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The harmonic magnetic field properties due to eddy currents have been studied with respect to the

geometry of the vacuum beam chamber. We derived a generalized formula enabling the precise prediction

of any field harmonics generated by eddy currents in beam tubes with different cross-sectional geometries.

Applying our model to study the properties of field harmonics in beam tubes with linear dipole magnetic

field ramping clearly proved that the circular cross section tube generates only a dipole field from eddy

currents. The elliptic tube showed noticeable magnitudes of sextupole and dipole fields. We demonstrate

theoretically that it is feasible to suppress the generation of the sextupole field component by appropriately

varying the tube wall thickness as a function of angle around the tube circumference. This result indicates

that it is possible to design an elliptical-shaped beam tube that generates a dipole field component with

zero magnitude of sextupole. In a rectangular-shaped beam tube, one of the selected harmonic fields can

be prevented if an appropriate wall thickness ratio between the horizontal and vertical tube walls is

properly chosen. Our generalized formalism can be used for optimization of arbitrarily complex-shaped

beam tubes, with respect to suppression of detrimental field harmonics.
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I. INTRODUCTION

The required vacuum level and the minimizing of the
magnetic field influence have to be considered in the design
of the particle beam vacuum tubes. Because of these
requirements, its material properties and geometrical shape
are important parameters to achieve mechanical strength,
vacuum, and field quality. The Facility for Antiproton and
Ion Research (FAIR) project will have a 1.9 T maximum
field, with 4 T= sec linear ramping dipole superconducting
magnets. At these low operating temperatures, it is obvi-
ously advantageous to use the inner surface of the beam tube
as a highly effective cryopump in order to generate beam
vacuum pressures in the range of �10�12 mbar. However,
due to the fast ramping cycles, eddy current effects will be
rather intense in the dipole tubes. This leads not only to a
heating of the tube walls, but also causes field inhomoge-
neities in the form of multipoles. These secondary effects
may not only negatively affect the pumping properties of
the cold tubes but can also influence the beam life time and
even cause beam losses [1]. In order to improve the magnet
performance, extensive experiments and theoretical studies
have been carried out on a superconducting magnet system
and cryogenic heat losses including the beam tube. [2–5].

Several articles on eddy current profile calculations
for various beam tube shapes and their corresponding

magnetic fields have been published [2–9]. Most of the
publications only deal with the typical and commonly used
beam tube shapes, i.e., circular, elliptical, or rectangular.
However, up to now a generally valid formula for compu-
tation of eddy current-induced multipole generation caused
by arbitrarily shaped beam tubes is nonexistent. Motivated
by the need to design dipole beam tubes with small eddy
current effects for a dipole magnet, we theoretically ana-
lyzed the origin of eddy current-induced multipoles with
respect to the beam pipe geometry. Hereby a generalized
expression for the prediction of any harmonics caused by
different cross-sectional shapes of beam tubes was found.
Based on our formalism, we analytically studied the

contribution to field harmonics from beam tubes with
typical cross sections, i.e., circular, elliptical, and rectan-
gular, in time-varying magnetic fields. A method is dis-
cussed for the elimination of a single selected harmonic
term by modifications of the tube geometry.

II. MULTIPOLE FIELDS BY EDDY CURRENT

Multipole coefficients will be written as functions of the
beam tube geometry, allowing us to directly calculate the
multipoles without field fitting or other numeric procedures.
We consider a two-dimensional cross section of a beam
tube that is located in the region of the magnet center.
Neglecting magnet end effects and assuming a symmetric
tube geometry, the eddy current will also have a symmetric
current profile during the uniform magnetic field ramping.
For dipole field symmetry, there is polarity of Iðx; yÞ ¼
Iðx;�yÞ ¼ �Ið�x; yÞ ¼ �Ið�x;�yÞ. Under this four line
current symmetry, the corresponding magnetic field is
given by [10,11]
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where a0 and�ð0 � � � �=2Þ are, respectively, the radius
and angle of the current I0 in a polar coordinate system.
Equation (1) contains only odd-number harmonic fields
n ¼ 1; 3; 5; . . . caused by the symmetric current flow that
corresponds to dipole, sextupole, decapole, etc. [10].

With an infinite number of four symmetric line currents,
we can decompose Eq. (1) for a certain harmonic n as
follows:
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Since the beam tube is continuous, the eddy current Ii as
well as the radius ai must be expressed in terms of a
geometric variable. As both parameters Ii and ai are angle
dependent, we can change the notation to Ið�Þ and að�Þ
for the current and radius. The að�Þ can be derived directly
from the shape of a beam tube. In the case of a circular
cross section, að�Þ corresponds simply to the radius or the
distance from the coordinate system center. For an ellip-

tical cross section, the radius can be expressed by að�Þ ¼
b=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� "2cos2�

p
, where b is the minor axis and " repre-

sents the eccentricity of the ellipse. For other cross-
sectional geometries, að�Þ can be expressed analogously.

The profile of Ii cannot be deduced simply from the beam
tube geometry. A general procedure to get the profile of eddy
current densityJi does not exist since it is not only dependent
on the applied field characteristics but also on the beam tube
properties. The spatial profile of Ji may show linear, non-
linear, or periodic shapes, depending on the applied field
uniformity, frequency, sinusoidal behavior and linear/
nonlinear ramping. In addition, electrical and thermal con-
ductor properties such as its inductance, conductance, and
even heat capacitance at cryogenic temperature, can also
affect the profile of the eddy current density Ji.

In this work, we consider the operational scenario of the
SIS100 dipole, 4 T= sec of linear field ramping with a
repetition frequency of 1.2 Hz. The skin depth effect is
thus negligible. Under this linear ramping scenario, the
induced emf is constant in time, and therefore, it induces
a constant eddy current flow in the beam tube as well as a
constant induced eddy current magnetic flux�eddy. The net

emf can simply be expressed with applied magnetic flux
�app asd�total=dt¼dð�appþ�eddyÞ=dt¼d�app=dt, which

shows that�app is the only source of eddy currents without

iterative effect in the case of a uniform linear ramping field.
From the law of magnetic induction with uniform linear

ramping field, the eddy current density j can be expressed

as j ¼ x _B=�, where � is resistivity and x the horizontal
coordinate. Note that this expression for j accounts for
information about the applied field and the material prop-
erties of the beam tube, while the information about the
beam tube geometry is not included. Even though various
shapes of eddy current conductor generate different field
profiles, their eddy current density profiles are equal under
the same applied field. The beam tube geometry-dependent
eddy current profile can be expressed as a function of � in
polar coordinates as follows:

dIð�Þ ¼ jdA ¼ _B

�
Rð�Þ2Dð�Þ cos�d�; (4)

where Rð�Þ ¼ ½a1ð�Þ þ a2ð�Þ�=2, Dð�Þ ¼ a2ð�Þ �
a1ð�Þ. The a1ð�Þ, a2ð�Þ are the inner and outer radii of
the beam tube, respectively. Here Rð�Þ and Dð�Þ can be
seen as the effective radius and the generalized thickness
of the beam tube shell, respectively. TheDð�Þ is defined in
a polar coordinate and not the same definition of the
thickness perpendicular to the beam tube surface. Inserting
Eq. (4) into Eq. (3) with geometry normalization lð�Þ ¼
Rð�Þ=R0, �ð�Þ ¼ Dð�Þ=D0 leads to the following expres-
sion for the eddy current-induced harmonic fields, where
R0, D0 are the maximum value of the Rð�Þ and Dð�Þ,
respectively:
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where r � Rmin,Rmin is the minimum beam tube radius. By
finding an appropriate geometry of the beam tube that
exhibits a constant ratio of �ð�Þ and lð�Þn�2, it becomes
possible to eliminate certain harmonics of the eddy
current-induced field. The geometry optimization will be
continued in the next section.
Equation (5) can be written for the whole space as

follows:
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Here �ðrÞ is the angle between horizontal plane and the
position where the radius is r. When r � Rmin we have
�ðrÞ ¼ �=2, and when r � R0 we have �ðrÞ ¼ 0.

III. TUBE GEOMETRYAND GENERATION OF
MULTIPOLE FIELDS

In this section we investigate the effects of the beam tube
geometry on the generation of multipole field. The region
r < Rmin from the center of the beam tube is the most
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crucial region to keep a high field homogeneity for good
particle beam dynamics. We find that the integrated part of
Eq. (5) is equal to the normal multipole coefficient bn,
namely,

bn ¼
Z �=2

0

�ð�Þ
lð�Þn�2

cos� cosn�d�: (7)

This equation shows how sensitively the beam tube shell
geometry parameters � and l will affect the field harmon-
ics. A modification of geometric values � and l as a
function of� enables us to eliminate the harmonic of order
n. As mentioned earlier, typically used beam tubes in
accelerators have circular, elliptical, or rectangular cross
sections. In the following, we investigate these three cases
mathematically for the generation of dominant multipoles,
and describe a possible procedure to avoid the generation
of higher field harmonics.

A. Circular cross section

Since �ð�Þ and lð�Þ are constant in a round beam tube,
Eq. (7) has orthogonality for n > 1 which makes bn ¼ 0.
For n ¼ 1, Eq. (5) reduces to

B�ð�Þ ¼ �2R0D0

�
�0

_B

��

�
cos�: (8)

As expected, this dipole field is linearly proportional to
the thickness D0 and radius R0 of the beam tube, and is
independent of r.

B. Elliptical cross section

In contrast to the circular shape, Rð�Þ of an ellipse is not
constant. Therefore, in addition to dipole components, we
also assume the presence of higher multipoles. A cross
sectional shape of a typical elliptical tube is shown in
Fig. 1. Using Eq. (5), Fig. 2 shows the corresponding
contour field profiles up to decapole. The decapole com-
ponent has negligibly small values compared to the dipole
and sextupole components. In order to compare the multi-
poles of each order n, normal multipole coefficient bn is

plotted in Fig. 3. In addition to the dipole component
n¼1, a significant magnitude can be observed for n ¼ 3.
This sextupole component represents the major order of
multipole field response from an elliptical beam tube.

a1(φ)
a2(φ)

b01

b02

φ

a01 a02

FIG. 1. Cross-sectional view of symmetric on quarter elliptical
beam tube. The a1ð�Þ, a2ð�Þ are inner and outer radii. The thick-
nesses on the horizontal and vertical axes are equal: ða02 � a01Þ ¼
ðb02 � b01Þ. The effective radius is defined as Rð�Þ ¼ ½a1ð�Þ þ
a2ð�Þ�=2 and generalized thickness Dð�Þ ¼ a2ð�Þ � a1ð�Þ.
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FIG. 2. Harmonic field B� (T) profiles up to n ¼ 5 in the region
of r � Rmin by Eq. (5) with geometry of Fig. 1. (a) Dipole n ¼ 1,
(b) sextupole n ¼ 3, (c) decapole n ¼ 5.

FIG. 3. The normal multipole coefficient bn of an elliptic beam
tube shown in Fig. 1. The sextupole component has maximum
value in higher orders of n � 3.
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In order to avoid the generation of a sextupole
component, we consider an elliptical beam tube whose
generalized thickness Dð�Þ varies with angle such that
�ð�Þ ¼ lð�Þ. This is equivalent to Dð�Þ ¼ �Rð�Þ with
constant parameter �. Hence, Dð�Þ changes with effective
radius. Figure 4 shows a schematic of the tube cross section
with thickness gradient. Thus, the thickness on the major
axis is greater than on the minor axis. Using this condition,
the coefficient bn takes on the following form:

bn ¼
Z �=2

0

1

lð�Þn�3
cos� cosn�d�: (9)

From Eq. (9) follows that lð�Þ has a degree of n� 3.
Therefore, for harmonic order of n ¼ 3, lð�Þn�3 is con-
stant in the angular range from 0 to �=2. The multipole
coefficient b3 is then zero. The calculated normal multi-
pole coefficient bn of each order n is shown in Fig. 5. As
expected, only a significant dipole component can be
observed. The sextupole component, however, disappears
completely in this beam tube geometry. Other higher multi-
poles have negligibly small values.

C. Rectangular cross section

Figure 6 shows the cross section of a beam tube with
rectangular shape. The top, bottom, and side walls are each
of constant thickness perpendicular to the surface. Hereby,
the ratio of the two thicknesses is the ratio of the beam tube
dimensions. The bottom and top walls are assumed to be
thinner than the side walls as shown in Fig. 6. With this
geometry, we easily find the lð�Þ and �ð�Þ are equal as
follows:

lð�Þ ¼ �ð�Þ ¼
8<
:

cos�0

cos� � � �0

sin�0

sin� � � �0

: (10)

We see that Eq. (10) has the same geometric condition of
an elliptical beam tubewith a thickness gradient. Therefore,
it is easy to predict that the sextupole will not appear in a
rectangular beam tube that has the wall thickness ratio as
shown in Fig. 6. The corresponding coefficient bn is

a1(φ)

a2(φ)
b01

b02

φ
a01 a02

FIG. 4. Elliptic cross section with thickness gradient. The
thickness is a function of effective radius Dð�Þ ¼ �Rð�Þn�2.
The equivalent normalized expression is �ð�Þ ¼ lð�Þn�2. This
model enables the deletion of selected harmonics of order n.

FIG. 5. The normal multipole coefficient bn of an elliptic beam
tube with geometry shown in Fig. 4. The sextupole component is
zero after changing the thickness with �ð�Þ ¼ lð�Þ.

a1(φ)

a2(φ)

a01

b01

b02

a02

φ
φ0

FIG. 6. Cross-sectional view of rectangular beam tube. The
horizontal and vertical conducting plates have different wall
thicknesses to fit each contact at �0.

FIG. 7. Corresponding normal multipole coefficients bn of
rectangular beam tube shown in Fig. 6. Even though the sextupole
component is successfully removed, other multipoles still show
noticeable magnitude compared to the dipole value. The inset
shows the case of horizontal and vertical plates that have the
same chamber wall thickness. It shows that all multipole re-
sponses are considerably higher than that of an elliptic beam tube.
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The multipole coefficient bn needs now to be divided
into two integration regions: the vertical and horizontal
planes. However, it can be combined when n ¼ 3. The
calculated values of bn is shown in Fig. 7. As expected, the
sextupole component n ¼ 3 is zero, though, higher har-
monics still have noticeable values compared to the case of
an elliptic beam tube.

For comparison, the plot inset in Fig. 7 shows normal
multipole coefficients bn of a rectangular beam tube whose
top, bottom, and side wall thicknesses are equal. In this
case, a significant sextupole component can be observed,
considering there is no orthogonality of the integration, all
odd-number harmonic responses appear.

IV. CONCLUSION

We have studied the relationship between the eddy
current-induced field and beam tube geometry in a dipole
magnetic field. We analytically described the multipole
fields in terms of beam tube geometry and applied our
model to commonly used beam tube shapes. A circular
beam tube generates only a dipole eddy current-induced
field. Furthermore, we found out that a tube with elliptical
cross section produces noticeable sextupole components
among other higher harmonics of order n � 3. However, it
seems possible to eliminate the sextupole component by
using an elliptical beam tube when its wall thickness is
angle dependent. Even higher multipoles can be reduced to
negligible magnitude by this simple shape modification. In
addition, we have demonstrated that a rectangular tube
whose bottom and top walls are thinner than its side

walls, when applying the correct ratio, does not induce a
sextupole field component in a ramping dipole field.
Nevertheless, other higher multipoles showed noticeable
magnitudes. The method to avoid multipole components of
n � 3 can be summarized with the relation of normalized
thickness and normalized radius, �ð�Þ ¼ lð�Þn�2. Based
on this relation, it should be possible to avoid selected
multipole components by a modification of the tube wall
thickness.
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