,
the quality of the helical beam formation in this region of
parameters requires the use of a longer tapered wiggler
section. Simulations show that for the FEL parameters
given in Fig. 13 a wiggler with ten periods of tapering
provides an amplitude of parasitic oscillations around the
steady-state trajectory lower than 5%. This seems to be
sufficient for experimental observation of FEL operation in
the described regime. On the other hand, from relations
(11) and (35), one can see that the value of guide field f	¼0

corresponding to 	 ¼ 0 is shifted from the cyclotron reso-
nance value fcr (corresponding !H ¼ �b) with an in-
crease in the electron energy (Fig. 16). Therefore, the
described regime is more preferable for a FEL driven by
strongly relativistic electron beams � � 5–10.

Thus, theoretical analysis demonstrated potential for
FEL efficiency enhancement in the conventional guide
field regime when the gyrofrequency exceeds the bounce
frequency using the effect of the dependence of the effec-
tive mass on energy of electrons oscillating in a wiggler
and axial guide magnetic fields. However, for mildly rela-
tivistic electron energies (� 
 2:5), the optimal strength of
the guide magnetic field must be close to the resonance
value and in this case it is extremely difficult to realize an
adiabatic entrance of electrons in the wiggler field. The
considered mechanism looks more applicable for strongly

relativistic electron beams (� � 5) when the optimal value
of the guide magnetic field for such a regime is shifted
from the cyclotron resonance.

V. COMBINATION RESONANCES BETWEEN THE
ELECTRONS AND THE RF WAVE. RADIATION

UNDER ABNORMAL DOPPLER EFFECT

For the combination resonances (3) it is useful to in-
troduce the subtractive �� � or the additive �þ � phases.
In this case the electron-wave interaction may be described
by the following equations:

dC

dZ
¼ a�s cos’; (44a)

d�

dZ
¼ �b�s cos’; (44b)

d’

dZ
¼ g

�
�

pjj�
� 1

�
� 1 �þ kC2 � a�s

C
sin’; (44c)

where ’ ¼ � � ’C,

a ¼ 1

2R

��
�

pjj�
� 1

�
ð1 RÞ  f�p2

?�
p4
jj��

�
;

b ¼ � 1

2p3
jj�

�
p2
?� þ p2

jj�ð1 RÞ  g�p2
?�

pjj��

�
;

k ¼ �Qþ g�

4p5
jj�
½3p2

?� þ p2
jj�ð1þ R2Þ�:

The upper sign in (44) and subsequent relations corre-
sponds to the upper sign in the resonance conditions (3)
while the lower one stands for the lower sign in (3) as well.
In the small-signal approximation �s ! 0 for electrons

moving along the equilibrium helical trajectory when en-
tering the interaction space [i.e. for the boundary condi-
tions (A5a) and (A5b)] from Eq. (44) we get the expression
for the linear efficiency,

�lin ¼ �2
sL

2

1� ��1
0

2a0b0
�0

sin2½ð� �ÞL�
½ð��ÞL�2 ; (45)

which coincides with results of linear theory for the FEL
presented in [28]. Analysis of the coefficients a0 and b0
shows that the electrons which initially belong to group I
orbits radiate energy (�> 0) under the conditions of reso-
nance with upper sign in (3) and conversely absorb the rf-
wave energy (�< 0) when resonance with lower sign in
(3) is fulfilled. In contrast, if the electrons move along the
other stationary trajectory of group II orbits the radiation
takes place under the lower sign in (3) while absorption
under the resonance with upper sign.
For relatively small wiggler fields, when the frequency

of electron oscillation near the equilibrium trajectory is
given by Eq. (17), the resonance conditions (3) under
which the radiation takes place can be written in a form
which is universal for both groups of steady-state orbits:
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αu= 0.1
f cr αu= 0.1

αu= 0.3
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αu= 0.3αu= 0.5

FIG. 16. The parameters fcr (dashed lines) and f	¼0, which
correspond to the value 	 ¼ 0 (solid lines), as functions of
electron energy � for different amplitudes of the wiggler field�w.
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!� hvjj � 2�b �!H

�
1þ p2

?0

p2
jj0

�
: (46a)

Note that for the group I orbits this radiation can possess
remarkably higher frequency than traditional wiggler ra-
diation under the resonance (2). The absorption takes place
for both groups of steady-state orbits under the resonance

!� hvjj � !H

�
1þ p2

?0

p2
jj0

�
: (46b)

Evidently, when the wiggler field amplitude tends to zero
(�w ! 0), relation (46b) determines the frequencies while
relation (45) gives the intensities of ordinary cyclotron
absorption [2,32].

From Eqs. (44a) and (44b) one can see that these equa-
tions imply the integral of motion,

C2 � C2
0 ¼ �2

Z �

�0

a

b
d�; (47)

which for the case of the relatively small changes in
electron energies (jwj � 1) can be reduced as

C2 � C2
0 ¼ � 2a0

b0
ð�� �0Þ: (48)

According to Eq. (48), at a0=b0 > 0 electron deceleration
is accompanied by the excitation of their oscillations near
the equilibrium trajectory, while at a0=b0 < 0 we have a
decrease of these oscillations with the decrease of the
electron energy. Therefore, to obtain the radiation in the
second case, the electrons before entering the interaction
space have to move along the trajectory which is deferent
from the equilibrium trajectory, i.e., the electrons have to
possess an initial oscillation energy relative to the equilib-
rium trajectoryC2

0 � 0. In the first case the radiation can be
generated even when the electrons move along the equi-
librium trajectory C0 ¼ 0. Evidently, the first case is typi-
cal for radiation under the abnormal Doppler effect while
the second case for radiation under the normal Doppler
effect [32]. The abnormal Doppler effect is observed under
resonance conditions (46a) while the normal Doppler ef-
fect is realized at condition (46b).

Let us study here the nonlinear stage of interaction be-
tween the rf wave and the electrons moving in a regular
wiggler section along the equilibriumhelical trajectory under
the synchronism (46a). Boundary conditions for Eq. (44) in
this case are identical for all electrons in the beam:

CðZ ¼ Z0Þ ¼ 0; �ðZ0Þ ¼ 0; ’ðZ0Þ ¼ 0: (49)

Thus, the excitation of the transverse oscillations around the
steady-state trajectory and energy extraction is the same for
all the beam electrons and the force bunching of the particles
governed by the two last terms in the equation for the phase’
(44c) dominate. Considering relatively small changes in the
electrons energy and taking into account the integral of
motion (48), we can reduce Eq. (44) to the form universal

for themicrowave generators based on the abnormalDoppler
effect (compare with [2]):

du

d&
¼ ffiffiffi

u
p

cos’;
d’

d&
¼��þusign� 1

2
ffiffiffi
u

p sin’ (50)

with the boundary conditions uð& ¼ 0Þ ¼ 0, ’ð&¼0Þ¼0.
Here

u ¼ w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

2a0b0�
2
s

3

s
; & ¼ ðZ� Z0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a0b0jj�2

s
3

q
;

�� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a0b0jj�2

s
3
p �

g

�
�0

pjj0
� 1

�
� 1 �0

�
:

The parameter  for the case of small wiggler fields�w � 1
is given by

¼g

�
�0

pjj0
ð11Þ�1

�
þ �0

pjj0

�
�0

pjj0
ð1�1Þ�1

�
þg�3

0

p3
jj0
:

The electron efficiency (with the identity of energy exchange
with thewave for all the beamelectrons taken into account) is
determined by

� ¼ u

1� ��1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a0b0�

2
s

2

3

s
: (51)

Based on the integral of motion for Eq. (50),

sin’ ¼ ��
ffiffiffi
u

p þ u3=2

2
sign; (52)

we obtain (see [2] for more details) the maximum electron
deceleration umax ¼ 4 is achieved at �opt ¼ � 3

2 sign and

’ ¼ �
2 sign. In the regime of precise resonance �� ¼ 0,

the maximum deceleration is umax ¼ ffiffiffi
43

p
at ’ ¼ �

2 sign.

The optimal length of the oscillator in the last case is&opt¼3.

Using analysis described above, let us estimate here the
possibility of the FEL operation in the regime of combi-
nation resonance based on the linac LIU-3000. In the
reversed guide field regime for the FEL parameters similar
to ones given in Fig. 6 in the conditions of the resonance
(46a) the radiation frequency would reach 100 GHz, i.e.,
for the same wiggler period and electron energy to be in 3
times higher than current operation frequency of the FEL.
At the number of bounce oscillations over the interaction
space N � 5–6 (which correspond to &opt) and the signal

wave amplitude �s � 0:4–0:5 the electron efficiency
would be at the level �5%–8%. Thus, an important result
of the above theoretical consideration is feasibility of
regimes of combination resonances (3) for increasing the
radiation frequency. In particular, these regimes allow
advance of JINR-IAP FEL into the short part of the milli-
meter wavelength band keeping the electron beam energy
and wiggler period.
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VI. CONCLUSION

In the present paper, a nonlinear theory of an FEL with
guide magnetic field is developed. The averaged equations
for the e-beam/rf-wave interaction under traditional wiggler
resonance (2) as well as for combination resonances (3)
were obtained. This allowed the analysis of specific features
of the e-beam/rf-wave interaction for different FEL
operating regimes to be carried out. Our analysis demon-
strates good agreement with some results of previous
theoretical consideration (in the frame of average and non-
average models) alongside some new effects including:
(i) possibility of the FEL with guide magnetic field to
operate at additional combination resonanceswhich provide
higher Doppler frequency up-conversion than in traditional
wiggler resonance; (ii) possibility of efficiency enhance-
ment when operating at the group of orbits II and utilizing
dependence of the effective mass of electrons on their en-
ergy; (iii) explanation of the drop of FEL efficiency in
conventional guide field orientation in comparison with
reversed guide field regimes that is caused by a difference
in electron beam quality after the tapered wiggler section;
(iv) demonstration of advantages of a FEL with a reverse
guide field in comparison with CARM to obtain high elec-
tron efficiency.

We should note also that in the present paper we used the
1D approximation for description of wiggler field and
electron trajectories. Nevertheless, the approach suggested

in this paper to derivation of the average motion equation is
rather universal and can be implemented not only for the
model of an ideal wiggler but for more sophisticated
models of the real wigglers.
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APPENDIX

Let us find here the average equations for motion of
magnetically guided electrons in the wiggler and rf field.
Substituting (27) in Eq. (22) and assuming the deviations
from the equilibrium trajectory caused by both initial
oscillations and the influence of the signal wave as being
relatively small (j�1;2j � jp?�j), after the series expan-

sion in �1;2 of the right sides we can present Eq. (22) in

the form

d�1

dZ
¼ �2

�
1� f

pjj�

�
� �2fF1ð�1; �2Þ �

�
�

pk�
� 1þ �p?�

p3
jj�

�1

�
�s sin�� dp?�

d�

d�

dZ
; (A1a)

d�2

dZ
¼ ��1

�
1� f

pjj�
� fp2

?�
p3
jj�

�
þ �1fF1ð�1; �2Þ þ p?�fF2ð�1; �2Þ þ

�
�

pk�
� 1þ �p?�

p3
jj�

�1

�
�s cos�; (A1b)

d�

dZ
¼ � �s

pjj�

��
p?� þ �1

�
1þ p2

?�
p2
jj�

��
sin�� �2 cos�

�
; (A1c)

d�

dZ
¼ g

�
�

pjj�
� 1

�
� 1þ g�F1ð�1; �2Þ: (A1d)

The functions F1;2 in (A1) describe the unharmonic (nonisochronous) nature of electron oscillations near the equilibrium
trajectory and can be written as

F1 ¼ 1

p3
jj�

�
p?��1 þ 1

2

�
�2
1

�
1þ 3p2

?�
p2
jj�

�
þ �2

2

��
;

F1 ¼ 1

2p3
jj�

�
�2
1

�
1þ 3p2

?�
p2
jj�

�
þ �2

2 þ
3p?�
p2
jj�

�1�
2
2 þ �3

1

�
3p?�
p2
jj�

þ 5p3
?�

p4
jj�

��
:

(A2)

Obviously, Eq. (A1) describes a nonlinear oscillator which is affected by the external rf wave. At �s ¼ 0 after
linearization these equations are reduced to Eq. (13). Thus, at �s � 0 using a method of variations of arbitrary constants,
the solution of Eq. (A1) can be presented as

�1 ¼ C1ðZÞ sin�þ C2ðZÞ cos�; �1 ¼ R½C1ðZÞ cos�� C2ðZÞ sin��; (A3)

where � ¼ R
Z
Z0
�dZ, R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� f

pjj�
� fp2

?�
p3
jj�
Þ=ð1� f

pjj�
Þ

r
. After substitution of (A3), Eq. (A1) can be reduced to the form

which facilitates subsequent averaging:
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ei�
dCþ
dZ

¼ �i�s

�
�

pk�
� 1þ �p?�

p3
jj�

ðC1 sin�þ C2 cos�Þ
�
ðsin�þ iR�1 cos�Þ � i

dp?�
d�

d�

dZ

þ fR�1fp?�F2ðCþ; �Þ þ F1ðCþ; �Þ½C1ðsin�� iR2 cos�Þ þ C2ðcos�þ iR2 sin�Þ�g
� 1

R

dR

d�

d�

dZ
ðC1 cos�� C2 sin�Þ; (A4a)

d�

dZ
¼ � �s

pjj�

��
p?� þ

�
1þ p2

?�
p2
jj�

�
ðC1 sin�þ C2 cos�Þ

�
sin�� RðC1 cos�� C2 sin�Þ cos�

�
; (A4b)

d�

dZ
¼ g

�
�

pjj�
� 1

�
� 1þ g�F1ðCþ; �Þ; (A4c)

where Cþ ¼ C1 þ iC2. For a monoenergetic unmodulated
electron beam boundary conditions to Eq. (A3) have a
form

�ðZ0Þ ¼ �0; �ðZ0Þ ¼ �0 2 ½0; 2�Þ (A5a)

and

C1;2ðZ ¼ Z0Þ ¼ 0 (A5b)

for the electrons moving along the helical steady-state
trajectory at the entrance of the interaction space while

C1;2ðZ ¼ Z0Þ ¼ C01;2 (A5c)

for the electrons oscillating near this trajectory.

1. Wiggler resonance between the electrons
and the rf wave

When the electrons interact with the rf wave under the
condition of the wiggler resonance (2), the phase � is a
slow function of z while the phase � exhibits fast oscil-
lations if the condition (1) is fulfilled. This allows Eq. (A4)
to be averaged over the phase �. As a result, Eq. (A4a)
acquires the form

d �Cþ
dZ

¼ �s
�Cþ

2pjj�

�
dp?�
d�

��
1þ p2

?�
p2
jj�

�
sin ��� iR cos ��

�

þ
�
p?�
R

dR

d�
� �p?�

p2
jj�

�
sin ��� i

��p?�
p2
jj�R

cos ��

�

þ 3fð �Cþ �C1
�C2 � i �C3

1 þ �C3
2Þ

16Rp3
jj�

�
1þ 6p2

?�
p2
jj�

þ 5p4
?�

p4
jj�

þ 2R2

3

�
1þ 3p2

?�
p2
jj�

�
þ R4

�
; (A6)

where ‘‘�’’ is the sign of averaging. To get the correct
average equation for the slow phase �, one has to include
in the consideration the oscillatory component of the trans-
verse momentum:

~Cþ¼�s

�

��
�

pjj�
�1

�
ðsin�þ iR�1 cos�Þ�dp?�

d�

p?�
pjj�

sin�

�
ei�:

(A7)

Substituting into Eqs. (A4b) and (A4c) the transverse
momentum as a sum of the average component (A6) and

the oscillatory component (A7) Cþ ¼ �Cþ þ ~Cþ, after
averaging we get [29]

d ��

dZ
¼ ��sp?�

pjj�
sin ��; (A8a)

d ��

dZ
¼ g

�
��

pjj�
� 1

�
� 1þ �s ��p?�

p3
jj�R�

cos ��

þ g ��

4p3
jj�

�
1þ R2 þ 3p2

?�
p2
jj�

�
ð �C2

1 þ �C2
2Þ: (A8b)

Note that the oscillatory component of the transverse mo-

mentum ~Cþ leads to the appearance of the term propor-
tional to �s in the equation for the slow phase (A8b) and
should be taken into account. At the same time, the same
oscillatory component results in the presence of the term
proportional to �2

s in the equation for energy (A8a) and,
therefore, can be neglected.
As seen from Eq. (A8), the energy variation depends on

the value of j �Cþj2. For this variable from Eq. (A6) we have

djCþj2
dZ

¼ j �Cþj2 �sp?�
pjj�

�
p�1
?�

dp?�
d�

�
1þ p2

?�
p2
jj�

�

þ R�1 dR

d�
� �

p2
jj�

�
sin�: (A9)

The equations (A8a) and (A9) possess the motion integral,
which in the case of relatively small transverse momentum
p2
?� � p2

jj� may be presented as

j �Cþj2p?�Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p ¼ const ¼ j �Cþ0j2p?0R0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
0 � 1

q ; (A10)

where �Cþ0 ¼ �CþðZ ¼ Z0Þ is the initial value of the small
oscillations of the electrons around the steady-state helical
trajectory [compare with (A5c)]. Taking into account the
motion integral (A10), the average motion equations (A8)
take the form (28).
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2. Combination resonances between the electrons
and the rf wave

When the combination resonances (3) are realized
the subtractive �� � or the additive �þ � phase becomes
slow. In this case, averaging Eq. (A4) over the rapid
phases � and � and introducing a polar coordinates

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
1 þ C2

2

q
, ’C ¼ arctgðC1=C2Þ we get (44).
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