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This paper presents measurements of the GeV-scale electron beam energy for the storage rings at the

synchrotron light source facilities Australian Synchrotron (AS) and SPEAR3 at SLAC. Resonant spin

depolarization was employed in the beam energy measurement, since it is presently the highest precision

technique and an uncertainty of order 10�6 was achieved at SPEAR3 and AS. Using the resonant depolar-

ization technique, the beam energy was measured at various rf frequencies to measure the linear momentum

compaction factor. This measured linear momentum compaction factor was used to evaluate models of the

beam trajectory through combined-function bending magnets. The main bending magnets of both lattices are

rectangular, horizontally defocusing gradient bending magnets. Four modeling approaches are compared for

the beam trajectory through the bending magnet: a circular trajectory, linear and nonlinear hyperbolic cosine

trajectories, and numerical evaluation of the trajectory through the measured magnetic field map. Within the

uncertainty of themeasurement themomentum compaction factor is shown to agreewith the numericalmodel

of the trajectory within the bending magnet, and disagree with the hyperbolic cosine approximation.

DOI: 10.1103/PhysRevSTAB.16.074001 PACS numbers: 29.27.Hj, 29.40.Mc, 41.75.Ht

I. INTRODUCTION

This paper presents measurements of the momentum
compaction factor using resonant spin depolarization, to
calibrate the model of horizontal defocusing rectangular
gradient bending magnets. We present experimental results
in the storage rings of light sources SPEAR3 [1] and the
Australian Synchrotron (AS) [2], which are modern light
sources of intermediate energy with rectangular defocusing
gradient dipoles in the double-bend achromat lattices [3].
In literature, there are very few measurements of the mo-
mentum compaction factor with rectangular gradient
bending magnets. The momentum compaction factor was
measured at ALS, with only a small departure from the
model [4], however no details of the lattice model used in
that study are available. At the time of that measurement,
the bending magnets of the ALS lattice were all rectangular
defocusing gradient magnets.

Electron beam energy measurements using resonant
spin depolarization have been performed at storage rings
for calibrating many aspects of the machine [4–8], most
notably the absolute beam energy, beam energy stability,

and momentum compaction factor. The technique is used
because it is the highest precision energy measurement
presently available, and the typical measurement accuracy
is of order 10�5–10�6. This is one of very few methods for
measurement of the momentum compaction factor, which
can be calculated from measurements of the synchrotron
frequency [9]. Pioneering work on polarization was per-
formed on eþ–e� collider rings such as ACO [10,11],
VEPP-2M [12,13], SPEAR [14], and LEP [15]. Our
method of polarizing and depolarizing the beam follows
the technique used at BESSY I [5], BESSY II [6], ALS [4],
SLS [7], and ANKA [8]. Independent recent measurements
at Diamond [16] and SOLEIL [17,18] achieve the same
high precision. However, of the above storage rings, the
ALS alone employs rectangular gradient bending magnets.
Many existing [1,19–22], upgrading [23] and planned

rings [24–28] incorporate defocusing gradients into the
main bending magnets, as part of a strategy to reduce the
horizontal equilibrium emittance. The trajectory through
rectangular gradient magnets does not follow a circular arc
as in the case of pure dipole magnets, and the modeling of
gradient bending magnets is challenging. In this work, the
electron trajectory through the gradient dipoles is modeled
using trajectories that are circular, linear hyperbolic cosine,
nonlinear hyperbolic cosine, or numerical integration of
the measured magnetic field [21].

II. POLARIZATION THEORY

A familiar description of storage ring accelerators is that
particles are deflected according to their electrical charge,
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mass, and energy using electric and magnetic fields. These
fields are arranged such that beams perform stable, oscil-
latory motion over many thousands of turns, which can be
measured to great precision as a frequency spectrum.
Measurement and control of resonances at the revolution
and rf frequencies, betatron and synchrotron tunes, informs
the global properties of the linear lattice [29]. Here, we
exploit another property of the electron—its spin—to in-
form and calibrate our model of the dipole lattice of storage
rings.

A thorough review of theory and experiments with
polarized beams of protons, electrons, and muons was
undertaken by Mane [30]. We will revisit the main theories
of radiative polarization of electron beams, adiabatic reso-
nant spin depolarization, and Møller scattering cross-
section polarimetry in the following sections.

A. Radiative polarization

A beam of electrons in a storage ring with an initial
random distribution of spin orientations (unpolarized)
develops polarization over time, by the Sokolov-Ternov
effect [31]. Under the action of emission of spin-flip pho-
tons, the population of beam electron spins aligns parallel
or antiparallel with the main guide field of the bending
magnets. The population of spin-up and spin-down parti-
cles is biased by the asymmetry of transition probabilities
of spin-flip radiation [31], and the polarization PðtÞ of the
beam develops by [30]

PðtÞ � P0ð1� e�t=�STÞ; (1)

where time is denoted by t. The polarization PðtÞ
approaches an equilibrium [6]

P0 ¼ 8

5
ffiffiffi
3

p
H
B3
?dsH jB3
?jds

: (2)

Magnetic fields are considered in the directions perpen-
dicular (B?) and parallel (Bk) to the curvilinear trajectory

of the beam, s. In a storage ring, both vertical and radial
magnetic fields are denoted here by B?. To accommodate
reverse bends and wiggler insertion devices, we integrate
both B? and its absolute value jB?j around the trajectory s.
By inspection, P0 approaches a maximum for a storage
ring without reverse bends or wiggler insertion devices,
and for a beam of electron species with gyromagnetic
factor ge � 2, the theoretical maximum of polarization is
P0 ¼ 0:9238 in an isomagnetic, planar ring [31]. The
characteristic Sokolov-Ternov polarization time �ST is
given by [31]

��1
ST ¼ 1

4��0

5
ffiffiffi
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p
8

@�5re
me

1

�3
; (3)

where � is the local bending radius, me, re the classical
electron mass and radius, �0 the permittivity of free space,
@ the reduced Planck’s constant, and � is the Lorentz factor

of this relativistic electron beam. If the bending radius �ðsÞ
varies around the ring circumference, rather than use the
average value � we make the substitution of the third
synchrotron radiation integral [30,32],

1

�3 ! I3 ¼ 1

2�R

I 1

j�ðsÞj3 ds; (4)

where R denotes the mean ring radius.

B. Resonant spin depolarization

Spin transport is described by the Thomas–Bargmann-
Michel-Telegdi equation [33]. The electron spin pre-
cesses about the polarization axis at the spin precession
frequency [15]

~�BMT ¼ � qe
�me

�
ð1þ ae�ÞB? þ ð1þ aeÞBk

�
�
ae�þ �

1þ �

� ~�� ~E

c

�
; (5)

where qe is the electric charge and ae ¼ ðge � 2Þ=2
the anomalous magnetic moment of the electron, and c
the speed of light in vacuum. As defined for Eq. (2), the

direction of electric fields ~E are considered with respect to

the relativistic velocity of the electron ~� ¼ ~v=c. Normally
the storage rings of light sources do not include any sig-
nificant solenoid magnetic fields nor transverse electric

fields, that is Bk ¼ 0, ~�� ~E ¼ 0. Hence, we can make

the simplifying assumption that the electron spin precesses
about a polarization axis which is antiparallel to B? (for
bending magnets of a ring, a vertical magnetic field), at a
frequency given by Eq. (5) which can be simplified to the
spin tune �spin [15]:

�spin ¼ ae� �
�
ge � 2

2

�
E

mec
2
; (6)

where E is the beam energy. If the beam is excited by a
radial magnetic field fkick resonant at any harmonic to the
spin tune, the polarization axis of the beam can be coher-
ently rotated away from its equilibrium vertical orienta-
tion. The beam is hence resonantly depolarized at the
frequency fkick ¼ fdep.

C. Current fundamental and experimental
uncertainties

The gyromagnetic factor ge for electrons has been mea-
sured to precision within the 12th significant figure [34].
We use the NIST CODATA values [35] for ae¼
0:00115965218076ð27Þ and me¼0:510998928ð11ÞMeV.
As a point of interest, with a relative uncertainty of
�ae=ae ¼ 2:3� 10�10, �me=me ¼ 2:2� 10�8, the un-
certainty in the electron mass has improved by almost an
order of magnitude since 1994 [15], and hence the theo-
retical fundamental limit of uncertainty in the resonant

K. P. WOOTTON et al. Phys. Rev. ST Accel. Beams 16, 074001 (2013)

074001-2



depolarization technique is reduced to approximately
�E=E ¼ 2:2� 10�8. In practice, this limit remains orders
of magnitude lower than other experimental uncertainties,
as detailed for these experiments in Table I.

As outlined in Table I, the rf frequency frf is calibrated
to high precision and the excitation frequency fkick can be
calibrated against a reference clock. Hence from Eq. (6),
measurement of the spin tune �spin gives a direct measure-

ment of the beam energy, with experimental uncertainty
dominated by uncertainty in fitting the depolarizing
frequency fdep.

D. Depolarizing effects

The effective polarization time �eff is given by [17,36]

1

�eff
¼ 1

�ST
þ 1

�dep
; (7)

where �ST represents the Sokolov-Ternov polarization time
[Eq. (3)], and �dep a depolarization time governed by radial

magnetic field errors [17]. Storage rings of several GeV
achieve Sokolov-Ternov polarization times on the order of
15–20 minutes, with depolarization times exceeding sev-
eral hours [37]. Because the depolarization effects have a
much longer characteristic time, the effective polarization
time is dominated by the Sokolov-Ternov polarization
time.

A strong depolarizing resonance to be avoided is the
choice of stored beam energy corresponding to integer spin
tune [Eq. (6)] [11]. Also depolarizing is the overlap of the
spin tune with betatron or synchrotron tunes. The vertical
betatron tune has been usefully employed for resonant
spin depolarization [14]. In that experiment, the vertical
betatron tune was swept as the depolarizer. The width of
the vertical betatron tune resonance limited the uncertainty
in the beam energy measurement to approximately
�E=E ¼ 10�4. In this experiment at the AS and
SPEAR3, a feedback kicker is excited with a sinusoidal
oscillation, because it can have a narrower frequency
spread than the betatron tune.

E. Møller scattering polarimetry

Møller scattering is electron-electron scattering and
occurs within a bunch in the storage ring. The polarimetry
observable is the Møller scattering cross section of

Touschek scattered electrons [38–40]: the intrabunch cross
section resulting from betatron oscillations. The particle
loss rate dN=dt is described in terms of the polarization
PðtÞ by [12,30,37]

dN

dt
¼ � NðtÞ2cffiffiffi

2
p

�2�x�x0�y�y0�z

½f1 þ f2PðtÞ2�; (8)

where the number of electrons per bunch is NðtÞ. For a
stored beam of current IðtÞ with equal current in several
bunches, the bunch population NðtÞ / IðtÞ. The horizontal,
vertical, and longitudinal beam dimensions are denoted by
�x, �y, �z, and divergences denoted �x0 , �y0 in the hori-

zontal and vertical directions, respectively. The functions
f1 and f2 can be treated for a given measurement as
constants. Importantly, because NðtÞ / IðtÞ, an instanta-
neous normalized loss rate Rnorm can be defined as

Rnorm ¼ 1

IðtÞ2
dN

dt
/ f1 þ f2PðtÞ2: (9)

The normalized loss rate is the figure of merit used to
evaluate changes in the level of beam polarization.

III. DEPOLARIZATION EXPERIMENTS

A. Lattice and beam parameters

Depolarization experiments were conducted at both
the AS and SPEAR3 storage rings [41,42]. The pertinent
design parameters of the two rings are summarized in
Table II.
Using Eq. (6), the spin tune of a 3 GeV electron beam

was calculated as �spin ¼ 6:8081, as presented in Table II.

As outlined in Sec. II D, betatron tunes are depolarizing if
overlapping with the spin tune. For the initial measurement
of both rings, quadrupole strengths were changed to reduce
the fractional vertical tune to approximately 0.1.

B. Polarization time

For both the AS and SPEAR3 storage rings, an unpolar-
ized beam of electrons was injected into the storage ring,
which was observed to polarize over time. The measured

TABLE I. Relative experimental uncertainties for AS and
SPEAR3 experiments.

Parameter Relative uncertainty

ae 2:3� 10�10

me 2:2� 10�8

frf 1� 10�10

fkick 1� 10�7

fdep 1� 10�6

TABLE II. Storage ring design parameters.

Parameter AS SPEAR3

Beam energy E 3.00 3.00 GeV

Lattice periodicity � � � 14 18 � � �
Lorentz factor � 5871 5871 � � �
Spin tune �spin 6.8081 6.8081 � � �
Betatron tunes �x 13.290 14.130 � � �

�y 5.216 6.194 � � �
Bending radius � 7.69 7.86 m

Circumference C 216.000 234.144 m

rf frequency frf 499.671 476.300 MHz

Polarization time �ST 807 1003 s
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normalized loss rate Rnorm was fitted by Eqs. (1) and (9) to
determine the polarization time. This is shown for the AS
in Fig. 1, and for SPEAR3 in Fig. 2.

Using Eq. (3) and design parameters in Table II the
Sokolov-Ternov polarization time was calculated. The
measured �eff and theoretical �ST are compared in
Table III.

Importantly, for both rings a change in Rnorm is observed,
which can be sensibly attributed to a change in polarization
PðtÞ by the Sokolov-Ternov effect. Hence, with this appa-
ratus we will be able to observe the depolarization of the
beam at the spin tune. Additional detail about the detector
apparatus is given in Appendix A.

C. Spin tune and beam energy measurement

With the stored electron beam polarized, a time-varying
radial magnetic field was applied to the beam through a fast

kicker magnet and the oscillating frequency was scanned
close to the predicted spin tune. Additional detail concern-
ing the depolarizing kicker is given in Appendix B. As the
magnetic field frequency crosses the spin tune the normal-
ized loss rate increases indicating the beam is depolarized.
Figure 3 shows a depolarizing event at AS where the
change in the rate is clearly observable over and above
the fluctuations due to counting statistics.
The uncertainty in the central frequency of the spin tune

is not the same as the width of the spin tune resonance. The
width of the spin tune resonance �f=fdep � 5� 10�6 was

observed to be much larger than the uncertainty in the
central frequency of the spin tune resonance �fdep=fdep �
2� 10�6. In addition, the width of the spin tune resonance
is much narrower than the energy spread of the beam,
which for this lattice is �E=E � 1� 10�3 [2].
The beam energy for AS and SPEAR3 were extracted

from spin tune frequency measurements, and the results are
presented in Table IV. The high precision which was
achieved with this energy measurement technique is ex-
ploited to measure the momentum compaction factor of the
storage rings.

D. Momentum compaction factor

The momentum compaction factor is the change in
circumference with change in energy [29,43]. For a set of
rf frequencies, the beam energy was measured using the
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FIG. 1. Measurement of polarization time (AS). Fit to
normalized count rate gives �eff ¼ 806� 21 s.
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FIG. 2. Measurement of polarization time (SPEAR3). Fit to
normalized count rate gives �eff ¼ 840� 12 s.

TABLE III. Polarization time in AS and SPEAR3.

Machine Measured �eff (s) �ST (s)

AS 806� 21 807

SPEAR3 840� 17 1003

17.818 17.819 17.82 17.821 17.822
1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

FIG. 3. Resonant spin depolarization (AS). A central fre-
quency of fdep ¼ 17819790� 30 Hz is fitted with a width of

�f ¼ 110� 40 Hz. An error function is fitted, allowing for the

subsequent repolarization of the beam.
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resonant spin depolarization technique. The rf frequency
provides an accurate constraint on the circumference of the
closed orbit, and resonant spin depolarization an accurate
measurement of stored beam energy. In order to keep the
beam energy stable, rf frequency feedback and fast-orbit
feedback were turned off. The rf frequency was varied by
small changes of 500 and 1000 Hz from the nominal
frequency given in Table II, resulting in small changes to
the stored beam energy. The corresponding change in beam
energy was measured, as illustrated in Fig. 4 for AS. A
similar measurement was implemented for SPEAR3. The
measured momentum compaction factors of each ring are
summarized in Table V. These values are later compared
with calculated momentum compaction factor for the dif-
ferent models of the gradient dipoles in the rings as de-
scribed in Sec. IV F.

IV. GRADIENT BENDING MAGNET MODELING

As demonstrated in Sec. III D, we can exploit resonant
depolarization to measure the momentum compaction fac-
tor of a storage ring. The momentum compaction factor 	c

of a lattice can be calculated by integrating around the
curvilinear trajectory s as [44]

	c ¼ 1

C

I C

0


xðsÞ
�ðsÞ ds; (10)

where C is the circumference, 
xðsÞ the horizontal disper-
sion, and �ðsÞ the local bending radius. In previous work,
several analytical models as well as a numerical model

were used to describe the trajectory of an electron beam
through a rectangular gradient bending magnet [21], as
used in the present experiments. Without a rigorous deri-
vation, we quote the results of trajectories described by
circular, analytical linear, analytical nonlinear, and numeri-
cal models. The model lattice optical functions and
momentum compaction factor are analyzed and compared
to measured values.

A. Coordinates and parameters

In this section of the paper, the coordinates of the beam
trajectory will be given with reference to the straight,
rectangular gradient bending magnet as illustrated in
Fig. 5 for the AS storage ring.
This Cartesian coordinate system is right handed in

ðx; y; zÞ, with x pointing radially outward from the storage
ring center, y vertically upwards, and z parallel to the
center line of the gradient magnet. The trajectory through
a gradient bending magnet can be modeled as a beam
traveling off center through a large quadrupole. We adopt
a coordinate system [21], and define ðx; y; zÞ ¼ ð0; 0; zÞ as
the straight line along the center of this quadrupole, with
z ¼ 0 at the longitudinal center of the quadrupole as shown
in Fig. 5. The bending magnet will be considered to be
centered at ðx; y; zÞ ¼ ð�xQ; 0; 0Þ, where xQ ¼ B0=B1 and

Bnðx; 0; zÞ ¼ @nBðx; zÞ
@xn

; (11)

and n is the order of the transverse derivative of the
magnetic field. This is further illustrated in Fig. 6.
The numerically evaluated trajectory will be evaluated

in terms of a magnetic field map measured in the ðx; 0; zÞ
plane, but components of the numerically integrated mag-
netic field will subsequently be specified in a curvilinear
coordinate system ðu; v; sÞ. The curvilinear system is right
handed with s tangential to the trajectory of the beam, u
perpendicular and radially outwards, and v perpendicular
and vertically upwards. The curvilinear system is selected
for the numerical trajectory because it is easy to implement
curvilinear magnetic elements in existing accelerator
tracking codes.
Parameters of the bending magnet are summarized in

Table VI.

B. Circular arc trajectory

We make the simplifying assumption that the trajectory
is approximated by a circular arc, as a base against which

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

FIG. 4. Momentum compaction factor measurement (AS).

TABLE V. Momentum compaction factor measured using
resonant spin depolarization.

Machine 	c

AS 0:00211� 0:00005
SPEAR3 0:00164� 0:00001

TABLE IV. Measured spin tune and beam energy.

Machine fdep (Hz) �spin ¼ ae� E (eV)

AS 17819790� 30 6:83859� 0:00002 3013416� 9
SPEAR3 253620� 20 6:80192� 0:00002 2997251� 7
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to make comparisons. Ignoring the horizontal defocusing
gradient, we approximate the pole profile as a pure dipole.

For the beam rigidity B�, bending angle �, and effective
length Leff given in Table VI, the mean dipole field and
bending radius are presented in Table VII. Unless other-
wise specified only the vertical component of the magnetic
field on the midplane will be used in the following analysis
and discussion, i.e., Bðx; zÞ ¼ Byðx; 0; zÞ.

In the coordinate system given, the circular trajectory
xcircðzÞ within the magnet is expressed by

xcircðzÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðz=�Þ2

q
� xQ: (12)

Outside the effective length of the dipole Leff , the trajec-
tory is straight.

C. Linear hyperbolic cosine trajectory

The field profile of a gradient bending magnet can be
considered to be the field of a quadrupole of very large bore,
laterally offset from the center line of the bending magnet.
This quadrupole is considered to have a strength, k, which is
defined in terms of the defocusing gradient B1 and beam
rigidity (B�) by k ¼ B1=ðB�Þ. The equation of motion of
the beam through this quadrupole is given by [21]

x00ðzÞ ¼ Bðx; zÞ
B�

½1þ x0ðzÞ2�3=2; (13)

where the prime denotes the derivative along z. A
linear solution to Eq. (13) can be obtained by making the

approximation x0ðzÞ ¼ 0. We quote the trajectory evaluated
using this linear approximation, and direct the interested
reader to its derivation [21]. The beam trajectory xLðzÞ from
magnet center to exit (and symmetrically, entrance) is
expressed by

xLðzÞ ¼ xLð0Þ coshð
ffiffiffi
k

p
zÞ; (14)

xLð0Þ ¼ tanð�=2Þffiffiffi
k

p
sinhð ffiffiffi

k
p

Leff=2Þ
: (15)

The deflection of the beam is chosen to be symmetric
longitudinally about the magnet center z ¼ 0 so that the
magnet deflects the beam through a bending angle �=2
within the length Leff=2, with maximum orbit amplitude at
the magnet center.

D. Nonlinear hyperbolic cosine trajectory

A nonlinear analytic solution describing the horizontal
trajectory of the electron through the bending magnet can
be obtained on substitution of the linear solution given by
Eq. (14) into the equation of motion, Eq. (13). This non-
linear analytic solution is given by [21]

FIG. 6. Description of gradient bending magnet field by the
field of a single quadrupole of radius rQ, laterally offset from the

nominal center line of the bending magnet by a distance xQ [21].

TABLE VI. Storage ring bending magnet parameters.

Parameter Symbol AS SPEAR3 units

Beam rigidity B� 10 10 Tm

Bending angle � 2�=28 2�=34 rad

Defocusing gradient @B=@x 3.35 3.63 Tm�1

Iron length Liron 1.700 1.450 m

Effective length Leff 1.726 1.505 m

FIG. 5. Half sector of the AS storage ring [2]. The rectangular gradient bending magnet is shown in yellow, quadrupoles in red, and
sextupoles in green.

TABLE VII. Circular radius approximation.

Parameter Symbol AS SPEAR3

Effective field B0 1.300 1.228 T

Bending radius � 7.692 8.144 m

K. P. WOOTTON et al. Phys. Rev. ST Accel. Beams 16, 074001 (2013)
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xNLðzÞ ¼ xNLð0Þ � 1ffiffiffi
k

p
�
sin�1

�
coshð ffiffiffi

k
p

zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=½kxNLð0Þ2�

p
�

� sin�1

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1=½kxNLð0Þ2�
p

��
; (16)

where

xNLð0Þ ¼ tanð�=2Þffiffiffi
k

p
sinhð ffiffiffi

k
p

Leff=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2ð�=2Þp : (17)

E. Numerically integrated trajectory using
measured magnetic field data

A model of the AS bending magnet can be created by
using a group of sector dipole elements with higher order
multipole field components (quadrupole, sextupole, and
octupole). This method has also been implemented for
modeling the SPEAR3 ring [45], and has the benefit of
ensuring that particle tracking is symplectic.

The magnetic field map of the defocusing gradient bend-
ing magnet was measured by a three-axis Hall probe on the
horizontal midplane to give Bx;y;zðx; 0; zÞ. The vertical

component of the magnetic field Byðx; 0; zÞ is presented

in Fig. 7. Superimposed on the map is the trajectory of a
3 GeV electron passing through the magnet as calculated
using the numerical integration method.

The vertical magnetic fields experienced by the electron
while traversing the gradient magnet can be approximated
by calculating the coefficients of the Taylor expansion of
the local magnetic field relative to the trajectory. As out-
lined in Sec. IVA, this curvilinear system is selected for the
numerical trajectory because it is easy to implement a
sequence of curvilinear magnetic elements in existing
accelerator tracking codes.

The first step in the calculation is a coordinate trans-
formation from the Cartesian ðx; y; zÞ coordinates to a
curvilinear coordinate system ðu; y; sÞ, where s is tangen-
tial and u perpendicular to the reference trajectory.
Therefore, all field components are evaluated as

Bnðu; sÞ ¼ @nBðu; sÞ
@un

: (18)

The n ¼ 0; 1; 2; 3 order coefficients are correspondingly
referred to as the dipole, quadrupole, sextupole, and
octupole components of the magnetic field. The field
components for the AS bending magnet are shown in
Fig. 8.
The horizontal trajectory of the particle through the

measured magnetic field (blue curve in Fig. 7) is calculated
by numerically solving Eq. (13) with a fourth order Runge-
Kutta integrator (with no variable step size). The trajectory
is constrained to longitudinal symmetry, i.e. xð�Leff=2Þ ¼
xðLeff=2Þ, x0ð�Leff=2Þ ¼ x0ðLeff=2Þ, and a deflection ofR
B0ðsÞds ¼ ðB�Þ�.
The numerical trajectory is modeled with field compo-

nents given by Eq. (18). The bending magnet model is
constructed by performing piecewise integration of the
field map along the trajectory s at points si. For the ith
slice, the integrated multipole component is given by

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.45

−0.4
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FIG. 7. Vertical component of magnetic field of AS horizontally defocusing gradient bending magnet, measured with a Hall probe.
The x-z axes corresponds to the coordinate system of Fig. 5. The numerically evaluated trajectory is represented by a solid blue line.
The color scale shows the vertical component of the magnetic field Byðx; 0; zÞ in units of Tesla.
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FIG. 8. Field components Bnðu; sÞ, along the curvilinear tra-
jectory plotted in Fig. 7. (a) Dipole component. (b) Quadrupole
component. The peaks at the ends of the bending magnet are due
to edge focusing. (c) Sextupole component. (d) Octupole
component.
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mi
n ¼ 1

siþ1 � si

Z siþ1

si

@nBð0; sÞ
@un

@s; (19)

evaluated about the center of the trajectory u ¼ 0. This
sequence of sector elements describing the bending magnet
model can readily be incorporated in an accelerator lattice
model. Because the edge effects are encapsulated by the
modeling approach, the individual segments are modeled
with higher order multipole components mi

n.

F. Evaluation of modeling approaches

In the preceding subsections, different analytical ap-
proaches were presented for the modeling of a straight,
rectangular gradient bending magnet. We propose to com-
pare the measured and modeled momentum compaction
factor as an evaluation of these models. As defined in
Eq. (10), the momentum compaction factor depends upon

both the bending radius �ðsÞ and the horizontal dispersion

xðsÞ. In this section, we will determine and evaluate both
of these.
The trajectories of each of the four models are plotted

in Fig. 9. As illustrated in Figs. 9(b) and 9(c), we compare
the four trajectories relative to the initial position
xðz ¼ �1:234Þ. The circular trajectory approximation
gives the greatest deviation from the numerically evaluated
trajectory.
It is easier to see the local changes of the trajectory by

inspecting the local bending radius of these four modeling
approaches. The bending field B0ðzÞ of the gradient bend-
ing magnet is described by a virtual quadrupole of trans-
verse quadrupole gradient B1, and hence the dipole field
varies in the longitudinal coordinate z by B0ðzÞ ¼ B1xðzÞ.
As a result, the local bending radius �ðzÞ is given by

�ðzÞ ¼ p=ðqeB0Þ ¼ p=½qeB1xðzÞ�; (20)

where p is the momentum of the beam electron. The local
bending radii of each of the four models are plotted in
Fig. 10. There is longitudinal variation in the bending radius
�ðzÞ, with the highest bending fields corresponding to lower
bending radii at large z, as highlighted in Fig. 10(b). This
results in a trajectory with greatest bending near the ex-
trema of the bendingmagnet, and less bending in the center.
We can also compare the lattice parameters [29,43] with

bending magnets modeled by the linear hyperbolic and
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FIG. 9. (a) Electron beam trajectories in coordinates ðx; zÞ for
each of the four models described in Sec. IV, with equal entrance
and exit angles. (b) Translation in x of trajectories in (a) by
xðzÞ � xð�1:234Þ, to give equal entrance and exit positions and
angles for each model. (c) Magnification of trajectories in (b).
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FIG. 10. Bending radius � as a function of the longitudinal
coordinate z, for each of the four models described in Sec. IV.
(a) Bending radius �ðzÞ with longitudinal position z, highlighting
the longitudinal extent of the fringe field in the numerical model.
(b) Magnification of (a), highlighting variation of bending radius
within the iron length of the magnet.
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numerical trajectories. The storage ring is simulated using
the ACCELERATOR TOOLBOX (AT) code [46] for each of the
analytical linear model given by Eq. (14), and numerically
evaluated bending magnet fields given by Eq. (19). The
equation for the path length of the trajectory using these
models is given explicitly in Ref. [21]. Linear and numeri-
cal models of the trajectory are specifically compared, as
the linear method is commonly implemented in accelerator
tracking codes, and elements commonly included in accel-
erator tracking codes can be used to yield the numerically
evaluated trajectory. For each model, the three families of
storage ring quadrupoles are matched to give the same
betatron tunes and horizontal dispersion in the straights.
Figure 11 shows the difference between the betatron and
dispersion functions for the AS lattice.

We observe in Fig. 11(b) that the solution of quadrupole
strengths for matched tunes and dispersion in the center of
the straights yields a significant difference in the dispersion
and betatron functions. As an input to the momentum
compaction factor, we focus on the change in the differ-
ence between the dispersion functions, which at the beam
position monitor (BPM) in the center of the arc is a peak
difference of 
xNUM � 
xL ¼ 4:8 mm. The measured

dispersion function 
xMEAS is compared to numerical and
linear models in Fig. 12.
For the horizontal dispersion shown in Fig. 12, the

mean and standard deviation of the difference between
the measured and model dispersion of the BPMs in the
center of the arcs is for the linear model 
xMEAS � 
xL ¼
5:8� 1:4 mm, and for the numerical model 
xMEAS �

xNUM ¼ �0:6� 1:4 mm. Hence, the measured disper-
sion function agrees with the numerical model to within
the limits of this lattice calibration. The difference between
the measured dispersion and linear model is attributable to
the difference between the linear and numerical models.
As presented in Sec. III D, to evaluate which is a more

accurate model of the bending magnet, we have measured
the momentum compaction factor to high precision using
resonant spin depolarization. Measured and modeled val-
ues of the momentum compaction factors of both lattices
are compared in Table VIII.
Within the uncertainty of the measurement the momen-

tum compaction factor is shown to agree with the numeri-
cal model of the trajectory within the bending magnet, and
disagree with the linear hyperbolic cosine approximation.
The accuracy of the numerical model comes from using the
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FIG. 11. (a) Lattice functions evaluated using numerical model
for trajectory, fitting quadrupoles for the 0.1 m dispersion lattice
of the AS [2]. (b) Difference between lattice functions of
numerical and linear hyperbolic cosine trajectory.
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correct distribution of the dipole field component as illus-
trated in Figs. 8 and 10, subsequently giving a better model
for the horizontal dispersion as illustrated in Fig. 12.

V. DISCUSSION

Resonant spin depolarization has been usefully em-
ployed previously at rings to confirm effects principally
related to beam energy stability. In the present work, we
benefit from the precision of the technique in the calibra-
tion of lattice models of gradient dipole magnets. We have
compared the momentum compaction factor for analytic
linear and numerically evaluated models, and measure-
ments of storage ring lattices incorporating rectangular
gradient bending magnets.

As a modeling technique, the numerical evaluation of
trajectory could find potential application with various
proposed accelerators. The design of present and future
third-generation storage ring light sources already consider
this approach [22,47]. Ultimate storage ring light sources
[24–28] plan to employ gradient dipole magnets as part of
a strategy to reduce the equilibrium horizontal emittance.

Fixed-field, alternating gradient accelerators are enjoy-
ing a recent resurgence in interest [48]. In particular, scal-
ing lattices employing gradient dipoles [49,50] could find
benefits to trajectory and focusing from numerical model-
ing, as well as nonscaling lattices with real quadrupoles at
large transverse offsets [51]. Also, with beams of antipro-
ton species, this modeling approach could prove useful to
the Recycler ring at Fermilab [52]. For proton accelerators,
this numerical evaluation of trajectory has been demon-
strated to natively account for modeling of magnet fringe
fields [53].

CONCLUSION

The beam energy was measured for two electron storage
rings AS and SPEAR 3 with defocusing gradient bending
magnets. Resonant spin depolarization was employed,
achieving an uncertainty of order 10�6 in the beam energy.
To measure the momentum compaction factor, the rf fre-
quency provided an accurate constraint on the circumference
of the closed orbit, and resonant spin depolarization an accu-
rate measurement of stored beam energy. Measurements and
models of the momentum compaction factor were compared
to evaluate analytical and numerical models of the beam
trajectory through a defocusing gradient dipole magnet.

Armed with precision measurements, we made a critical
evaluation of the suitability of different modeling ap-

proaches of the electron beam trajectory. The trajectory
through the gradient dipoles is modeled using circular,
linear hyperbolic cosine, nonlinear hyperbolic cosine
approximations, and numerical integration of the measured
magnetic field. Within the uncertainty of the measurement
the momentum compaction factor is shown to agree with
the numerical model of the trajectory within the bending
magnet, and disagree with the hyperbolic cosine approxi-
mation. Linear and numerical models of the trajectory are
specifically compared, as the linear method is commonly
implemented in accelerator tracking codes, and elements
commonly included in accelerator tracking codes can be
used to yield the numerically evaluated trajectory.
This is an extended article of measurements presented at

recent International Particle Accelerator Conferences
[41,42].
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APPENDIX A: DETECTOR CHOICE

The change in beam polarization is observed in the
normalized loss rate Rnorm, given by Eq. (9). Two main
approaches are considered in literature: evaluation of
the Touschek lifetime from the storage ring DC current
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FIG. 13. Resonant depolarization measured for SPEAR3 using
NaI scintillator and DCCT, increasing the excitation frequency
in time. The lifetime is calculated from 30 samples of the DCCT.

TABLE VIII. Momentum compaction factor.

AS SPEAR3

Linear hyperbolic cosine 0.00205 0.00162

Numerical 0.00211 0.00165

Measured 0:00211� 0:00005 0:00164� 0:00001
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transformer (DCCT), and detection of the electromagnetic
shower from Touschek scattered beam particles striking the
vacuum chamber when lost [5,54]. Figure 13 presents
measurements of a depolarization using each of these
techniques.

Figure 13 shows that both approaches could work in the
identification of a depolarization. The measured NaI loss
monitor count rate responds to the resonant depolarization
within 1 s, while calculation of the lifetime with small
uncertainty requires approximately 30 s of measurements
of the stored beam current and the drop in lifetime is
observed approximately 30 s after the depolarization.
The beam lifetime is calculated from the time derivative
of the stored beam current, while the loss monitor mea-
sures the absolute loss rate, which is the derivative of the
beam current with respect to time.

For the technique of resonant spin depolarization it is
best to have a beam lifetime dominated by Touschek
scattering. One of the simplest ways to control this is to
alter the fill pattern in the storage ring to maximize the
single bunch current.

The beam loss monitor was a 75 mm diameter NaI
scintillator and photomultiplier tube at AS, and 50 mm
diameter at SPEAR3. For both experiments, the scintillator
was installed in the orbit plane of the ring, on the inner side
of the vacuum chamber. At SPEAR3, the detector was
installed adjacent to the scraper defining the minimum
energy aperture of the SPEAR3 storage ring, to maximize
the count rate. This is immediately downstream of the
central focusing quadrupole, which is the point of maxi-
mum horizontal dispersion in one of the double-bend
achromat arc cells. At AS, the detector was installed at
the upstream end of an insertion straight, where the hori-
zontal dispersion is 0.1 m.

In summary, the change in polarization needs to be quite
large to observe the depolarization using the beam lifetime.
From a beam physics perspective, large changes of polar-
ization are not necessary to measure the beam energy: one
is interested in the precession frequency at which depolar-
ization occurs. The time delay of 20–30 s observed in the
beam lifetime measurement compromises this precision
measurement of depolarization frequency.

APPENDIX B: DEPOLARIZATION KICKER

Resonant depolarization of the beam is achieved with a
magnetic field which is radial in orientation (perpendicular
to both the beam trajectory and main bending field), and
oscillating sinusoidally in time. Presented in Fig. 14 is the
measured loss rate while scanning the excitation frequency.
Exciting the beam at a betatron resonance results in a
decreased loss rate (increased lifetime) since the bunch
vertical size increases, hence the scattering rate decreases.
Crossing a spin resonance the count rate increases since the
Møller scattering cross section increases when the polar-
ization is reduced.

For both rings, the excitation frequency was swept at a
rate of 10 Hz s�1. Depolarization is a resonant effect—it is
particularly important to scan slowly [6].
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