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Electron cooling is a well-established method to improve the phase space quality of ion beams in

storage rings. In the common rest frame of the ion and the electron beam, the ion is subjected to a drag

force and it experiences a loss or a gain of energy which eventually reduces the energy spread of the ion

beam. A calculation of this process is complicated as the electron velocity distribution is anisotropic and

the cooling process takes place in a magnetic field which guides the electrons. In this paper the cooling

force is calculated in a model of binary collisions (BC) between ions and magnetized electrons, in

which the Coulomb interaction is treated up to second order as a perturbation to the helical motion of

the electrons. The calculations are done with the help of an improved BC theory which is uniformly

valid for any strength of the magnetic field and where the second-order two-body forces are treated

in the interaction in Fourier space without specifying the interaction potential. The cooling force is

explicitly calculated for a regularized and screened potential which is both of finite range and

less singular than the Coulomb interaction at the origin. Closed expressions are derived for monochro-

matic electron beams, which are folded with the velocity distributions of the electrons and ions.

The resulting cooling force is evaluated for anisotropic Maxwell velocity distributions of the electrons

and ions.
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I. INTRODUCTION

In most experiments with particle beams a high phase
space density is desired. In electron cooling of ion beams
[1] this is achieved by mixing the ion beam with a comov-
ing electron beam which has a very small longitudinal
momentum spread. In the rest frame of the beams the
cooling process may be viewed as the stopping of ions in
an electron plasma [2–5]. More recently, electron cooling
has also been used in traps for precision experiments like
CPT tests with antihydrogen [6,7] or planned QED tests
with highly charged ions in HITRAP [8]. In these applica-
tions the presence of strong external magnetic fields con-
stitutes a theoretical challenge [9], as its influence on the
cooling which the magnetized electrons exert on the ions
(antiprotons) is not so obvious as earlier models might
suggest. In the dielectric theory the drag on the ion is
due to the polarization it creates in its wake. This can be
either calculated in linear response (LR) [10,11] or nu-
merically by a particle-in-cell (PIC) simulation of the
underlying nonlinear Vlasov-Poisson equation [12,13].
While the LR requires cutoffs to exclude hard collisions
of close particles the collectivity of the excitation can be

taken into account in both approaches. In the complemen-
tary binary collision (BC) approximation the drag force is
accumulated from the velocity transfers in individual col-
lisions. This has been calculated by scattering statistical
ensembles of magnetized electrons from the ions in the
classical trajectory Monte Carlo method (CTMC) [13–18],
and by treating the Coulomb interaction as a perturbation
to the helical motion of the electrons [19–25]. The ob-
served cooling force FðviÞ on an individual ion is obtained
by integrating with respect to the impact parameter and the
electrons velocity distribution. The ion velocity vi is mea-
sured with respect to the center of that distribution. As in
electron cooler the electrons are accelerated from the
cathode, their velocity distribution is flattened longitudi-
nally, but the spread does not vanish. Since the cooling
force on slow ions and therefore the cooling process
depends critically on the details of the velocity distribution,
a treatment employing a realistic velocity distribution is
desirable.
The purpose of this paper is the application of a second-

order perturbative BC model for calculating the magne-
tized cooling force on a uniformly moving individual
heavy ion as well as on a heavy ion beam. In previous
approaches [19,20] three regimes are identified, depending
on the relative size of the cyclotron radius, the distance of
the closest approach, and the pitch of the helix. The present
paper is based on our earlier studies in Refs. [21–25] where
the second-order energy transfers for individual collisions
of electron-ion [21–24], of any two identical particles, like
e.g. electron-electron [24] and finally of two gyrating
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arbitrary charged particles [25] have been calculated with
the help of an improved BC treatment. This treatment
is—e.g. unlike Refs. [19,20]—valid for any strength of
the magnetic field. In Sec. II we introduce a perturbative
binary collision formulation in terms of the binary force
acting between an ion and a magnetized electron, and
derive general expressions for the second-order (with
respect to the interaction potential) cooling forces. In
contrast to the previous investigations in Refs. [21–25],
we here consider the (macroscopic) cooling forces which
are obtained by integrating the binary force of an indi-
vidual electron-ion interaction with respect to the impact
parameter and the velocity distribution function of elec-
trons. That is, the cooling force for monoenergetic elec-
trons is folded with an anisotropic velocity distribution
which is typical for electron cooling of ion beams in
storage rings, where the velocity spread is much smaller
longitudinal than transverse to the guiding magnetic field.
The resulting expressions involve all cyclotron harmonics
of the electrons’ helical motion, and are valid for any
interaction potential and any strength of the magnetic
field and anisotropy of the velocity distribution of the
electron beam. In Sec. II C we present explicit analytic
expressions of this second-order cooling force for the
specific case of a regularized and screened interaction
potential [26,27] which is both of finite range and less
singular than the Coulomb interaction at the origin and
which includes as limiting cases the Debye (i.e.,
screened) and the Coulomb potentials. For comparison
of our expressions with previous approaches we consider
in Sec. III the corresponding asymptotic expressions for
large and small ion velocities and strong and vanishing
magnetic fields. The analytical expressions presented in
Sec. II C are evaluated numerically in Sec. IV using
parameters of the ESR storage ring at GSI [28–30]. In
particular, we compare our approach with the CTMC
simulations and the empirical formula of Parkhomchuk
[31,32]. In Sec. V we calculate the magnetized cooling
force averaged with respect to the ion beam velocity
distribution function. As in Sec. II C a similar anisotropic
distribution is used for averaging with respect to the ion
velocity distribution. Furthermore, in Sec. VA for the
resulting cooling force the asymptotic expressions for
large and small ion velocities and strong and vanishing
magnetic fields are given. In Sec. VB we compare our
approach with the experimental data of the ESR storage
ring [28–30]. The results are summarized and discussed in
Sec. VI. In Appendix A we compare our asymptotic
expressions for the cooling force with those obtained in
Ref. [33] and demonstrate that the deviations between
both treatments are related to the divergent nature of the
bare Coulomb interaction employed in Ref. [33]. The
regularization parameter and the screening length in-
volved in the interaction potential are specified and dis-
cussed in Appendices B and C.

II. THEORETICAL MODEL

A. Binary collision (BC) formulation

We consider two point charges with masses m, M and
charges �e, Ze, respectively, moving in a homogeneous
magnetic field B ¼ Bb. We assume that the particles
interact with the potential �Ze2UðrÞ with e2 ¼
e2=4�"0, where "0 is the permittivity of the vacuum
and r ¼ r1 � r2 is the relative coordinate of the colliding
particles. For two isolated charged particles this interac-
tion is given by the Coulomb potential, i.e. UCðrÞ ¼ 1=r.
In plasma applications UC is modified by many-body
effects and the related screening and turns into an effec-
tive interaction. In general, this effective interaction,
which is related to the wakefield induced by a moving
ion, is nonspherically symmetric and depends also on the
ion velocity. For any BC treatment, however, this com-
plicated ion-plasma interaction must be approximated by
an effective two-particle interaction UðrÞ. This effective
interaction U may be modeled by a spherically symmetric

Debye-like screened interaction UDðrÞ ¼ e�r=�=r with a
screening length �, given e.g. by the Debye screening
length �D, see, for example [34], in case of low ion
velocities and an effective velocity-dependent screening
length �ðviÞ for larger ion velocities vi, see [35–37].
Further details on the choice of the effective interaction
UðrÞ are given in Appendix B. To cure problems related
to the Coulomb singularity in a classical picture and
preventing particles (for Z > 0) from falling into the
center of these potentials, the screened interaction
UD is replaced with an effective interaction UR which is

regularized at the origin, taking for example URðrÞ ¼
ð1� e�r=�Þe�r=�=r [26,27]. Here the use of this regular-
ized interaction essentially represents an alternative im-
plementation of the standard (lower) cutoff procedure
needed to handle the hard collisions in a classical pertur-
bative approach. Hence, we consider � as a given constant
or as a function of the classical collision diameter (see
Appendix B).
In the presence of an external magnetic field, the

Lagrangian and the corresponding equations of particles
motion cannot, in general, be separated into parts describ-
ing the relative motion and the motion of the center of mass
(cm) [23]. However, in the case of heavy ions, i.e.M � m,
the equations of motion can be simplified by treating the
cm velocity vcm as a constant and equal to the ion velocity
vi, i.e. vcm ¼ vi ¼ const. Then the equation of relative
motion turns into

_vðtÞ þ!c½vðtÞ � b� ¼ �!c½vi � b� � Ze2

m
f½rðtÞ�; (1)

where vðtÞ ¼ _rðtÞ ¼ veðtÞ � vi is the relative electron-ion
velocity, �Ze2f½rðtÞ� (f ¼ �@U=@r) is the force exerted
by the ion on the electron, and !c ¼ eB=m is the electron
cyclotron frequency.
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It is now useful to introduce the velocity correction
through relations �vðtÞ ¼ veðtÞ � ve0ðtÞ ¼ vðtÞ � v0ðtÞ,
where ve0ðtÞ and v0ðtÞ are the unperturbed electron and
relative velocities, respectively, with v0ðtÞ ¼ _r0ðtÞ ¼
ve0ðtÞ � vi,

r 0ðtÞ¼R0þvrtþa½usinð!ctÞ�½b�u�cosð!ctÞ�; (2)

� _vðtÞ þ!c½�vðtÞ � b� ¼ �Ze2

m
f½rðtÞ� (3)

and �vðtÞ ! 0 at t ! �1. In Eq. (2) u ¼ ðcos’; sin’Þ is
the unit vector perpendicular to the magnetic field, the
angle ’ is the initial phase of the electron’s helical motion,
vek and ve? (with ve? � 0) are the unperturbed compo-

nents of the electron velocity parallel and perpendicular to
b, respectively, vr ¼ vekb� vi is the relative velocity of

the guiding center of the electrons, and a ¼ ve?=!c is the
cyclotron radius. In Eq. (2), the variables u and R0 are
independent and are defined by the initial conditions.
In Eq. (3) rðtÞ ¼ reðtÞ � vit is the ion-electron relative
coordinate. We also introduce the variable s ¼ R0? ¼
R0 � nrðnr �R0Þ which is the component of R0 perpen-
dicular to the relative velocity vector vr with nr ¼ vr=vr.
From Eq. (2) we can see that s is the distance of closest
approach between the ion and the guiding center of the
electron’s helical motion.

We seek an approximate solution of Eq. (3) in which
the interaction force between the ion and electrons is
considered as a perturbation. Thus we are looking for a
solution of Eq. (3) for the variables r and v in a perturbative
manner r ¼ r0 þ r1 þ � � � , v ¼ v0 þ v1 þ � � � , where
r0ðtÞ, v0ðtÞ are the unperturbed ion-electron relative coor-
dinate and velocity, respectively, rnðtÞ, vnðtÞ (n ¼ 1; 2; . . . )
are the nth order perturbations of rðtÞ and vðtÞ, which are
proportional to Zn.

The parameter of smallness which justifies such kind of
expansion can be read off from a dimensionless form of the
equation of motion [Eq. (3)] by scaling lengths in units of
the screening length �, velocities in units of the initial
relative velocity v0, and time in units of �=v0. In terms

of the scaled quantities, ~r, �~v, ~f ¼ �2f, and ~!c ¼ !c�=v0,
Eq. (3) turns into

� _~vðtÞ þ ~!c½�~vðtÞ � b� ¼ � Ze2

mv2
0�

~f½~rðtÞ�: (4)

A perturbative treatment is essentially applicable in cases
where jZje2=mv2

0� < 1, that is, when the (initial) kinetic

energy of relative motion mv2
0=2 is large compared to the

characteristic potential energy jZje2=� in a screened
Coulomb potential. Or expressed in velocities, the initial
relative velocity v0 must exceed the characteristic velocity

vd ¼ ðjZje2=m�Þ1=2, that is, vd here demarcates the
perturbative from the nonperturbative regime. If this
condition is met not only for a single ion-electron collision
but in the average over the electron distribution, e.g. by

replacing v0 with the averaged initial ion-electron relative
velocity hv0i, i.e.

hv0i * vd ¼
�jZje2
m�

�
1=2

; (5)

we are in a regime of weak ion target, or here, weak ion-
electron coupling, which allows the use of perturbative
treatments [besides BC also e.g. linear-response (LR)].
For nonmagnetized electrons this is discussed in much
detail in Refs. [35,36]. Even though the particle trajectories
are much more intricate in the presence of an external
magnetic field, the given definitions and demarcations of
coupling regimes are basically the same for magnetized
electrons. That is, the applicability of a perturbative treat-
ment is essentially related to the charge state Z of the ion
and the typical range � of the effective interaction, but not
directly on the strength B of the magnetic field. The latter
may affect the critical velocity vd only implicitly via a
possible change of the effective screening length � with B.
The equation for the first-order velocity correction is

obtained from Eq. (3) replacing on the right-hand side the
exact relative coordinate rðtÞ by r0ðtÞ with the solutions
v1ðtÞ ¼ _r1ðtÞ and

r1ðtÞ ¼ Ze2

m
ð� bQkðtÞ þ Refb½b �Q?ðtÞ�

�Q?ðtÞ þ i½b�Q?ðtÞ�gÞ: (6)

Here we have introduced the following abbreviations:

QkðtÞ ¼
Z t

�1
b � f½r0ð�Þ�ðt� �Þd�;

Q?ðtÞ ¼ 1

i!c

Z t

�1
f½r0ð�Þ�½ei!cðt��Þ � 1�d�

(7)

and have assumed that all corrections vanish at t ! �1.
As will be shown below, Eqs. (2) and (6) completely
determine the second-order cooling force on the ion.

B. Second-order cooling forces

We now consider the interaction process of an individual
ion with a homogeneous electron beam described by a
velocity distribution function fðveÞ and a density ne. We
assume that the ion experiences independent binary colli-
sions (BCs) with the electrons. The total cooling force
acting on the ion is then obtained by multiplying the binary
force Ze2f½rðtÞ� by the element of the electron relative flux
nevrd

2sdt (where s is the impact parameter introduced
above which is perpendicular to the relative velocity vr)
and integrating with respect to time and folding with
velocity distribution of the electrons. The result reads

F ðviÞ ¼ Ze2ne
Z

dvefðveÞvr

Z
d2s

Z 1

�1
f½rðtÞ�dt (8)

and is an exact relation for uncorrelated BCs of the ion with
electrons. We evaluate this expression within a systematic
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perturbative treatment. First, we introduce the two-particle
interaction potential UðrÞ and the binary force fðrÞ is
written using Fourier transformation in space.

Furthermore, the factor eik�rðtÞ in the Fourier transformed
binary force is expanded in a perturbative manner as

eik�rðtÞ ’ eik�r0ðtÞf1þ i½k � r1ðtÞ�g, where r0ðtÞ and r1ðtÞ
are the unperturbed and the first-order corrected relative
coordinates, Eqs. (2) and (6), respectively. Thus the
binary force within second-order perturbative treatment
turns into

f ½rðtÞ� ¼ �i
Z

dkUðkÞkeik�rðtÞ

’ �i
Z

dkUðkÞkf1þ i½k � r1ðtÞ�geik�r0ðtÞ: (9)

The first and the second terms in the last part of Eq. (9)
correspond to the first- (f1) and the second-order
(f2) binary forces, respectively. We consider only the
second-order binary force f2 and the corresponding
force F2 with respect to the binary interaction since the
averaged first-order force F1 (related to f1) vanishes
due to symmetry reasons [21–25]. Within the second-
order perturbative treatment the cooling force can be
represented as

F2 ¼ Ze2ne
Z

dvefðveÞvr

Z
d2s

Z
dkUðkÞk

�
Z 1

�1
½k � r1ðtÞ�eik�r0ðtÞdt: (10)

From Eq. (10) it is seen that the second-order cooling
force, F2, is proportional to Z2.
Substituting Eqs. (6) and (7) into Eq. (10) and writing

the binary force in expression (7) in terms of Fourier
transformed potential results in

F2¼ iZ2e4ne
m

Z
dvefðveÞvr

Z
d2s

Z
dkdk0UðkÞUðk0Þk

�
Z 1

�1
eik�r0ðtÞdt

Z t

�1
eik

0�r0ð�Þd�
�
g0ðt��Þ

þ g1
!c

sin½!cðt��Þ�� g2
!c

f1�cos½!cðt��Þ�g
�
; (11)

where g0¼ðk�bÞðk0 �bÞ, g1 ¼ ðk � k0Þ � ðk � bÞðk0 � bÞ,
g2 ¼ ðk � ½k0 � b�Þ. The time integral in Eq. (11) can be
performed using the Fourier series expansion of the

exponential function eiz sinð!tÞ ¼ P1
n¼�1 JnðzÞein!t, where

Jn are the Bessel functions of the nth order (see, e.g.,
Ref. [38]). This yields

F2 ¼ 2�iZ2e4ne
m

Z
dvefðveÞvr

Z
d2s

Z
dkdk0UðkÞUðk0Þkeiðkþk0Þ�R0

X1
n;m¼�1

eiðnþmÞ’e�in��im�0Jnðk?aÞJmðk0?aÞ�½�nðkÞ

þ �mðk0Þ�
�
� g0
½�mðk0Þ � i0�2 þ

g1
2!c

�
1

�mþ1ðk0Þ � i0
� 1

�m�1ðk0Þ � i0

�

þ ig2
2!c

�
2

�mðk0Þ � i0
� 1

�mþ1ðk0Þ � i0
� 1

�m�1ðk0Þ � i0

��
: (12)

Here tan� ¼ ky=kx, kk ¼ ðk � bÞ, and k? are the compo-
nents of k parallel and transverse to b, respectively,
�nðkÞ ¼ n!c þ k � vr, and ’ is the initial phase
of the electron as defined in the previous section.
Note that expression (12) involves all cyclotron
harmonics.

Next, we integrate with respect to the initial phase ’ and

impact parameter s. For that purpose we recall that the

volume element dve can be represented in cylindrical

coordinates as dve ¼ dvekve?dve?d’, where vek and

ve? are the electron velocity components parallel and

transverse to b, respectively. The s integration is enabled

by using the relation eik�R0 ¼ ei�kR0kei�?�s, where �k ¼
ðk � nrÞ, �? ¼ k� nrðk � nrÞ, i.e. the component of k
parallel and transverse to nr. Performing now the ’ and

s integrations results in

F2 ¼ �ð2�Þ5Z2e4ne
2m

Z 1

�1
dvek

Z 1

0
fðvek; ve?Þve?dve?

�
Z

dkjUðkÞj2k X1
n¼�1

J2nðk?aÞ
�
k2k�

0½�nðkÞ�

þ k2?
2!c

f�½�nþ1ðkÞ� � �½�n�1ðkÞ�g
�
; (13)

where the prime indicates the derivative with respect to the
argument. For deriving Eq. (13) we assumed an axially
symmetric velocity distribution fðveÞ ¼ fðvek; ve?Þ and

used �ð�kÞ�ð�?Þ ¼ �ðkÞ.
The n summation in Eq. (13) can be done using the

summation formula for the Bessel functions [38]. We then
obtain
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F2 ¼ ð2�Þ4Z2e4ne
m

Z 1

�1
dvek

Z 1

0
fðvek; ve?Þve?dve?

�
Z

dkjUðkÞj2k
Z 1

0

�
k2k þ k2?

sinð!ctÞ
!ct

�

� J0

�
2k?a sin

!ct

2

�
sinðk � vrtÞtdt: (14)

This is a general expression for the magnetized cooling
force acting on an individual ion. It has been derived within
second-order perturbation theory but without any restric-
tion on the strength of the magnetic field B. The limiting
cases of Eq. (14) at vanishing B and in the presence of an
infinitely strong magnetic field are briefly studied in
Sec. III A (see also Appendix A).

C. Cooling force for a regularized and screened
Coulomb potential

In electron cooling of ion beams the velocity distribution
of the electrons is anisotropic which is a typical situation

for electron coolers. It is usually modeled by a two-
temperature-anisotropic Maxwell distribution with differ-
ent temperatures for the longitudinal and transverse
degrees of freedom. The velocity distribution relevant for
the averaging in Eq. (14) is thus given by

fðvek; ve?Þ ¼ 1

ð2�Þ3=2v2
th?vthk

e�v2
e?=2v

2
th?e�v2

ek=2v
2
thk ; (15)

where the thermal velocities are related to electron
temperatures by v2

th? ¼ T?=m, v2
thk ¼ Tk=m (here the

temperatures are measured in energy units). In this
case the transverse (F? ¼ F� bFk) and longitudinal

(Fk ¼ b � F) components of the cooling force (14) with

Eq. (15) (we dropped the index 2 in F2 for simplicity) after
velocity integrations (see Ref. [38]) can be represented in
the forms

�F?ðviÞ
FkðviÞ

�
¼�8Z2e4ne

m!2
c

ð2�Þ4
4

Z 1

0
dkk

Z 1

0
U2ðkÞk?dk?

Z 1

0
e�ðt2=2Þk2ka2ke�k2?a

2
?ð1�costÞ

�
k2kþk2?

sint

t

��k?cosðkkaiktÞJ1ðk?ai?tÞ
kk sinðkkaiktÞJ0ðk?ai?tÞ

�
tdt

(16)

with F?ðviÞ ¼ vi?
vi?

F?ðviÞ. Here we have assumed a spheri-
cally symmetric potential UðkÞ ¼ UðkÞ and have intro-
duced the thermal cyclotron radii of the electrons
a? ¼ vth?=!c, ak ¼ vthk=!c, and ai? ¼ vi?=!c, aik ¼
vik=!c. In general the cooling force is thus anisotropic
with respect to the ion velocity vi.

For the Coulomb interactionUðkÞ ¼ UCðkÞ, the full two-
dimensional integration over the s space results in a loga-
rithmic divergence of the k integration in Eqs. (13) and
(14). To cure this, cutoff parameters kmin and kmax must be
introduced, see, e.g., Refs. [21–23] for details. Instead of

doing so, we here employ the regularized screened poten-
tial UðrÞ ¼ URðrÞ introduced in Sec. II A with the Fourier
transform,

URðkÞ ¼ 2

ð2�Þ2
�

1

k2 þ ��2
� 1

k2 þ d�2

�
; (17)

where d�1 ¼ ��1 þ ��1.
Substituting the interaction potential (17) into Eq. (16)

and performing the kk integration we arrive, after lengthy

but straightforward calculations, at

FkðviÞ¼�4
ffiffiffiffi
�

p
Z2e4ne

mv2
thk

�k
Z 1

0

dt

t

Z 1

0
d��½c ðt;�Þ�exp

�
��2

k�
2� �2

?�
2

Gðt;�Þ
�
�2ð1��2Þ
Gðt;�Þ

�
3�2�2

k�
2

þ 2

Gðt;�Þ
�
1� �2

?�
2

Gðt;�Þ
�
sinð	tÞ
	t

�
; (18)

F?ðviÞ¼�4
ffiffiffiffi
�

p
Z2e4ne

mv2
thk

�?
Z 1

0

dt

t

Z 1

0
d��½c ðt;�Þ�exp

�
��2

k�
2� �2

?�
2

Gðt;�Þ
�
�2ð1��2Þ
G2ðt;�Þ

�
1�2�2

k�
2

þ 2

Gðt;�Þ
�
2� �2

?�
2

Gðt;�Þ
�
sinð	tÞ
	t

�
; (19)

where we have introduced the dimensionless quantities �k ¼ vik=
ffiffiffi
2

p
vthk, �? ¼ vi?=

ffiffiffi
2

p
vthk, 	 ¼ !c�=vthk, and � ¼

T?=Tk is the anisotropy parameter of the electron beam. Here c ðt; �Þ ¼ ðt2=2Þð1� �2Þ=�2, Gðt; �Þ ¼ ��ðtÞ�2 þ 1� �2,

�ðtÞ ¼ ð 2	t sin	t2 Þ2, and
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�ðzÞ ¼ e�z þ e�ß2z � 2

ß2 � 1

1

z
ðe�z � e�ß2zÞ; (20)

where ß ¼ �=d ¼ 1þ �=�. Equations (18) and (19) for
the parallel and transversal components of the drag force,
respectively, are the main results of this paper. In the next
section we compare systematically these expressions as
well as general Eq. (14) with previous approaches.

III. COMPARISON WITH PREVIOUS
APPROACHES

Previous theoretical expressions for the cooling force
which have been extensively discussed by electron cooling
community (see, e.g., Refs. [5,9] for a review) basically
concern the two limiting cases of vanishing and infinitely
strong magnetic fields. We therefore consider our previ-
ously presented approach in some detail for these two
cases, first for arbitrary interactions UðkÞ and electron
distributions fðveÞ as given by Eq. (14) and later for the
specific situation of the regularized interaction (17) and the
velocity distribution (15) as given by Eqs. (18) and (19).

A. Cooling force Eq. (14) at vanishing and infinitely
strong magnetic fields

For B ! 0, i.e. at vanishing magnetic field,
sinð!ctÞ=ð!ctÞ ! 1 and the argument of the Bessel func-
tion in Eq. (14) should be replaced by k?ve?t. Then,
denoting the second-order force at vanishing magnetic
field as F0 and using an integral representation of the
Bessel function J0, one obtains

F0ðviÞ ¼ � ð2�Þ3Z2e4ne
m

Z
fðveÞdve

Z
dkjUðkÞj2k2k

� @

@!

Z 1

0
J0ðk? � ve?tÞ cosð!tÞdt

¼ 4�Z2e4ne
m

@

@vi

Z
G0ð�vrÞfðveÞdve (21)

with

G0ð�vrÞ ¼ ð2�Þ3
4

Z
jUðkÞj2�ðk � �vrÞk2dk: (22)

Here ! ¼ k � vr, �vr ¼ vr þ ve? ¼ ve � vi, ve and �vr are
the three-dimensional electron and the ion-electron relative
velocities, respectively. The other quantities in Eqs. (21)
and (22) have been introduced in Sec. II. In particular,
assuming spherically symmetric potential with UðkÞ ¼
UðkÞ, from Eq. (22) it is straightforward to obtainG0ð�vrÞ ¼
G0ð �vrÞ ¼ ð1= �vrÞU and thus

F 0ðviÞ ¼ 4�Z2e4ne
m

U
Z ve � vi

jve � vij3
fðveÞdve; (23)

where U is the generalized Coulomb logarithm,

U ¼ ð2�Þ4
4

Z 1

0
U2ðkÞk3dk: (24)

Employing the regularized and screened potential UðkÞ
given by Eq. (17), the generalized Coulomb logarithm is
U ¼ UR ¼ �ðßÞ (see also Refs. [22–25]), where

�ðßÞ ¼ ß2 þ 1

ß2 � 1
lnß� 1: (25)

Taking the bare Coulomb interaction with UðkÞ ¼
UCðkÞ � 1=k2, Eq. (24) diverges logarithmically at k ! 0
and k ! 1 and two cutoffs kmin ¼ 1=rmax and kmax ¼
1=rmin must be introduced as discussed in Sec. II C. In
this case the generalized Coulomb logarithm takes the
standard form U ¼ UC ¼ lnðkmax=kminÞ ¼ lnðrmax=rminÞ.
While the cooling force (23) is even at vanishing mag-

netic field anisotropic due to the anisotropic velocity dis-
tribution of the electrons, the asymptotic expression of (23)
at high ion velocities is isotropic and can be easily derived
by replacing �vr ¼ jve � vij with the ion velocity �vr ’ vi

which results in

F 0ðviÞ ’ � 4�Z2e4ne
mv2

i

U
vi
vi

: (26)

At an infinitely strong magnetic field B ! 1 the term in
Eq. (14) proportional to k2? and the argument of the Bessel

function vanish since the cyclotron radius a ! 0. In this
limit, denoting the force as F1ðviÞ, we arrive at

F1ðviÞ ¼ 2�Z2e4ne
m

@

@vi

Z
G1ðvrÞfeðveÞdve; (27)

where

G1ðvrÞ ¼ ð2�Þ3
2

Z
jUðkÞj2�ðk � vrÞk2kdk: (28)

Again, assuming a spherically symmetric interaction po-
tential from Eq. (28) we obtain G1ðvrÞ ¼ ðv2

i?=v
3
rÞU,

where vi? is the component of the ion velocity perpen-
dicular to the magnetic field and U is given by Eq. (24).
InsertingG1ðvrÞ ¼ ðv2

i?=v
3
rÞU into Eq. (27) then provides

the two components of the cooling force,

F1kðviÞ ¼ 6�Z2e4ne
m

U
Z v2

i?vrk
v5
r

feðveÞdve; (29)

F1?ðviÞ¼2�Z2e4ne
m

U
Z vi?ð2v2

rk�v2
i?Þ

v5
r

feðveÞdve; (30)

where vrk ¼ vek � vik. The corresponding high-velocity

asymptotic expressions, replacing now vr by �vi, are
given by

F1kðviÞ ’ � 6�Z2e4ne
mv2

i

U
v2
i?vik
v3
i

; (31)
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F1?ðviÞ ’ 2�Z2e4ne
mv2

i

U
vi?ð2v2

ik � v2
i?Þ

v3
i

: (32)

Note that Eqs. (31) and (32) can be also obtained from
Eqs. (29) and (30), respectively, in the case of a completely
flattened distribution function of the electrons in the limit
Tk ! 0 when the distribution function (15) is given by a

delta function with respect to vek.
Equations (23), (29), and (30) and their asymptotic

expressions for high velocities [Eqs. (26), (31), and (32),
respectively] assuming the Coulomb interaction potential
with U ¼ UC yield the cooling forces obtained previ-
ously in the cases of vanishing and infinitely strong mag-
netic fields, see e.g. [9], respectively. Equations (21) and
(27) with a regularized interaction potential thus agree with
the similar results derived by Derbenev and Skrinsky in
Ref. [9] except for the different Coulomb logarithmsU. A
more detailed discussion and comparison of UR ¼ �ðßÞ
given by Eq. (25) and the standard Coulomb logarithm
UC ¼ lnðrmax=rminÞ can be found in Appendix B. We like
to emphasize here that the Coulomb logarithm UR for the
regularized interaction potential has the advantage to
allow closed analytic expressions and converging integrals
and avoids any introduction of lower and upper cutoffs
‘‘by hand’’ in order to restrict the domains of integration.
Moreover, employing the bare Coulomb interaction
may, as pointed out by Parkhomchuk [33], result in asymp-
totic expressions which are essentially different from
Eqs. (29)–(32). In Appendix Awe show how this is related
to the divergent nature of the bare Coulomb interaction.

B. Some limiting cases of Eqs. (18) and (19)

More specifically we next discuss some asymptotic re-
gimes of the cooling forces [Eqs. (18) and (19)] when
assuming the regularized interaction (17) and the two-
temperature velocity distribution (15). In the high-velocity
limit where vi > ð!c�; vthk;?Þ only small t contribute to

the cooling forces (18) and (19) due to the short time
response of the electrons to the moving fast ion. In this
limit we have sinð	tÞ=	t!1 and Gðt; �Þ ! ��2 þ 1� �2.
The remaining t integration can be performed explicitly.
This integral is given by

Z 1

0

dt

t
�½c ðt; �Þ� ¼ lim

"!0þ

1

2

Z 1

"

dz

z
�ðzÞ

¼ lim
"!0þ

ß2 þ 1

2ðß2 � 1Þ ½E1ð"Þ � E1ðß2"Þ� � 1

� �ðßÞ: (33)

Here z ¼ ðt2=2Þð1=�2 � 1Þ was introduced as a new
variable of integration, the function �ðzÞ is determined
by Eq. (20), E1ðzÞ ¼ �Eið�zÞ is the exponential integral
which behaves at small argument (z ! 0) as E1ðzÞ ’
lnð1=zÞ � 
 [38], where 
 is the Euler’s constant and
�ðßÞ is the generalized Coulomb logarithm [Eq. (25)].

The remaining expressions do not depend on the magnetic
field, i.e. !c, as a natural consequence of the short time
response of the magnetized electrons. In fact,
sinð	tÞ=	t ! 1 and Gðt; �Þ ! ��2 þ 1� �2 and the re-
lated t integration (33) are also valid for vanishing mag-
netic field 	 ! 0. Changing now in the remaining �

integrations the variable � ! �=½�2 þ �ð1� �2Þ�1=2 turns
Eqs. (18) and (19), after some integration by parts, into

Fk;?ðviÞ ¼ � 8
ffiffiffiffi
�

p
Z2e4ne

mv2
thk;?

�ðßÞ�k;?

�
Z 1

0
exp

�
� �2

k�
2

�2 þ �ð1� �2Þ �
�2
?�

2

�

�

� �2d�

½�2 þ �ð1� �2Þ�q ; (34)

where q ¼ 3=2 and q ¼ 1=2 for FkðviÞ and F?ðviÞ, respec-
tively. Here again the scaled ion velocities �k ¼
vik=

ffiffiffi
2

p
vthk and �? ¼ vi?=

ffiffiffi
2

p
vthk have been used. The

cooling forces (34) are anisotropic with respect to the ion
velocity vi due to the anisotropic velocity distribution (15)
of the electrons, and they represent the two limiting cases
of Eqs. (18) and (19), namely high velocities at arbitrary
magnetic field and arbitrary velocities at vanishing field.
Of course, expression (34) can be also obtained by per-
forming the remaining integration in the nonmagnetized
cooling force (23) using the anisotropic velocity distribu-
tion (15) and U ¼ �ðßÞ.
The cooling forces in (34) are additionally simplified

when the transverse thermal velocity spread of the elec-
trons vth? is much larger than the longitudinal one vthk
(i.e. T? � Tk or � � 1) which is a typical situation for

electron coolers. In this case we have

Fk;?ðviÞ ¼ � 8
ffiffiffiffi
�

p
Z2e4ne

mv2
thk;?

�ðßÞ�k;?

�
Z 1

0
exp

�
��2

?�
2

�
� �2

k�
2

�ð1� �2Þ
�

�2d�

½�ð1� �2Þ�q ;
(35)

where the numerical factor q is the same as introduced
above.
A further increase of the ion velocity at T? > Tk finally

yields

FðviÞ’�4�Z2e4ne
mv2

i

�ðßÞvi
vi

�
erfð�= ffiffiffi

�
p Þ� 2ffiffiffiffiffiffiffi

��
p �e��2=�

�

’�4�Z2e4ne
mv2

i

�ðßÞvi
vi

; (36)

where �2 ¼ �2
k þ �2

? ¼ v2
i =2v

2
thk and erfðzÞ is the error

function. At sufficiently high velocities the cooling force
(36) becomes isotropic and does not depend explicitly on
the electron beam temperatures Tk and T? [see the last part
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of Eq. (36)]. However, these temperatures can be involved
in the generalized Coulomb logarithm in Eq. (36). Note
that Eqs. (34)–(36) can be also derived from the general
cooling force (21) inserting here the distribution function
(15) and assuming the regularized interaction potential, i.e.
U ¼ �ðßÞ. Besides, Eq. (36) completely agrees with the
asymptotic expression (26) by taking U ¼ �ðßÞ.

At B ! 0 and small velocities (vi < vthk;?) the cooling
forces (34) become highly anisotropic and are given by

FðviÞ ’ � 8
ffiffiffiffi
�

p
Z2e4ne

3mv2
thk

�ðßÞ½n�kB1ð�Þ þ �?B2ð�Þ�; (37)

where n is a unit vector along the axis of the electron beam
anisotropy, and

B1ð�Þ ¼ 3

�� 1

�
1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij1� �jp p

�
1ffiffiffi
�

p
��

; (38)

B2ð�Þ ¼ 3

2ð�� 1Þ
�

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij1� �jp p

�
1ffiffiffi
�

p
�
� 1

�
(39)

with B1ð1Þ ¼ B2ð1Þ ¼ 1, and

pðxÞ ¼
�
arccosx x < 1
lnðxþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
Þ; x > 1:

(40)

Now we consider the situation when the magnetic field
is very strong and the electron cyclotron radius is the
smallest length scale, !c� � ðvi; vthk;?Þ and the friction

force is only weakly sensitive to the transverse electron
velocities and, hence, is affected only by their longitudinal
velocity spread. In this limit sinð	tÞ=	t ! 0 andGðt; �Þ !
1� �2 we obtain from Eqs. (18) and (19) after some
lengthy but straightforward calculations,

Fk;?ðviÞ ¼ � 4
ffiffiffiffi
�

p
Z2e4ne

mv2
thk

�ðßÞ�k;?
Z 1

0
exp

�
��2

k�
2

� �2
?�

2

1� �2

�
ðC� 2�2

k�
2Þ �2d�

ð1� �2Þq ; (41)

where C ¼ 3, C ¼ 1 and q ¼ 0, q ¼ 1 for FkðviÞ and

F?ðviÞ, respectively. As expected the cooling forces in
Eq. (41) are independent of the transverse temperature
T? of the electrons except that T? may be involved in
the Coulomb logarithm �ðßÞ.

Expressions in Eq. (41) [as well as Eq. (34)] are very
convenient for numerical calculations since they involve
one-dimensional integrals with finite range. Similar ex-
pressions have been obtained by Pestrikov [39] where,
however, the drag force involves an integral with infinite
range. Up to the definition of the Coulomb logarithm
[i.e., U ¼ �ðßÞ in our case and U ¼ UC in Ref. [39] ]
both expressions are identical. This can be easily shown

after changing the variable � in (41) to x ¼ ½�2
k�

2 þ
�2
?�

2=ð1� �2Þ�1=2 and some subsequent rearrangement.

In particular, Eq. (41) is essentially simplified for a
completely flattened distribution function of the electrons
in the limit Tk ! 0, i.e. a deltalike distribution function

with respect to vek in Eq. (15). In this case it is straightfor-
ward to show that the parallel and transverse cooling forces
in Eq. (41) are identical with Eqs. (31) and (32), respec-
tively, with U ¼ �ðßÞ.
In the high-velocity limit with !c� � vi � vthk;?, the

parallel and transverse components of the cooling force,
Eq. (41), become

FkðviÞ ’ ��Z2e4ne
mv2

thk
�ðßÞ�k

�3

�
3�2

?
�2

erfð�Þ

þ 2ffiffiffiffi
�

p �e��2

��2
k

�2
ð3þ 2�2Þ � 3

��
; (42)

F?ðviÞ ’ ��Z2e4ne
mv2

thk
�ðßÞ�?

�3

��
1� 3�2

k
�2

�
erfð�Þ

þ 2ffiffiffiffi
�

p �e��2

��2
k

�2
ð3þ 2�2Þ � 1

��
; (43)

With further increase of the ion velocity we can then
neglect the exponential terms in Eqs. (42) and (43) while
erfð�Þ ! 1 which yields the asymptotic expressions
Eqs. (31) and (32) [with U ¼ �ðßÞ], corresponding again
as well to the often considered limit Tk ! 0.
The forces given by Eqs. (42) and (43) [or Eqs. (31) and

(32) with U ¼ �ðßÞ] decay as the corresponding force
(36) like �v�2

i with the ion velocity. But here, the parallel
force (31) vanishes at vi? ¼ 0 which is a consequence of
the presence of a strong magnetic field, where the electrons
move parallel to the magnetic field. If the ion moves also
parallel to the field (i.e. vi? ¼ 0) the averaged friction
force must vanish within the BC treatment for symmetry
reasons. The sign of the transverse force (32) depends
on the angle between ion velocity and the magnetic field
and tends to defocus ions with small transverse velocity,

vi? <
ffiffiffi
2

p
vik while focusing them in the opposite case.

Finally, we also investigate the case of small velocities at
strong magnetic fields. Introducing a new integration vari-
able y2 ¼ �2

?�
2=ð1� �2Þ in Eq. (41) and considering a

small parallel velocity (�k 	 1) we arrive at

FkðviÞ’4
ffiffiffiffi
�

p
Z2e4ne

mv2
thk

�ðßÞ�k
@

@�
�2 @2

@�2
½e�K0ð�Þ�

¼�2
ffiffiffiffi
�

p
Z2e4ne

mv2
thk

�ðßÞ�k�2
?e

�2
?=2

�
ð1þ2�2

?ÞK1

�
�2
?
2

�

�ð3þ2�2
?ÞK0

�
�2
?
2

��
; (44)
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F?ðviÞ ’ � 2
ffiffiffiffi
�

p
Z2e4ne

mv2
thk

�ðßÞ�?
@

@�
�

@

@�
½e�K0ð�Þ�

¼ � 2
ffiffiffiffi
�

p
Z2e4ne

mv2
thk

�ðßÞ�?e�
2
?=2

�
�
ð�2

? þ 1ÞK0

�
�2
?
2

�
� �2

?K1

�
�2
?
2

��
; (45)

where � ¼ �2
?=2. As expected the parallel force is linear

with respect to �k decreasing with an increasing transverse
component �? of the ion velocity as Fk � ��3

? . The trans-

verse force does not depend on �k in this limit and falls as

F? � ��2
? with the transverse velocity.

Considering now a small transverse velocity �? 	 1
yields

FkðviÞ ¼ � 4
ffiffiffiffi
�

p
Z2e4ne

mv2
thk

�ðßÞ�ke
��2

k ; (46)

F?ðviÞ¼�4
ffiffiffiffi
�

p
Z2e4ne

mv2
thk

�ðßÞ�?

�
�
e��2ð1�2�2Þln

�
2�

�?

�
þHð�Þ

�
; (47)

where two functions have been introduced:

Hð�Þ ¼ 1
2e

��2ð2�2 � 1ÞEið�2Þ � 1þ Y0ð�Þ; (48)

Yð�Þ ¼ �2�3
Z 1

0
e��2x2 lnð1� xÞxdx: (49)

Here EiðzÞ is the exponential integral and the prime in
Eq. (48) indicates the derivative with respect to the argu-
ment. The function Hð�Þ at small (� 	 1) and large
(� � 1) values of the argument behaves as Hð�Þ ’
lnð1=�Þ � 1� 
=2 and Hð�Þ ’ � ffiffiffiffi

�
p

=2�3, respectively,
where 
 is Euler’s constant. Now it is seen that at
�? 	 1 the parallel force (46) decays exponentially (i.e.
much faster) with �k in contrast to the power law decays

considered above. The transverse force (47), on the other
hand, leads at low transverse ion velocities �? to a term
which behaves as ��? lnð1=�?Þ. Thus the friction coeffi-
cient in the transverse direction diverges logarithmically at
small �?. This is a quite unexpected behavior compared to
the well-known linear velocity dependence without mag-
netic field (see asymptotic expressions above). Finally,
with increasing parallel velocity �k of the ion the logarith-

mic term vanishes exponentially and the transverse force
behaves as F? � �?=�3.

IV. FEATURES OF THE COOLING FORCES
EQS. (18) AND (19) AND COMPARISON

WITH CTMC SIMULATIONS

In this section we study some general properties of
the cooling forces on individual ions resulting from the
BC approach by evaluating Eqs. (18) and (19) numerically.

We consider both the effects of the magnetic field and of a
variation of the shape of the electron distribution on the
cooling forces at various transverse velocities vi? of the
ions. The density ne ’ 106 cm�3 and the temperatures
Tk ’ 0:1 meV and T? ’ 0:11 eV of the electron beam

are the same as in the experiments at the ESR storage
ring [28–30] (see also Sec. V for further details) and are
typical for many other electron cooling experiments. Thus,
the electron beam is strongly anisotropic with T? � Tk.
As an example we choose C6þ and Xe54þ fully stripped
ions for our calculations. In all examples considered below
the regularization parameter �0 ¼ 10�9 m and thereby
meets the condition �0 	 b0ð0Þ, i.e. �0 does not affect
noticeably the cooling forces (18) and (19) at low and
medium velocities as shown in Appendix C.
For a BC description beyond the perturbative regime a

fully numerical treatment is required. In the present cases of
interest such a numerical evaluation of the cooling forces is
rather intricate, but can be successfully implemented
by classical trajectory Monte Carlo (CTMC) simulations
[14–16]. In the CTMC method the trajectories for the ion-
electron relative motion are calculated by a numerical in-
tegration of the equations ofmotion (1). The cooling force is
then deduced by averaging over a large number (typically
105–106) of trajectories employing aMonte Carlo sampling
for the related initial conditions. For a more detailed de-
scription of the method we refer to Refs. [23–25]. Both the
analytic perturbative treatment and the nonperturbative
numerical CTMC simulations are based on the same BC
picture and use the same effective spherical screened inter-
action UðrÞ. The following comparison of both these ap-
proaches thus essentially intends to check the validity and
range of applicability of the perturbative approach as it has
been outlined in the preceding sections.
First we consider the effect of the strength of the mag-

netic field on the second-order cooling forces. In Figs. 1–3
the parallel (� Fk, left panels) and transverse (� F?, right
panels) cooling forces (in eV=m) given by Eqs. (18) and
(19), respectively, are plotted vs ion beam parallel velocity
vik (in m=s) for C6þ ions and at fixed vi? ¼ 0:1vthk
(Fig. 1), vi? ¼ vthk (Fig. 2), and vi? ¼ 10vthk (Fig. 3)

and for various values of the magnetic field and are shown
as the lines without symbols. The two limiting cases of
vanishing (B ¼ 0) and infinitely strong (B ¼ 1) magnetic
fields are obtained from Eqs. (34) and (41), respectively.
Note that the transverse velocity of the ion is rather small,
i.e. vi? 	 vth?, in these examples (Figs. 1–3), which
results in a very small transverse cooling force at
B ¼ 0. Indeed comparing Eqs. (34) and (41), one con-
cludes that typically F1?=F0? � T?=Tk � 1 at small

and intermediate velocity range, where F1? and F0? are
the transverse cooling forces at B ¼ 1 and B ¼ 0, respec-
tively. Therefore in the right panels of Figs. 1–3 the values
of the transverse forces at B ¼ 0 are increased by some
appropriate (large) factors. The filled symbols in Figs. 1–3
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FIG. 3. Same as in Fig. 1 but for fixedvi? ¼ 10vthk. Note that in the right panel the transverse force forB ¼ 0 is increased by a factor 10.
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FIG. 1. Longitudinal (� Fk, left panel) and transverse (� F?, right panel) cooling forces (with minus signs and in eV=m) for C6þ
fully stripped ions as a function of the ion velocity vik (in m=s) and for fixed vi? ¼ 0:1vthk and � ¼ �Dk. The theoretical cooling

forces (18) and (19) are calculated for �0 ¼ 10�9 m (see Appendix B for details) and for an electron beam with ne ¼ 106 cm�3,
T? ¼ 0:11 eV, and Tk ¼ 0:1 meV in a magnetic field of B ¼ 0 (solid line), 0.1 T (dashed line), 1 T (dotted line), and B ¼ 1
(dash-dotted line). The CTMC results for the B ¼ 1 case are shown by the filled circles. Note that in the right panel the transverse
force for B ¼ 0 is increased by a factor 103.

102 103 104 105 106 107
10-4

10-3

10-2

10-1

100

F
|| [e

V
/m

]

v
i||
 [m/s]

 B = 0
 B = 0.1 T
 B = 1.0 T
 B = Infinity
 CTMC

C6+ v
i⊥
 = v

th||

102 103 104 105 106
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8
F

⊥
 [e

V
/m

]

v
i||
 [m/s]

 B = 0
 B = 0.1 T
 B = 1.0 T
 B = Infinity
 CTMC

C6+
v

i⊥
 = v

th||

FIG. 2. Same as in Fig. 1 but for fixedvi?¼vthk. Note that in the right panel the transverse force forB ¼ 0 is increased by a factor 5�102.
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represent the results of the CTMC simulations obtained for
an infinitely strong magnetic field (B ¼ 1); CTMC results
for a finite magnetic field are shown later in Figs. 5–7. For
simplifying the comparison, in both treatments, the pertur-
bative BC and the CTMC calculations, the screening length
was fixed by � ¼ �Dk, independently of the strength of the
magnetic field, where �Dk ¼ vthk=!p is the longitudinal

Debye length and !p is the electron plasma frequency. For

the perturbative cooling forces we also employed the
velocity-dependent regularization parameter �ðvikÞ of the
interaction potential as discussed in Appendix B.

Compared to the unmagnetized case with B ¼ 0 (solid
curves in Figs. 1–3) the magnetic field increases the cool-
ing force Fk at low velocities while reducing it at high

velocities. Furthermore, the deviations of the parallel cool-
ing force from the unmagnetized regime are stronger at
smaller vi?, that is, the cooling force is less sensitive to B
at large vi? in all shown cases.

A somewhat different picture is observed for the abso-
lute value of the transverse force, jF?j (Figs. 1–3, right
panels), when turning on the magnetic field from B ¼ 0 to
B ¼ 1. The force F? is much more sensitive to the
variation of B (compared to the parallel force Fk) and

jF?j is strongly increased by the magnetic field in the
whole parallel velocity range and for any transverse veloc-
ity vi?. While Fk is almost independent of the transverse

ion velocity at small vi? 	 vthk the transverse force F?
first shows a linear increase with vi? [see Eq. (19) and the
right panels of Figs. 1 and 2] but is reduced again by a
further increase of vi? (Fig. 3, right panel). In addition, for
both Fk and F?, a rather weak magnetic field may produce

significant deviations from the B ¼ 0 regime at small and
intermediate velocities vik and vi?. At high velocities and

a strong magnetic field (B ¼ 1 T) the cooling force Fk
strongly deviates from the extreme case with B ¼ 1,
which is, however, not accessible for the present experi-
ments at storage rings. At arbitrarily strong but finite
magnetic field and sufficiently high velocities, vi �
ð!c�; vthk;?Þ, the cooling force (18) converges to the par-

allel unmagnetized force, Eq. (34), which is the leading
order term Oðv�2

i Þ of the high-velocity expansion of
Eq. (18), while, as discussed in Sec. III B, the regime of
infinitely strong magnetic field, Eq. (41), is reached for
lower velocities vi 	 !c�. At high velocities and strong
magnetic field, the cooling force given by Eq. (18) thus
deviates systematically from the regime of infinitely strong
magnetic field, Eq. (41).

Another interesting feature of the parallel cooling
force (18) observed in Figs. 1–3, in particular at small
transverse velocities vi?, is the formation of two maxima
at parallel (vik � vthk) and transverse (vik � vth?) electron
thermal velocities with the formation of a corresponding
(deep) minimum. Here, the maximum at vik � vthk
is systematically larger than the second one at higher veloc-
ities vik � vth?. While the position of the low-velocity

maximum of the force Fk is almost independent on the

strength of the magnetic field, the high-velocity maximum
is reduced and its position is shifted towards higher vik at
increasing B making the force minimum deeper. A further
increase of the magnetic field (B> 1 T) and finally the
transition to the regime B ¼ 1 results in a less structured
shape of the parallel force. Increasing, however, the trans-
verse ion velocity vi? reduces the depth of the force mini-
mum and results at vi? � vthk in a smoother shape with

only one maximum, see Fig. 3 (left panel).
Figures 1–3 also clearly demonstrate focusing or

‘‘antifriction’’ (given by the negative values shown on the
right panels of Figs. 1–3 by positive values) and the change
of the sign of the transverse force F? which become more
pronounced with increasing magnetic field. Similar fea-
tures for the transfers force have been reported in
Refs. [40,41] using VORPAL simulations. The asymptotic
expression (32) [or the more accurate asymptotic Eq. (43)]
predicts that the change of the sign of the force F? occurs

at vik ¼ vi?=
ffiffiffi
2

p
which corresponds to a constant (i.e.

independent of B and vi?) angle # ¼ arctan
ffiffiffi
2

p
between

the magnetic field B and the ion velocity vi. Let us recall,
however, that the asymptotic expression (32) derived in the
case of an infinitely strong magnetic field is valid either at
vanishing longitudinal velocity spread (Tk ! 0) of the

electrons or at high velocities vik � vthk of the ion [see

Eq. (43)]. Our numerical calculations of the second-order
forces F? shown in Figs. 1–3 (right panels) also shows an
almost constant angle #, i.e. independent of B, which now,
however, depends on the transverse velocity vi?. At
smaller vi? the angle # when the force F? changes the
sign is much smaller than the value predicted by the
asymptotic Eq. (32) (Fig. 1, right panel) but with increasing
vi? it converges to the constant value given above (Fig. 3,
right panel).
Comparisons of the cooling forces determined by the

CTMC simulations and the second-order perturbative
treatment [Eq. (41)] at infinitely strong magnetic field are
presented in Figs. 1–3 by the filled symbols and the dash-
dotted lines, respectively. It is seen that in general the
perturbative treatment overestimates the CTMC results
for both components of the cooling force which is, how-
ever, more pronounced for F?. On the other hand, it
is clearly observed that in the regimes of large parallel
velocity vik and for arbitrary vi? the second-order pertur-

bative treatment agrees almost perfectly (within the un-
avoidable numerical fluctuations) with the CTMC results.
Increasing, however, the transverse velocity vi? of the ion,
one arrives at the regime where the conditions of the
applicability of the perturbative treatment (see, e.g., the
brief discussion in Sec. II A) are less critical and an ex-
cellent agreement between second-order BC and CTMC is
observed in the whole parallel velocity range as shown, for
instance, in the left panels of Figs. 2 and 3. Obviously the
agreement between both approaches is, in general, better for
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the parallel forces. In addition, similar to the second-order
BC approach the CTMC also demonstrates the formation of
antifriction for the transverse force F?. That is, the second-
order BC qualitatively captures the velocity domain where
the force changes the sign although it does not predict
correctly the magnitude of the force at small vi?.

Next we also look for some complementary information
about the cooling forces (18) and (19), and plot in Fig. 4
these forces on C6þ ions vs ion beam parallel velocity at
fixed vi? ¼ vthk (cf. Figs. 2 and 4) but for a different shape
of the distribution function of the electrons with smaller
T? ¼ 10�2 eV. That is, Fig. 4 is equivalent to Fig. 2 except
of the smaller transverse thermal velocity vth? and
cyclotron radius a? ¼ vth?=!c of the electrons in Fig. 4.
This change of the transverse temperature has little

influence on both components of the magnetized cooling
force, only the minimum of the parallel force is increased
by decreasing T?. At this smaller cyclotron radius a? of
the electrons the transverse force is almost independent of
B and converges to the regime of infinitely strong magnetic
field as shown in Fig. 4 (right panel). On the other hand,
both components of the unmagnetized force (solid lines)
are strongly increased at smaller temperature T?.
The regimes of an infinitely strong magnetic field where

we already compared the CTMC simulations with the
second-order perturbative treatment are, however, far
from being accessible by any realistic scenario at storage
rings. Thus, we also present results for the second-order
parallel (� Fk) cooling forces (in eV=m, lines without

symbols) given by Eq. (18) as functions of the ion parallel
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velocity vik (in m=s) in Figs. 5 and 6, now for the fully

stripped ions C6þ and Xe54þ at a finite magnetic field B ¼
0:1 T and fixed vi? ¼ 0:5vthk (solid lines), vi? ¼ 5vthk
(dashed lines), vi? ¼ 10vthk (dotted lines), and vi? ¼
15vthk (dash-dotted lines). The density and the parallel

and transverse temperatures of the electron beam are the
same as in the experiments at the ESR storage ring [28–30]
(see also Fig. 1). Again, the filled symbols in the left panels
of Figs. 5 and 6 represent the results of the CTMC simu-
lations obtained for a magnetic field B ¼ 0:1 T. As before
the screening length is here fixed by the constant value � ¼
�Dk and the velocity-dependent regularization parameter

�ðvikÞ needed in the perturbative BC is again as deter-

mined in Appendix B.
We also compared our model to the empirical formula

for the parallel cooling force on a single ion,

FkðviÞ¼�4�neZ
2e4

m

vik
ðv2

ikþv2
i?þv2

effÞ3=2
ln

�
1þ smax

sminþa?

�
;

(50)

as proposed by Parkhomchuk [31,32] [for simplicity this
formula is abbreviated below as PF (Parkhomchuk’s

formula)]. Here smin ¼ jZje2=mðv2
i þ v2

sÞ and smax ¼
ðv2

i þ v2
sÞ1=2=!p are the dynamical minimal and maximal

impact parameters, respectively, a? is the cyclotron radius
of the electrons, and veff is an effective electron velocity
related to the transverse magnetic and electric fields in the
electron cooler (see Refs. [31,32]) which can be viewed as
a fitting parameter, and vs is a characteristic thermal
velocity, as discussed in Appendix B. For consistency
with our BC approach and the CTMC simulations, how-
ever, we evaluated Eq. (50) by fixing smax also to the static
screening length smax ¼ �Dk. In the right panels of Figs. 5

and 6, the PF cooling forces Fk (lines with symbols, taking

the rather small values veff ¼ 2vthk and veff ¼ 3:5vthk,
respectively) are compared to the perturbative treatment,
which is represented by the same curves (lines without
symbols) as in the left panels of Figs. 5 and 6.
Furthermore, in Fig. 7, we also compare second-order

and CTMC results (lines without and with filled symbols,
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respectively) for the transverse cooling forces F? for C6þ
(left panel) and Xe54þ (right panel) ions for the same set of
parameters as in the left panels of Figs. 5 and 6.

Figures 5–7 demonstrate basically the same features for
the second-order cooling forces as already discussed
in connection with Figs. 1–4. Regarding the parallel
components of these forces there is a quite good overall
qualitative agreement with the CTMC results. In particu-
lar, the CTMC shows at small vi? the formation of two
maxima of Fk, a higher one at vik � vthk and a lower one

at vik � vth?, as it is also predicted by the perturbative

BC. The perturbative BC overestimates, however, the
cooling force at low velocities as well as the depth of
its minimum in between of the two maxima, with the
tendency that the quantitative agreement with the CTMC
is generally strongly improved with increasing velocities
vik and vi? (see the left panels of Figs. 5 and 6). This is

basically what is to be expected for a perturbative treat-
ment which should work best in the high-velocity weak
coupling regime as defined by Eq. (5). Essentially the
same behavior we also observed for the transverse force
F?, shown in Fig. 7, although the quantitative agreement
with CTMC is less distinct here than for Fk. But again,
the perturbative BC qualitatively captures well the veloc-
ity domains where the transverse force is either negative
or positive and the agreement between perturbative BC
and CTMC is clearly improved with weaker electron-ion
coupling, that is, for lower Z and larger vik and vi?. The
only exception is here the case of the highly charged
Xe54þ at the lowest vi? ¼ 0:5vthk (Fig. 7, right panel)

where the CTMC exhibits a completely different behavior
of F?. But this is also the case of the highest electron-ion
coupling parameter where, according to Eq. (5), the ap-
plicability of a perturbative treatment becomes question-
able. In addition, for heavy ions, like e.g. Xe54þ, and low
vi?, that is, for the highest electron-ion coupling, and in
the vicinity of the minimum of Fk at intermediate vik the
BC treatment starts to predict unphysical results like the
sawtooth structure of Fk emerging in this domain; see

the solid lines in Fig. 6.
Finally, we turn to the comparisons of our model given

by Eq. (18) and the PF [Eq. (50)] both shown in the right
panels of Figs. 5 and 6. The considerable differences
between Eq. (18) and the PF now clearly reveal the differ-
ent nature of both these approaches. The empirical PF
curve shows just some shift when varying the parameters,
namely vi?, while essentially retaining its shape. The
perturbative BC model as well as the nonperturbative
CTMC which are based on the full equations of motion
in the presence of a magnetic field exhibit a much more
intricate structure, in particular at small vi?, the formation
of two maxima of the parallel force Fk at parallel and

transverse electron thermal velocities. And the PF only
covers the parallel force and does not offer any description
of the transverse force.

V. COOLING FORCE FOR A MAXWELLIAN
ION DISTRIBUTION

Up to now we considered the magnetized cooling force
acting on the individual ion interacting with an electron
beam with anisotropic velocity distribution. But often, the
measured longitudinal cooling force represents an average
over the drag forces on individual ions. Thus, the cooling
force has to be interpreted as the average hFkðviÞi ¼ F of

the component FkðviÞ of the drag force parallel to the beam
axis (and the magnetic field) over the ion distribution
fiðvik; vi?Þ in the beam (see, e.g., Refs. [40–43]), that is,

F ¼2�
Z 1

�1
dvik

Z 1

0
fiðvik;vi?ÞFkðvik;vi?Þvi?dvi?: (51)

A. Averaged cooling force

Modeling the ion beam by the anisotropic Maxwell
distribution,

fiðvik;vi?Þ¼ 1

ð2�Þ3=2�2
?�k

e�v2
i?=2�

2
?e�ðvik�~vikÞ2=2�2

k ; (52)

an analytic expression for the averageF , Eq. (51), over the
BC drag force FkðviÞ given by (16) can be derived by

substituting Eqs. (16) and (52) into Eq. (51) and then
integrating over vi? and vik, which yields

F ðuÞ ¼ � 8Z2e4ne�
2

mv2
thk

ð2�Þ4
4

Z 1

0
kkdkk

Z 1

0
U2ðkÞk?dk?

�
Z 1

0
e�

t2

2�
2½k2k�2

kþk2?DðtÞ�
�
k2k þ k2?

sinð	tÞ
	t

�

� sinð ffiffiffi
2

p
kk�utÞtdt: (53)

The introduced dimensionless parameters DðtÞ ¼
�2 þ ��ðtÞ, u ¼ ~vik=

ffiffiffi
2

p
vthk, �2

k ¼ 1þ �2
k=v

2
thk, and � ¼

�?=vthk are related to the distribution of the ion beam (52),

where �2
? ¼ ð1=2Þhv2

i?i ¼ Ti?=M, �2
k ¼ hv2

iki � ~v2
ik ¼

Tik=M with the effective transverse (Ti?) and longitudinal

(Tik) temperatures of the ions and the ion mass M, and ~vik
is the average cm velocity of the ion beam with respect to
the electron beam.
Finally, substituting the interaction potential (17) into

Eq. (53) and performing the kk integration we arrive at

�F ðuÞ¼4
ffiffiffiffi
�

p
Z2e4ne

mv2
thk

u
Z 1

0

dt

t

Z 1

0
d��½c ðt;�Þ�

�exp

�
� u2�2

P2ð�Þ
�

1��2

P3ð�ÞQðt;�Þ
�

�2

P2ð�Þ
�
3�2u2�2

P2ð�Þ
�

þ 2�2

Qðt;�Þ
sinð	tÞ
	t

�
; (54)

with Pð�Þ¼ ð�2
k�

2þ1��2Þ1=2, Qðt;�Þ¼DðtÞ�2þ1��2.

All other quantities have already been introduced in
Sec. II C [see above Eq. (20)].
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While Eq. (54) has to be evaluated numerically, a closed
analytic expression can be derived for the limiting cases of
(54) at high and low velocities and strong magnetic fields.
In the high-velocity limit with ~vik > ð!c�; vthk;?; �k;?Þ
only small t contribute to the cooling force (54) and
sinð	tÞ=	t ! 1 and Qðt; �Þ ! �2

?�
2 þ 1� �2, where

�2
? ¼ Dð0Þ ¼ �2 þ �. At a sufficiently large ion beam

velocity, Eq. (54) then turns into

�F ðuÞ ’ 2�Z2e4ne
mv2

thk
�ðßÞ 1

u2

�
erf

�
u

�?

�
� 2ffiffiffiffi

�
p u

�?
e�u2=�2

?

�

’ 2�Z2e4ne
mv2

thk

�ðßÞ
u2

; (55)

where the force decreases as F ðuÞ � u�2 with the beam
velocity.

At very strong magnetic fields, when the electron cyclo-
tron radius is the smallest length scale and sinð	tÞ=	t ! 0,
Qðt; �Þ ! �2�2 þ 1� �2, and in the high-velocity limit
with !c� � ~vik � ðvthk;?; �k;?Þ, we obtain

�F ðuÞ ’ 3�Z2e4ne
mv2

thk
�ðßÞ�

2

u4

�
�
erf

�
u

�

�
� 2

3
ffiffiffiffi
�

p u

�

�
3þ 2u2

�2

�
e�u2=�2

�

’ 3�Z2e4ne
mv2

thk
�ðßÞ�

2

u4
: (56)

There is an important difference if we compare Eqs. (56)
and (55). The force (56) decays asF ðuÞ � u�4 much faster
than in Eq. (55). The velocity of the beam in Eq. (56) is
large but is restricted to the value !c�, i.e. 1 	 u 	 !c�.
Thus it cannot be arbitrarily large. The velocity in Eq. (55)
is arbitrarily large but now restricted below, ~vik � !c�,
i.e. the magnetic field there cannot be arbitrarily large.

Considering on the other hand also the case of small
velocities u 	 1 at strong magnetic fields, Eq. (54)
becomes

�F ðuÞ ’ 8
ffiffiffiffi
�

p
Z2e4ne

5mv2
thk�k�2

�ðßÞuP
�
�k
�

�
; (57)

P ðxÞ ¼ 5

2ð1� x2Þ2
�
x2 þ 2� 3xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij1� x2jp pðxÞ

�
; (58)

and pðxÞ is given by Eq. (40). As expected the low-velocity
cooling force [Eq. (57)] strongly depends on the details of
the distribution functions of electrons and ions.

B. Comparison with experiment

With the theoretical formalism presented above, we now
compare the cooling forces on the ions resulting from our
analytical approach, Eq. (54), with available experimental
data.

Measurements of the cooling forces have been per-
formed at several storage rings, like e.g. at the ESR at
GSI [28–30]. In these experiments a so-called cooling
force is extracted, which can be viewed as a stopping force
averaged over the ion distribution in the beam and the
electron distribution. As an example we focus on the
measurements of longitudinal cooling forces for different
fully stripped heavy ions as conducted at the electron
cooler of the ESR storage ring. Two different methods
have been used here to determine the cooling force. At
low ion velocities the cooling force is extracted from the
equilibrium between cooling and longitudinal heating with
rf noise. At high relative velocities between the rest frames
of the beams, the cooling force is deduced from the mo-
mentum drift of the ion beam after a rapid change of the
electron energy. Details of these methods as well as the
experimental conditions and observations are given in
Refs. [28–30]. The measured cooling forces are shown in
Fig. 8 (filled circles) for various fully stripped ions.
The electron beam in these experiments has a density of

ne ’ 106 cm�3 and can be described by an anisotropic
velocity distribution (15) with T? ¼ mv2

th? ’ 0:11 eV
and Tk ¼ mv2

thk ’ 0:1 meV as inferred from correspond-

ing measurements. The strength of the magnetic guiding
field was B ¼ 0:1 T. The measured longitudinal cooling
force represents an average over the stopping forces on
individual ions. For a comparison with the theoretical
model (54) the cooling force is thus interpreted as the
average hFki of the component Fk of the stopping force

(14) parallel to the beam axis (and the magnetic field) over
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FIG. 8. Longitudinal cooling force (in eV=m) for various fully
stripped ions as a function of the relative ion velocity (in m=s).
Filled circles: Experimental data from measurements at the
electron cooler of the ESR storage ring [28–30]. Solid curves:
Eq. (54). The theoretical predictions of the cooling force are
calculated for an electron beam with ne ¼ 106 cm�3, T? ¼
0:11 eV, and Tk ¼ 0:1 meV in a magnetic field of B ¼ 0:1 T,
and are fitted to the experimental results at low relative velocities
by treating the quantities �k, �? as free parameters (see the text

for details).
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the ion distribution fiðvik; vi?Þ in the beam (see also

Refs. [40–43]).
For low ion velocities this average is taken with respect

to the transverse ion velocity only and the cooling force
depends on the parallel ion velocity, i.e. hFki ¼ hFkiðvikÞ.
In the experimental procedure used for high ion velocities
the cooling force is an average over the complete ion
distribution. This average hFki ¼ hFkiðhvikiÞ depends

now on the velocity of the cm of the ion beam relative to
the rest frame of the electron beam hviki. Both velocities

are denoted as relative ion velocity in Fig. 8. To perform the
average the distribution fiðvik; vi?Þ must be known.

However, in Refs. [28–30] this distribution was not deter-
mined in detail, but there exists an estimate of the beam
angular divergence h�ii & 0:5 mrad [29]. This yields after
transformation to the rest frame of the ion beam for the
transverse ion velocities hvi?i ’ v


i? � 

ch�ii, where 
,

 are the relativistic factors related to the beam velocity
in the lab frame and c is the speed of light. For the
measurements at hand with an ion energy of 250 MeV=u
(
¼0:615, 
¼1:268) this results in v


i?&1:17�105m=s.
Now we turn to the present expression for the cooling

force (54) which is shown as solid curves in Fig. 8. The
velocity spread, i.e. the widths �?, �k of the ion distribu-

tion (52), was treated as a free parameter to fit the BC
stopping force to the experimental data. As the cooling
force F is rather sensitive to a variation of �? at low
parallel velocities vik this fit is done for the linear increase
of the cooling force at low relative velocities. The velocity
spread of the ion beam in transverse direction used in
obtaining the solid curves is 3:5v


i? & �? & 4:5v

i? with

h�ii ’ 0:2 mrad (v

i? ’ 4:7� 104 m=s) which is in good

agreement with the estimated beam divergence h�ii. The
spread in the longitudinal direction is here typically �k &
10�2�? as it usually occurs in many experimental situ-
ations (see, e.g., [3,40–43] and references therein), in
particular at the ESR storage ring [28–30]. In the examples
considered here the regularization parameter �0 varies
within 10�10–10�7 m with �0 	 b0ð0Þ, i.e. �0 does not
affect noticeably the cooling force (54) at low and medium
velocities (see Appendix C). The BC model [Eq. (54)] well
agrees with the experimental cooling force at low and high
velocities but somewhat overestimates the cooling force at
medium velocities. These deviations are more pronounced
for lower ion charge states, but the overall behavior is
essentially independent of the ion charge.

For the parameters and conditions of the considered
experiments and taking into account the averages over
the electron and ion distribution functions, the domain of
hard collisions and relative velocities which violate the
condition for a perturbative treatment jZje2=mv2

0� < 1
[see Eq. (5)] is rather small and thus ensures the overall
applicability of our model in the present regimes. More

specific, the related characteristic velocities ðjZje2=m�Þ1=2
are here 8:7� 102 m=s for Z ¼ 6 and 3:4� 103 m=s for

Z ¼ 92 (taking for low ion velocities the static screening
length � ¼ ��D defined in Appendix C). This has to be
contrasted with a typical lower limit of the relative ion-
electron velocity v0 which is given by the parallel thermal
electron velocity vthk ’ 4:2� 103 m=s when assuming

low ion velocities and neglecting the transverse component
of v0. The deviations of the perturbative BC cooling force
(54) (solid curves) from the ESR data (filled circles) we
therefore mainly ascribe to the rather unknown distribution
function of the ions in the beam which has been modeled
here in the form of an anisotropic Maxwell distribution
(52). Indeed the actual velocity spread in ion beams may
essentially differ from the Maxwellian (52) and, in par-
ticular, in some cases the recorded profiles are parabolic
rather than Maxwellian [40–43] (see also Ref. [3]). For a
comprehensive comparison with the measurements and a
critical evaluation of theoretical approaches a detailed
knowledge of the ion distribution is indispensable.

VI. SUMMARY

In this paper we presented and discussed analytic ex-
pressions for calculating the cooling force on ions in a
model of binary collisions (BC) between ions and magne-
tized electrons within second-order perturbative treatment.
This has been done within the framework of an improved
BC theory which involves all cyclotron harmonics of the
electrons’ helical motion and which is valid for any
strength of the magnetic field and in regimes where a
perturbative treatment is applicable. The cooling force is
explicitly calculated for a regularized and screened
Coulomb potential. Closed expressions have been derived
first for monochromatic electron beams, which have been
folded with the velocity distributions of the electrons and
ions. The resulting cooling force is evaluated for aniso-
tropic Maxwell velocity distributions of the electrons and
ions. A number of limiting and asymptotic regimes of low
and high velocities as well as vanishing and strong mag-
netic fields have been studied. The given results show that
the present model of the cooling force is very sensitive to
the velocity spreads of the electrons and ions at small
relative velocities. Main limitations and uncertainties of
the present BC model are: (1) the approximations concern-
ing the electron and ion distribution functions, (2) the use
of a spherically symmetric effective interaction accounting
for screening effects and hard collisions, and (3) the under-
lying perturbative expansion of the equations of motion.
The latter can be well justified as long as the majority of the
electron-ion collisions which contribute to the averaged
final cooling force clearly meets the condition of a weak
perturbation; see Eq. (5). The use of an effective interac-
tion, on the other hand, and the proper choice of a velocity-
dependent screening length clearly needs still some
support from a comparison with full self-consistent simu-
lation approaches which can treat the complete ion-target
interaction in a nonperturbative way.
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The here outlined BC model for the cooling force on a
single ion has been compared with classical trajectory
Monte Carlo (CTMC) numerical simulations and the
simple empirical ansatz (50) proposed by Parkhomchuk.
It has been shown that there is a quite good overall
qualitative and in most cases also a good quantitative
agreement with the CTMC results with respect to the
parallel cooling force (18). A similar good qualitative
agreement has been observed for the transverse force F?
(19) but the quantitative agreement with CTMC is here
less distinct than for Fk. In any case, however, the per-

turbative BC model and the nonperturbative CTMC based
on the full equations of motion in the presence of a
magnetic field exhibit a much more intricate structure as
provided by the empirical ansatz (50). In a further step we
also compared the theoretical cooling force (54), after
averaging over the ion distribution function, with the
experiments performed at the ESR at GSI [28–30]. The
overall agreement of Eq. (54) with the experimental
cooling forces is rather good. Unfortunately, a comparison
of the averaged cooling force as extracted from the ex-
periments is only little suited for a distinct test of the
accuracy of the considered model. By demonstrating the
quite involved structure and character of the BC cooling
force FðviÞ on a single ion we showed, however, that the
good agreement with the experimental data cannot simply
be considered as accidental. The remaining deviations of
Eq. (54) from the ESR data at medium velocities, which
can be seen in Fig. 8, are therefore essentially ascribed to
the deviations of the model distribution function (52)
from the experimental distribution of the ion beam which
is not known precisely.

As the main goal of this paper we suggest a more
advanced analytical model for calculations of the cooling
force which is appropriate for modeling many experimen-
tal situations with moderate or strong magnetic guiding
fields. The resulting cooling forces FðviÞ andF ðuÞ can, for
instance, also be tabulated in a suitable manner to be used
as input for simulations of electron cooling using the
BETACOOL package [44,45]. In addition, further improve-

ment might be achieved by performing the average in-
volved in Eq. (51) numerically with recorded ion beam
distributions or analytically using other ion distributions
like e.g. the parabolic distribution function as it occurs in
CELSIUS [40–42]. Systematic comparisons for different
distribution functions and other experiments on electron
cooling as well as with CTMC simulations are in progress
and will be reported elsewhere.
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APPENDIX A: SOME CONSEQUENCES OF
THE COULOMB DIVERGENCY

As was shown by Parkhomchuk [33] in the B ! 1 limit
and at high velocities, one gets asymptotic expressions
for the cooling forces which essentially differ from
Eqs. (29)–(32). Here we will briefly show that this is a
consequence of the bare Coulomb interaction and the
related Coulomb logarithm UC used in previous treat-
ments (see, e.g., Refs. [9,33,40]). As has been argued in
Ref. [23] an expression similar to the second-order force
(10) strongly depends on the order of the integrations for
any singular potential, in particular for U ¼ UC. Such an
ambiguity does not arise for any regularized potential and,
for instance, Eqs. (21) and (27) are finite. Assuming a finite
range of the potential in Eq. (10) we have performed first
an integration with respect to the impact parameters s in
whole two-dimensional space. Now let us derive the cool-
ing force (27) first performing the t integration, i.e. chang-
ing the order of the s and t integrations. The calculations
are straightforward. Using the trajectory corrections in the
presence of an infinitely strong magnetic field derived in
Ref. [23], one obtains

FkðviÞ¼2�Z2e4ne
m

Z
ð2T 1þT 2Þ

v2
i?vrk
v5
r

fðveÞdve; (A1)

F?ðviÞ¼�2�Z2e4ne
m

Z
½ðv2

i?�v2
rkÞT 1�v2

rkT 2�

�vi?
v5
r

fðveÞdve; (A2)

where vrk ¼ vek � vik, and the functions T��ðsÞ and quan-
tities T 1 and T 2 have been introduced in Ref. [23],

T 1¼
Z 1

0
T2
12ðsÞsds; T 2¼

Z 1

0
T03ðsÞT01ðsÞsds; (A3)

T��ðsÞ ¼ ð2�Þ2
2

Z 1

0
UðkÞJ�ðksÞk�dk: (A4)

In Ref. [23] we have shown that T R
1 ¼ T R

2 ¼ U for
any regularized interaction potential, where U is given by
Eq. (24). Thus, inserting these values of the coefficients
T R

1 and T R
2 into Eqs. (A1) and (A2) yields Eqs. (29) and

(30), respectively. The situation is different for any unregu-
larized potential, as, for instance, the Debye-like interac-
tion potential UðkÞ ¼ UDðkÞ introduced in Sec. II. For this
potential TD

12ðsÞ ¼ ð1=�ÞK1ðs=�Þ, TD
03ðsÞ ¼ ð1=sÞ�ðsÞ �

ð1=�2ÞK0ðs=�Þ, and TD
01ðsÞ ¼ K0ðs=�Þ (see, e.g.,

Ref. [23] for details), where KnðzÞ (with n ¼ 0, 1) are the
modified Bessel functions, and � is the screening length.
Transition of these functions to the bare Coulomb case is
performed by taking the limit � ! 1. Then TC

12ðsÞ ¼ 1=s
and TC

01ðsÞTC
03ðsÞ ! 0 in this limit and for any nonzero

value of s > 0. Thus, in Eqs. (A1) and (A2) it can be
assumed T C

2 ¼ 0 while inserting TC
12ðsÞ into Eq. (A3)
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and introducing the upper and lower cutoffs yields T C
1 ¼

UC ¼ lnðrmax=rminÞ. It is easy to see that Eqs. (A1) and
(A2) with T C

1 and T C
2 ¼ 0 completely agree with the

result reported by Parkhomchuk in Ref. [33]. However, it
should be emphasized that while the integrand in the
coefficient T C

2 tends to zero for a bare Coulomb interac-

tion the s integration of this integrand (i.e. the coefficient
T C

2 ) remains singular. This is easily proved by inserting

TD
01ðsÞ and TD

03ðsÞ into Eq. (A3). After changing the inte-

gration variable the resulting coefficient T D
2 is both inde-

pendent of the screening length � and diverges
logarithmically at small s. Consequently, we conclude
that for any unregularized potential the coefficient T 2 is
of the same order as T 1 both diverging logarithmically at
small s (and possibly at large s) and the term proportional
toT 2 cannot be simply neglected in Eqs. (A1) and (A2) as,
for instance, in Ref. [33].

APPENDIX B: ADJUSTMENT OF THE
EFFECTIVE INTERACTION

Our results, Eqs. (18), (19), and (54), were derived by
using the screened interaction URðrÞ. As already men-
tioned, the use and the modeling of such an effective
two-body interaction is a major, but indispensable approxi-
mation for a BC treatment where the full ion-target inter-
action is replaced by an accumulation of isolated ion-
electron collisions. The replacement of the complicated
real nonspherically symmetric potential, like the wake-
fields as shown and discussed in Ref. [46], with a spheri-
cally symmetric one is, however, well motivated by earlier
studies on a BC treatment at vanishing magnetic field, see
Refs. [35–37]. There it was shown by comparison with 3D
self-consistent PIC simulations that the drag force from the
real nonsymmetric potential induced by the moving ion
can be well approximated by an BC treatment employing a
symmetric Debye-like potential with an effective velocity-
dependent screening length �ðviÞ. In these studies also a
recipe was given on how to derive the explicit form of
�ðviÞ, which turned out to be not too much different from a

dynamic screening length of the simple form �ðvikÞ ¼
�st½1þ ðvik=vsÞ2�1=2. Here �st ¼ vs=!p is the statical

screening length at vik ¼ 0, !p is the electron plasma

frequency, and vs is a characteristic thermal velocity which
depends on the temperature anisotropy of the electron
beam and the guiding magnetic field. Although no system-
atic studies about the use of such an effective interaction
with a screening length �ðviÞ have been made for ion
stopping in a magnetized electron plasma, the replacement
of the real interaction by a velocity-dependent spherical
one should be a reasonable approximation also in this case.
The introduced dynamical screening length �ðvikÞ also

implies the assumption of a weak perturbation of the
electrons by the ion and linear screening where the screen-
ing length is independent of the ion charge Ze, which

coincide with the regimes of perturbative BC, see, e.g.,
Ref. [36]. Therefore we do not consider here possible
nonlinear screening effects. Supposing linear screening
there remains the appropriate choice of the thermal veloc-
ity vs, which defines the static screening �st ¼ vs=!p at

low velocities, the dynamical one �ðvikÞ ¼ vik=!p at

vik � vs, and the velocity scale on which the transition

between static and dynamic screenings takes place.
In principle, the screening length �st can be calculated

within the linear-response theory using the dielectric func-
tion of a temperature-anisotropic and magnetized plasma
(see, e.g., Ref. [11] and references therein). This approach
predicts that (i) the quantity �st is, in general, strongly
anisotropic and depends on the angle # between radius
vector r and magnetic field B as well as on the strength of
the magnetic field and the temperatures Tk, T? of the

electron plasma. (ii) At vanishing magnetic field the
screening length �st is approximately given by the longi-
tudinal �Dk ¼ vthk=!p and the transverse �D? ¼ vth?=!p

Debye lengths at # ¼ 0 and # ¼ �=2, respectively
(see, e.g., Ref. [11]). For an average temperature �T ¼
1
3 ðTk þ 2T?Þ of the electrons with corresponding thermal

velocity �vth ¼ ð �T=mÞ1=2 the static screening can be ap-
proximated by taking �st ¼ ��D ¼ �vth=!p, where ��D can

be considered as an angular averaged screening length.
(iii) At infinitely strong magnetic field the screening length
is only determined by the longitudinal temperature Tk of

the electrons, �st ¼ �Dk [11].
The dielectric properties of a temperature-anisotropic

and magnetized plasma thus suggest to define the thermal
velocity vs by an interpolation between �vth at B ¼ 0 and
vthk at B ! 1, which then covers the entire range of the

variation of a guiding magnetic field, from the unmagne-
tized to the strongly magnetized regimes. To this end, we
propose here a simple interpolation formula for the char-
acteristic velocity vs, given by

v2
s ¼

�v2
th þ ð!c=!pÞ�v2

thk
1þ ð!c=!pÞ� (B1)

and take �st ¼ vs=!p as static screening length. Here

�> 0 is some positive numerical factor and the strength
of the magnetic field is measured by the quantity !c=!p.

From Eq. (B1) it is seen that the transition from B ¼ 0 to
B ¼ 1 regime is faster for larger �, where we suggest
� ¼ 2 for practical applications. But the explicit func-
tional form of this interpolation as well as the choice of
� ¼ 2 are, of course, to a certain extent discretionary. We
remark, however, that Eq. (B1) is here basically given to
complete our present BC treatment by providing some
reasonable recipe of how to determine the required pa-
rameters for modeling the effective interaction. The results
shown and discussed in Secs. IV and V are obtained
by fixing vs to �vth for all cases corresponding to B ¼ 0
and to vs ¼ vthk for all examples with B � 0:1 T
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(where !c � !p for the assumed parameter regimes).

These results are therefore not affected by the explicit
form and choice of the suggested interpolation (B1).

It should be also mentioned that, depending on the
specific conditions in the storage rings, the screening
length � has to be replaced by the radius r0 of the electron
beam if r0 < � [4]. Also the finite time �f of flight of the

beam through the cooling section may decrease the upper
cutoff if �f < !�1

p [47]. However, the first issue is not

important for our present comparisons with experimental
data [28–30]. The radius of the electron beam and the
averaged screening length in these experiments are about
r0 ’ 25 mm and ��D ’ 2 mm, respectively, and thus r0 �
��D [29]. The time �f for the ESR experimental conditions

is unfortunately not significantly larger than !�1
p [29].

Thus, the stationary picture we use is just applicable but
the finite time �f is an additional source of uncertainty for

the comparison of the present theory and experiment which
needs further attention.

Next we specify the parameter � which is a measure of
the softening of the interaction potential at short distances.
As we discussed in the preceding sections, the regulariza-
tion of the potential (17) guarantees the existence of the s
integrations, but there remains the problem of treating
accurately hard collisions. For a perturbative treatment
the change in relative velocity of the particles must be
small compared to vr and this condition is increasingly
difficult to fulfill in the regime vr ! 0. This suggests to
enhance the softening of the potential near the origin the
smaller vr is. Within the present perturbative treatment, we
employ a dynamical regularization parameter �ðvikÞ
[24,25], where �2ðvikÞ ¼ Cb20ðvikÞ þ �2

0 and b0ðvikÞ ¼
jZje2=m½v2

ik þ hv2
i?i þ v2

s�, hv2
i?i is the average of v2

i?
over the ion distribution function (52). This average is
hv2

i?i ¼ v2
i? in the case of single ion considered in

Secs. II, III, and IV and hv2
i?i ¼ 2�2

? in the case of ion

beam considered in Sec. V. Here b0 is the averaged dis-
tance of closest approach of two charged particles in the
absence of a magnetic field and �0 is some free parameter.
In addition we also introduced C ’ 0:292 in �ðvikÞ. In
Refs. [24,25] this parameter is deduced from the compari-
son of the second-order scattering cross sections with an
exact asymptotic expression derived in Ref. [48] for the
Yukawa-type (i.e., with � ! 0) interaction potential. As
we have shown in Refs. [24,25] employing the dynamical
parameter �ðvikÞ the second-order cross sections for

electron-electron and electron-ion collisions excellently
agree with CTMC simulations at high velocities. Also the
free parameter �0 is chosen such that �0 	 b0ð0Þ, where
b0ð0Þ is the distance b0ðvikÞ at vik ¼ 0. From the definition

of �ðvikÞ it can be directly inferred that �0 does not play

any role at low velocities while it somewhat affects the size
of the cooling force at high velocities when b0ðvikÞ & �0.

More details on the parameter �0 and its influence on the
cooling force are discussed in Appendix C.
Our extensive numerical calculations indicated that the

employed regularization parameter �ðvikÞ provides a quali-
tatively quite satisfactory description, although the second-
order forces Fk;? on a single ion are at small vi?, in
general, quite sensitive to variations of �ðvikÞ. This sensi-
tivity is larger for highly charged ions (like, e.g., Xe54þ)
and in the domain of vik where Fk gets its minimum (see,

e.g., the deep minima in Figs. 5 and 6, left panels). An
example of this sensitivity is the formation of the unphys-

ical sawtooth structure in the minimum of the parallel force
shown in Fig. 6 (solid lines). Here the regularization pa-
rameter �ðvikÞ is no longer capable to capture sufficiently

accurately the underlying physics.
Finally, we also illustrate in Fig. 9 the features of the

Coulomb logarithmUR ¼ �ðßÞ given by Eq. (25) and the
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FIG. 9. Regularized�ðßÞ (the lines with symbols) given by Eq. (25) and standardUC (the lines without symbols) Coulomb logarithms
for C6þ (left panel) and U92þ (right panel) fully stripped ions as a function of vik (in m=s). The Coulomb logarithms are calculated for

�0¼10�9m, vi?¼0, B ¼ 0:1 T and for T? ¼ 0:11 eV, Tk ¼ 0:1 meV, ne¼106 cm�3 (solid lines), and ne ¼ 108 cm�3 (dotted lines).

COOLING FORCE ON IONS IN A MAGNETIZED . . . Phys. Rev. ST Accel. Beams 16, 074201 (2013)

074201-19



standard one UC ¼ lnðrmax=rminÞ for B ¼ 0:1 T and for
different charge state Z of the ions and temperatures and
densities of the electron beam close to the typical values of
the experiments at the ESR storage ring [28–30] and many
other cooling experiments. For UC we take rmax ¼ �ðvikÞ
and rmin ¼ b0ðvikÞ. The velocity-dependent lengths �ðvikÞ
and b0ðvikÞ have been defined and discussed above. These

lengths also fix the quantity ßðvikÞ ¼ 1þ �ðvikÞ=�ðvikÞ
used for UR. As can be seen from Fig. 9, at intermediate
velocities the Coulomb logarithm UR ¼ �ðßÞ basically
shows the same behavior and features as UC, but results
here in a somewhat smaller cooling force. Deviations are
more pronounced at high velocities when the distance of
the closest approach become comparable or smaller than
the regularization parameter �0, b0ðvikÞ & �0. It is clear

that decreasing the parameter �0 will result in a shift of the
deviation domain shown in Fig. 9 towards higher veloc-
ities. We like to emphasize, however, that the large devia-
tions between both Coulomb logarithms shown in Fig. 9
fall in the velocity domain where the resulting cooling
forces are usually very small (see, e.g., the examples shown
in Figs. 1–8). Finally at small velocities the standard
Coulomb logarithm becomes negative (i.e. rmax < rmin)
which indicates the violation of the perturbative approach,
and is more pronounced either at higher densities ne or
larger ion charge; see Fig. 9.

APPENDIX C: COOLING FORCE VERSUS
THE PARAMETER �0

Finally, we briefly investigate the influence of the choice
of different values of the free parameter �0 on the cooling

force (54). As mentioned in Appendix B, this parameter is
chosen such that �0 	 b0ð0Þ and therefore does not play
any role at low velocities. It adjusts, however, the cooling
force in the high-velocity regime when b0ð~vikÞ & �0. Only

in this high-velocity limit the parameter �0 directly affects
(within logarithmic accuracy) the perturbative cooling
force via the generalized Coulomb logarithm �ðßÞ deter-
mined by Eq. (25). Thereby �ðßÞ depends on the ion beam
velocity ~vik and behaves at high velocities as�ðßÞ ’ lnß�
1 ’ lnð~vik=!p�0Þ � 1. This velocity dependence of �ðßÞ
must be taken into account when considering the asymp-
totic expressions (55) and (56).
For the curves plotted in Fig. 10 we evaluated the

cooling force expression (54) for an C6þ ion varying the
regularization parameter from �0 ¼ 10�10 m (solid line)
to �0 ¼ 10�7 m (dash-dotted line). All other parameters
remain fixed and are essentially the same as in Fig. 8. For
�0 � 10�8 m the cooling force is (weakly) sensitive to a
variation of �0, but as expected, only in the high-velocity
domain. At the larger �0 ¼ 10�7 m, where the parameter
�0 becomes comparable to the static collision diameter,
�0 ’ b0ð0Þ, the cooling force shows some sensitivity to �0

also at low velocities (dash-dotted line) resulting in an
overall decrease of the force. But for the higher charged
ions, as considered in Sec. VB, the collision distance b0 is
larger and the sensitivity of the cooling force to �0 thus
starts at even larger �0.
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