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The damaging effect of coherent synchrotron radiation (CSR) on the emittance and energy spread of

high-energy beams in accelerator light sources can significantly constrain the machine design and

performance. We propose a mitigation approach in which the dynamical effect of the longitudinal

component of CSR is suppressed by appropriately preparing the initial longitudinal current profile of

the beam. In a chicane, a linear theory for the mechanism of CSR-induced emittance growth is used to

demonstrate how this procedure can produce a beam whose core experiences suppressed transverse

emittance growth. The dynamics of such a beam is illustrated for the Berlin-Zeuthen CSR benchmark

chicane.
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I. INTRODUCTION

The performance of high-brightness light sources, such
as x-ray free-electron lasers (FELs), requires short beams
of high intensity for which the bend-induced collective
interaction of coherent synchrotron radiation (CSR) can
significantly impact the beam dynamics. As a bunch prop-
agates through the bends of a magnetic bunch compressor,
the tail-head interaction due to CSR induces increased
beam energy spread and transverse emittance dilution that
can degrade the downstream FEL performance [1–3]. In
addition, the CSR interaction is known to generate a micro-
bunching instability in which large-amplitude current
modulations can grow from small-amplitude, short-
wavelength variations in the initial current profile [4,5].

These effects have been studied both analytically and
numerically using a 1D rigid-bunch model of the CSR
interaction [6–10]. It has been shown that the coherent
radiation intensity can be suppressed through the shielding
that results from the radiation interaction with the vacuum
chamber walls [11]. In addition, a technique proposed in
[12] has recently been demonstrated for mitigating the
CSR-induced emittance growth through careful optimiza-
tion of the optical lattice [13]. In this paper, we describe a
complementary approach in which a 1D model is used to
formulate and solve an optimization problem for the initial
longitudinal beam profile needed to minimize CSR-
induced emittance growth for a given lattice.

To motivate this problem, consider an electron bunch
described by a longitudinal density �, normalized such that

Z 1

�1
�ðzÞdz ¼ N; (1)

where N is the total number of particles in the bunch. The
longitudinal steady-state 1D CSR wakefield generated by
the bunch as it propagates in a bend takes the form

WðzÞ ¼
Z z

�1
�ðz0ÞKCSRðz� z0Þdz0; (2)

where KCSR is the steady-state CSR interaction kernel [6].
The resulting rms spread within the bunch in the CSR-
induced energy change per unit length is given by

�W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hW2ik � hWi2k

q
; (3)

where for a given function �, we denote

h�ik ¼ 1

N

Z 1

�1
�ðzÞ�ðzÞdz: (4)

This variation in the wakefield-induced energy change
across the length of the bunch in the presence of dispersion
results in a growth of the projected horizontal emittance of
the bunch, given approximately in the bend by [14,15]

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�20 þ �0�ð��E=EÞ2

q
; (5)

where �0 and � are the initial and final unnormalized
horizontal emittances, � is the bending angle, � is the
Twiss function at the bend exit, E is the beam energy,
and �E is the rms energy spread induced by CSR within
the bend. (A more detailed estimate is given in
Appendix C.) This motivates the following optimization
problem: For a fixed bunch length L and a number of
particles N, find a density � such that (5) attains a mini-
mum. A general solution to this problem can be con-
structed as follows. Let L ¼ b� a denote the desired
bunch length, and consider a longitudinal wakefield of
the form
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WðzÞ ¼ �W0; z 2 ½a; b�; (6)

whereW0 > 0. Suppose that we find a longitudinal density
� that is zero outside the finite interval ½a; b� and that
satisfies (2) for all z 2 ½a; b�. In this case, the wakefield
is uniform over the length of the bunch, and it is clear from
(3) that �W ¼ 0. In this way, we eliminate the CSR-
induced growth in projected emittance (5) while generating
only a uniform energy loss along the bunch.

In Sec. II, we solve this problem to obtain the optimal
longitudinal current profile for a bunch propagating
through a single bend in the presence of steady-state
CSR. In Sec. III, we construct a bunch with this longitu-
dinal profile and examine its dynamics through a standard
4-bend magnetic chicane. In Sec. IV, a linear theory of
wakefield-induced emittance growth is used to formulate a
revised inverse problem that is designed to minimize the
transverse emittance growth in a lattice when bend entry
and exit CSR transient wakefields are included. As an
example, Sec. V describes a numerical application to the
benchmark chicane of the Berlin-Zeuthen CSR Workshop
of 2002. Section VI concludes with a brief discussion.
There are four appendices.

II. TREATMENT OFA SINGLE BEND
IN STEADY STATE

The problem of inverting (2) to determine the density �
that generates a given wakefield (6) involves solving a
Volterra integral equation of the first kind [16,17]. We first
obtain an analytical solution that is valid at high energies,
when the ultrarelativistic form of the CSR interaction
kernel can be used. This is followed by a discussion of
the numerical solution for the more general case.

A. Analytical solution in the ultrarelativistic case

Consider a bunch with a longitudinal number density �
propagating through a single bend of radius R. Under the
condition that

R

�3

d�

dz
� �; (7)

where � is the relativistic factor, the steady-state longitu-
dinal wakefield due to CSR is well described by using the
ultrarelativistic form of (2) [7,10]:

WðzÞ ¼
Z z

�1
�ðz0ÞK�

CSRðz� z0Þdz0; (8)

where

K�
CSRð�Þ ¼

2rcmc2

34=3R2=3�4=3
; (9)

and rc ¼ e2=ð4	�0mc2Þ denotes the classical electron ra-
dius. After integrating by parts, we can also write this in the
form

WðzÞ ¼ �
Z z

�1



ðz� z0Þ1=3
d�ðz0Þ
dz0

dz0; (10)

where


 ¼ 2rcmc2

31=3R2=3
: (11)

Suppose that the longitudinal density � is zero outside a
finite interval ½a; b�. The lower limit in (10) then becomes
z0 ¼ a, and (10) takes the form of a generalized Abel
integral equation for the derivative d�=dz, with exponent
� ¼ 1=3. (See Appendix A.) Under the assumption (6)
that WðzÞ ¼ �W0, the result of Appendix A gives the
unique solution:

d�

dz
¼ sinð	=3Þ

	


W0

ðz� aÞ2=3 ¼
ffiffiffi
3

p
2	


W0

ðz� aÞ2=3 : (12)

The use of integration by parts requires that the density be
continuous at z ¼ a, so that �ðaÞ ¼ 0 and we have

�ðzÞ ¼ 3
ffiffiffi
3

p
2	


W0ðz� aÞ1=3 a � z � b: (13)

It follows from (13) that the density must be discontinuous
at z ¼ b. Applying the normalization condition (1) deter-
mines the uniform value of the wakefield:

W0 ¼ 8

9
ffiffiffi
3

p N	


ðb� aÞ4=3 ; (14)

and the normalized solution for the longitudinal density
becomes

�ðzÞ ¼ 4

3
N
ðz� aÞ1=3
ðb� aÞ4=3 ; a � z � b: (15)

For completeness, note that the rms bunch length associ-
ated with (15) is given by

�z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hz2i � hzi2

q
¼ 3

7

ffiffi
2
5

q
L; (16)

where L ¼ b� a, and the peak current Ipk is related ex-

actly to the bunch charge Qb and the length L by

Ipk ¼ 4

3

Qbv

L
; (17)

where v is the longitudinal velocity of the beam.
Computing the wakefield generated by the density (15)

using the integral (10) gives

WðzÞ ¼

8>><
>>:
0 z � a

�W0 a < z < b

�W0gðzÞ z > b;

(18)

where
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gðzÞ¼ 3
ffiffiffi
3

p
2	

�
2F1

�
1

3
;
1

3
;
4

3
;
b�a

z�a

��
b�a

z�a

�
1=3�

�
b�a

z�b

�
1=3

�
;

(19)

and 2F1 is the standard hypergeometric function [18].
Figure 1 illustrates the current density (15) together with
its associated wakefield (18), where a ¼ �L=2 and
b ¼ L=2. Note that W is uniform across the length of the
bunch, discontinuous at the bunch tail (z ¼ a), and singu-
lar at the bunch head (z ¼ b). We will see in the following
section that when the ultrarelativistic CSR kernel K�

CSR is

replaced by the kernel KCSR with � <1, the wakefield is a
continuous function that varies rapidly near the end points
of the interval ½a; b�.

Note that the derivative of � diverges at z ¼ a, and the
inequality (7) fails near this point when � <1. Using (15),
we expect the ultrarelativistic approximation to be accurate
when

z� a � R=3�3: (20)

We therefore expect a small region near the tail of the
bunch (at z ¼ a) where the wakefield generated by (15) at
� <1 is not completely uniform. This case is considered
in the following section.

B. Numerical solution in the case � <1
When � is sufficiently small that (7) fails, the steady-

state longitudinal wakefield due to CSR is given by (2),
where the integral kernel KCSR takes the form [7,10]

KCSRð�Þ ¼ 4rcmc2�4

R2

�
û2=4� 1

2ð1þ û2=4Þ3

þ 1

û2

�
1þ 3û2=4

ð1þ û2=4Þ3 �
1

ð1þ û2=12Þ2
��
; (21)

with û being the root of

��3

R
¼ û

2
þ û3

24
: (22)

In this case, the CSR wakefield integral (2) can be
numerically approximated at a set of equidistant longitu-
dinal locations zk ¼ z0 þ khz (k ¼ 0; . . . ; n) as the sum

WðzkÞ ¼ hz
Xk
k0¼0

�k0w
igf
k�k0 ; k ¼ 0; . . . ; n; (23)

where the values wigf
j are determined analytically by in-

tegrating the kernel KCSR against an appropriate set of
basis functions [19]. In particular, for terms in the sum
with k0 � 0; k we use

wigf
j ¼½ICSRðjhzþhz=2Þ�ICSRðjhz�hz=2Þ�=hz; (24)

where

ICSRð�Þ ¼ �
Z 1

�
KCSRð� 0Þd� 0

¼ ��rcmc2

R

4ûðû2 þ 8Þ
ðû2 þ 4Þðû2 þ 12Þ :

The linear system (23) can be written in matrix form as

Ŵ ¼ G�̂; (25)

where

Ŵ k ¼ WðzkÞ; �̂k ¼ �ðzkÞhz; Gk;k0 ¼ wigf
k�k0 :

(26)

Note that wigf
k�k0 ¼ 0 when k < k0. Thus, the matrix G is

lower triangular, and the system is invertible since Gk;k ¼
wigf

0 � 0. Setting Ŵk ¼ 1 for all k ¼ 0; . . . ; n, we invert

the above system to obtain the values �̂k, and it remains
only to normalize the longitudinal density � according to
(1). Numerical convergence issues are mentioned briefly in
Appendix A.
Figure 2 illustrates the resulting numerically computed

longitudinal density (red) for a bunch of total length
100 �m at an energy of 100 MeV, propagating through a
bend of radius 1.25 m. This is shown together with the
analytically determined ultrarelativistic density (15) in
blue. Both solutions are determined under the assumption
that the bunch is sufficiently far into the bend that transient
CSR effects are negligible. Note that the numerically com-
puted solution properly takes into account the short-range
behavior of the CSR interaction at 100 MeV.
Figure 3 illustrates the wakefieldW=W0 along the length

of the bunch as computed using (23) for the two density
profiles shown in Fig. 2. The wakefield computed using the
density profile (15) exhibits some variation in a small
region near the tail of the bunch, while the wakefield
computed using the numerically determined solution

(L/N)

W/W0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1.5

2.0

z L

FIG. 1. (Blue) The dimensionless longitudinal density
ðL=NÞ�, where � is given by (15). (Red) The dimensionless
CSR wakefieldW=W0, where W is given in (18) andW0 is given
in (14). Here L denotes the end-to-end bunch length and N
denotes the total number of particles in the bunch.
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of (25) is uniform across the length of the bunch to near
machine precision, as expected.

III. DYNAMICS IN A CHICANE

In this section, we describe how a beam with the longi-
tudinal density (15) is affected by its longitudinal CSR
wakefield as it propagates through the standard 4-bend
chicane of a magnetic bunch compressor. These results
indicate that under ideal linear compression, the steady-
state CSR wakefield generated by (15) has no net effect on
the central moments or emittance of the beam.

A. Dynamics with linear optical transport

Using the phase space variables X ¼ ðx; x0; y; y0; z; �Þ,
let the initial 6D distribution function of the beam at the
entrance to the chicane take the form

f0ðXÞ ¼ 1

��0

ffiffiffiffiffiffiffi
2	

p �0ðzÞ exp
�
�ð�� hzÞ2

2�2
�0

�
f?ðx; x0; y; y0Þ;

(27)

where ��0 is the initial uncorrelated energy spread and h is
the initial energy chirp. The transverse distribution f? is
assumed to be Gaussian in each dimension, with

f?ðx; x0; y; y0Þ ¼ fxðx; x0Þfyðy; y0Þ: (28)

Here fx is given in terms of the initial Twiss parameters
x0, �x0 and the initial unnormalized emittance �x0 as

fxðx; x0Þ ¼ 1

2	�x0
exp

�
� x2 þ ð�x0x

0 þ x0xÞ2
2�x0�x0

�
; (29)

with a similar expression for fy. Thus, the initial longitu-

dinal density profile of the beam is given by

�0ðzÞ ¼
Z 1

�1
f0ðXÞdxdx0dydy0d�: (30)

The distribution function at a lattice location s is then given
through linear order in the absence of collective effects as

fðX; sÞ ¼ f0½RðsÞ�1X�; (31)

where RðsÞ is the usual transfer matrix from the chicane
entry to the location s. Integrating over the transverse
variables gives the longitudinal density profile at s:

�ðz; sÞ ¼ Cffiffiffiffiffiffiffi
2	

p
D

Z 1

�1
�0ðu0Þ exp

�
�ðu0 � zCÞ2

2D2

�
du0;

(32)

where

CðsÞ ¼ 1

1þ hR56ðsÞ (33)

is the compression factor
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FIG. 3. The 1D CSR wakefield across the length of the bunch
is shown as computed using (23) for the analytically determined
density (15) (blue) and from the numerical solution of the system
(25) (red). The wakefield is normalized by the quantity W0 of
(14). The lower figure illustrates the relative fluctuations in the
value of the CSR wakefield as computed from the numerically
determined solution.

FIG. 2. (Red) Numerically computed solution of (25) for the
longitudinal density. (Blue) Ultrarelativistic expression (15) for
the longitudinal density. Here L is the total bunch length, and the
vertical axis denotes the dimensionless quantity ðL=NÞ�.
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D 2ðsÞ ¼ C2

�
R2
56ðsÞ�2

�0 þ
�x0;nH ðsÞ

�

�
; (34)

and the parameter H is given by

H ðsÞ ¼ ½�x0R51ðsÞ � x0R52ðsÞ�2 þ R52ðsÞ2
�x0

: (35)

The evolution of the pulse shape is determined by the two
parametersC andD. WhenD is small, the Gaussian factor
appearing in the integrand of (32) becomes sharply peaked
about u0 ¼ zC, and in the limit D ! 0 we find

�ðz; sÞ ¼ C�0ðzCÞ: (36)

In this limit, which we refer to as ideal compression, the
effect of the chicane is to scale the longitudinal coordinate
by the compression factor C, leaving the longitudinal
bunch shape unchanged.

To study the case of nonideal compression, let Lf ¼
L=CðsÞ denote the compressed bunch length at s. Defining
scaled dimensionless quantities �z ¼ z=Lf and �� ¼
ðLf=NÞ�, we can write (32) as

��ð�z; sÞ ¼ 1ffiffiffiffiffiffiffi
2	

p
D̂

Z 1

�1
��0ð�z0Þ exp

��ð�z� �z0Þ2
2D̂2

�
d�z0

¼ 1ffiffiffiffiffiffiffi
2	

p
D̂

4

3

Z 1=2

�1=2

�
�z0 þ 1

2

�
1=3

exp

��ð�z� �z0Þ2
2D̂2

�
d�z0:

(37)

The shape of the compressed pulse is controlled by the

dimensionless parameter D̂ ¼ D=L, given explicitly by

D̂ 2 ¼ R2
56�

2
�0 þ �x0;nH =�

L2
f

; (38)

and the result is shown in Fig. 4 for several values of the

parameter D̂. As D̂ increases, smoothing of the longitu-

dinal density profile is visible on the scale �z=Lf � D̂.

For the example considered in Sec. V, the parameter D̂
ranges from 0%–6%. (See Fig. 7.)

As the longitudinal density of the bunch evolves in the
lattice, the longitudinal CSR wakefield will also evolve.

Let Wf ¼ W0CðsÞ4=3, and define the dimensionless quan-

tity �W ¼ W=Wf. Using arguments similar to those above,

we find

�Wð�z; sÞ ¼ 1ffiffiffiffiffiffiffi
2	

p
D̂

Z 1

�1
�Wð0Þð �z0Þ exp

��ð�z� �z0Þ2
2D̂2

�
d�z0;

(39)

where �z ¼ z=Lf, �Wð0Þ ¼ Wð0Þ=W0, and Wð0Þ is the initial

wakefield given by (18). Figure 5 illustrates this result as a

function of �z for several values of the parameter D̂. Notice
that due to the longitudinal spreading induced by the initial
energy spread and transverse emittance of the beam,

particles within a distance �z of the bunch head can slip
forward into a region of large accelerating wakefield.
Likewise, particles within the same distance of the bunch
tail can slip backward into a region where the longitudinal
wakefield varies from its uniform value along the bunch
core. In Sec. V, we will see that the bunch experiences a
growth in horizontal projected emittance that is due en-
tirely to particles in these two regions.

B. Dynamics with nonlinear optical transport

The presence of nonlinear beam optics can lead
to a distortion of the initial longitudinal current profile
(15) downstream within the bunch compressor. As a
result, the CSR wakefield generated in the bends may be

1.0 0.5 0.5 1.0
z Lf

0.2

0.4

0.6

0.8

1.0

1.2

L f N

FIG. 4. The evolution of the longitudinal density � within a
chicane in the absence of collective effects is shown for the

values D̂ ¼ 2%, 4%, 6%, 8%, and 10%, demonstrating the
effect of nonzero initial energy spread ��0 and transverse
emittance �x0;n on the bunch profile. The dashed line illustrates

the initial density and Lf ¼ L=C denotes the compressed bunch

length.

1.0 0.5 0.5 1.0
z Lf

1.0

0.5

0.5

1.0

1.5

W z Wf

FIG. 5. (Solid) The 1D CSR wakefield that would be generated

by the bunches of Fig. 4, shown for the values D̂ ¼ 2%, 4%, 6%,
8%, and 10%, demonstrating the effect of nonzero initial energy
spread ��0 and transverse emittance �x0;n on the longitudinal

CSR wakefield. (Dashed) The current profile ðLf=NÞ� for the

case D̂ ¼ 6% is shown for comparison, illustrating that particles
near the head of the bunch at z=Lf ¼ 1=2 will experience a

CSR-induced energy kick.
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nonuniform, introducing energy spread and transverse
emittance growth. In this section we review results which
show that, by modifying the initial longitudinal energy pro-
file appropriately, nonlinear effects on the dynamics of the
current profile can be eliminated through third order [20].

We will consider only the nonlinear dynamics in the
longitudinal phase space. Assume that the initial mean
energy of a longitudinal slice zi at the chicane entry is
given by

�ðziÞ ¼ 1zi þ 2z
2
i þ 3z

3
i þOðz4i Þ; (40)

where 1 is the linear energy-bunch length correlation that
is required for bunch compression. The nonlinear transfer
map through third order in the chicane is given by

zf ¼ zi þ R56�i þ T566�
2
i þU566�

3
i þOð�4

i Þ; �f ¼ �i:

(41)

Using (40) gives

zf¼ð1þ1R56Þziþð2
1T566þ2R56Þz2i

þð3
1U5666þ2T56612þ3R56Þz3i þOðziÞ4: (42)

Nonlinear terms in (42) can be eliminated through third
order by choosing

2 ¼ �2
1

T566

R56

; 3 ¼ 1

R56

�
�3

1U5666 þ 23
1

T2
566

R56

�
:

(43)

For a chicane [15],

T566 � �3
2R56; U5666 � 2R56: (44)

Using these results in (43) gives

�ðziÞ ¼ �zi þ 3
2�z

2
i þ 5

2�z
3
i þOð�z4i Þ; (45)

where

�z i ¼ 1zi: (46)

By introducing nonlinear terms into the initial energy
profile according to (45), the expression (42) becomes
zf ¼ zi=C. As a result, the longitudinal bunch shape in

the presence of nonlinear effects through third order will
evolve as described in Sec. III A. (See Fig. 9.)

C. Dynamics in the presence of a uniform
CSR wakefield

In Sec. III A, we saw that the linear evolution of a bunch
with the initial distribution function (27) through a chicane
in the absence of collective effects is well described by a
simple scaling of the longitudinal coordinate z (ideal com-

pression) when the parameter D̂ is sufficiently small. In
the presence of nonlinear optical transport, this behavior
can be restored by shaping the initial energy profile
of the bunch as described in Sec. III B. Under these con-
ditions, we have for a beam with the initial longitudinal
density (15):

�ðz; sÞ ¼ C�0ðzCÞ ¼ 4

3
N
ðz� �aÞ1=3
ð �b� �aÞ4=3 ; (47)

where �a ¼ a=C and �b ¼ b=C. Following the results of
Sec. II, it follows that at each location s in the lattice the
longitudinal wakefield due to CSR is uniform across the
length of the bunch, with a value given according to

WðsÞ ¼ �W0CðsÞ4=3; (48)

where W0 is given in (14). We can relate the evolution of
the distribution function in the presence of CSR (denoted
fCSR) and in the absence of CSR (denoted f) in this case as
follows.
Define the 6-tuple

� ðsÞ ¼ ð0; 0; 0; 0; 0; WðsÞ=EÞ; (49)

where E is the beam energy. To linear order, the phase
space coordinate of each particle in the presence of CSR
satisfies a differential equation of the form

X 0ðsÞ ¼ AðsÞXðsÞ þ �ðsÞ; Xð0Þ ¼ X0; (50)

where the matrix A is determined by the externally
applied fields. The exact solution is given by variation of
parameters [21] as

X ðsÞ ¼ RðsÞX0 þ
Z s

0
RðsÞR�1ð�Þ�ð�Þd�; (51)

where R is the linear transfer matrix, which satisfies

R0ðsÞ ¼ AðsÞRðsÞ; Rð0Þ ¼ I; (52)

and I is the 6	 6 identity matrix. Solving for X0 in terms
of XðsÞ gives

X 0 ¼ R�1ðsÞXðsÞ �
Z s

0
R�1ð�Þ�ð�Þds: (53)

The distribution function therefore evolves as

fCSRðX; sÞ ¼ f0

�
R�1ðsÞX�

Z s

0
R�1ð�Þ�ð�Þd�

�
: (54)

Comparing this with the distribution function in the
absence of CSR (31) we find that

fCSRðX; sÞ ¼ f½X� �XðsÞ; s�; (55)

where

�XðsÞ ¼
Z s

0
Rð� ! sÞ�ð�Þd�: (56)

In components, (56) gives
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�xðsÞ ¼ 1

E

Z s

0
R16ð� ! sÞWð�Þd�; (57a)

�x0ðsÞ ¼ 1

E

Z s

0
R26ð� ! sÞWð�Þd�; (57b)

�zðsÞ ¼ 1

E

Z s

0
R56ð� ! sÞWð�Þd�; (57c)

��ðsÞ ¼ 1

E

Z s

0
Wð�Þd�; (57d)

where the quantity W is given by (48).
The effect of the uniform CSR wakefield generated by

the density (15) under ideal compression is therefore to
introduce a translation of the beam distribution function in
phase space given by (57). As a result, the influence of CSR
affects the location of the beam centroid, but has no net
effect on the central beam moments or emittances.

D. Dynamics in the presence of a nonuniform
CSR wakefield

The discussion of the previous section demonstrates that
a bunch with the initial longitudinal density profile (15)
will maintain this profile under ideal compression in a
chicane, resulting in no net projected emittance growth in
the presence of steady-state CSR. In a realistic system,
however, transient CSR wakefields [7] occur near the
transitions between bends and drifts, resulting in a CSR
interaction that varies according to the bunch location
within the lattice. Such a wakefield takes the general form:

Wðz; sÞ ¼
Z z

�1
�ðz; sÞKCSRðzþ s; z0 þ sÞdz0: (58)

A longitudinal density profile which generates a uniform
wakefield at one location in the lattice will not, in general,
generate a uniform wakefield elsewhere due to the s de-
pendence of the kernel KCSR.

To linear order in the externally applied fields, the phase
space coordinate of a particle in the presence of such a
longitudinal wakefield satisfies a differential equation with
a form similar to (50):

X 0ðsÞ¼AðsÞXðsÞþ�½��½XðsÞ;s�; Xð0Þ¼X0; (59)

where the inhomogeneous term describes the change in
particle energy due to the longitudinal wakefield:

� ½��½XðsÞ; s� ¼ f0; 0; 0; 0; 0; W½zðsÞ; s�=Eg; (60)

and the notation �½�� denotes that W in (60) is determined
self-consistently from the longitudinal density profile of
the beam according to (58). The system (59) can be re-
written as the integral equation:

X ðsÞ ¼ RðsÞX0 þ
Z s

0
Rð� ! sÞ�½��½Xð�Þ; ��d�: (61)

Now (61) can be solved using an iterative procedure as
follows. Let

X ð0ÞðsÞ ¼ RðsÞX0 (62)

denote the zero-order solution, which describes the dynam-
ics in the absence of the wakefieldW. Using this solution in
the integral appearing on the right-hand side of (61) gives
the first-order solution,

X ð1ÞðsÞ¼Xð0ÞðsÞþ
Z s

0
Rð�!sÞ�½��½Xð0Þð�Þ;��d�; (63)

and the solution of order n 
 1 is given by

X ðnÞðsÞ ¼ Xð0ÞðsÞ þ
Z s

0
Rð� ! sÞ�½��½Xðn�1Þð�Þ; ��d�:

(64)

Consider the evolution of particles within a single lon-
gitudinal slice of the bunch, defined by the initial coordi-
nate z ¼ u. To make use of the expression (63), we will
make the additional approximation that the unperturbed
dynamics is described by ideal compression, so that the
final longitudinal location of the slice is given by

zðsÞ ¼ u=CðsÞ: (65)

Particles within a longitudinal slice with the initial location
u experience a net offset as a result of the CSR wakefield
given according to (63) at a lattice location s by

�xðu; sÞ ¼ 1

E

Z s

0
R16ð� ! sÞW½u=Cð�Þ; ��d�; (66a)

�x0ðu; sÞ ¼ 1

E

Z s

0
R26ð� ! sÞW½u=Cð�Þ; ��d�; (66b)

�zðu; sÞ ¼ 1

E

Z s

0
R56ð� ! sÞW½u=Cð�Þ; ��d�; (66c)

��ðu; sÞ ¼ 1

E

Z s

0
W½u=Cð�Þ; ��d�; (66d)

where the quantityW is determined by (58). In the follow-
ing section, we will see that the variation of the quantities
�x and�x0 with the slice coordinate u is directly related to
the CSR-induced projected emittance growth.

IV. SUPPRESSION OF CSR-INDUCED
EMITTANCE GROWTH

In Sec. II, an integral equation was solved to determine
the longitudinal density profile that will produce uniform
CSR-induced energy loss along the bunch length in the
presence of steady-state CSR in a bend. In this section,
the treatment is generalized to include the effects of tran-
sient CSR throughout a chicane, resulting in an initial
longitudinal density profile that will produce suppressed
CSR-induced emittance growth at the chicane exit.
Treating the beam as a collection of longitudinal slices

whose centroids evolve according to (66) under the influ-
ence of CSR, the CSR-induced offset in the transverse
phase space of a given beam slice at the exit of the system
(denoted by s ¼ sf) can be written in terms of the initial

longitudinal density �0 in the form
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�xðuÞ ¼ 1

E

Z u

�1
�0ðu0ÞKint;x

CSRðu; u0Þdu0; (67a)

�x0ðuÞ ¼ 1

E

Z u

�1
�0ðu0ÞKint;x0

CSR ðu; u0Þdu0; (67b)

where the modified kernels,

Kint;x
CSRðu; u0Þ ¼

Z sf

0
R16ð� ! sfÞKCSR½u=Cð�Þ

þ �; u0=Cð�Þ þ ��d�; (68a)

Kint;x0
CSR ðu; u0Þ ¼

Z sf

0
R26ð� ! sfÞKCSR½u=Cð�Þ

þ �; u0=Cð�Þ þ ��d�; (68b)

represent the cumulative transverse effect of the longitu-
dinal CSR interaction throughout the chicane.

The horizontal projected emittance at the exit of the
chicane is given in terms of the centroid offsets (67) and
the final slice Twiss functions ð;�; �Þ and slice horizontal
emittance �0 by (Appendix B)

�2 ¼ �20 þ �0ð��2
x0k þ ��2

xk þ 2hXX0ikÞ þ �2k; (69a)

where

�2
xk ¼ h�x2ik � h�xi2k; �2

x0k ¼ h�x02ik � h�x0i2k;
hXX0ik ¼ h�x�x0ik � h�xikh�x0ik; (69b)

and

�2k ¼ �2
xk�

2
x0k � hXX0i2k: (69c)

Here the average h�ik is taken across slices as in (4).

It is not difficult to show that � 
 �0, and this absolute
minimum is attained only when all slices in the beam are
aligned so that

�xðuÞ ¼ h�xik; �x0ðuÞ ¼ h�x0ik; (70)

independently of the slice coordinate u. To eliminate the
wakefield-induced projected emittance growth, one must
find an initial longitudinal density �0 (for fixed particle
number N and bunch length L) satisfying (70), with the
centroid offsets �x and �x0 given according to (67). This
results in a pair of Volterra integral equations for the
density �0, which cannot in general be inverted simulta-
neously. Instead, rigorous minimization of the emittance
growth requires a nonlinear optimization of (69) over the
space of initial density profiles.

However, suppose that

�xðuÞ ¼ h�xik; (71)

so that all slices are aligned in the x� z phase space
projection. Then it follows that �xk ¼ hXX0ik ¼ 0 and

�2 ¼ �20 þ �0��
2
x0k: (72)

Alternatively, if we suppose that

�x0ðuÞ ¼ h�x0ik; (73)

so that all slices are aligned in the x0 � z phase space
projection, then it follows that �x0k ¼ hXX0ik ¼ 0 and

�2 ¼ �20 þ �0��
2
xk: (74)

In this way, we see how distortions in the x� z and x0 � z
planes each relatively contribute to the final projected
emittance.
By comparing (72) and (74), we see that it is sufficient to

invert one of the linear problems (71) or (73) when the
resulting contribution from �xk or �x0k to the emittance is

sufficiently small. For the parameters considered in Sec. V,
for example, we have that

�2
x0k
�x

���������x¼h�xik
� 16�0 � 0:01�0 �

�2
xk

�x

���������x0¼h�x0ik
: (75)

Thus, we wish to search for an initial density �0 on the
interval ½a; b� such that �x0ðuÞ is independent of u, as in
(73). Using (67b), this gives the integral equation:

� ¼
Z u

�1
�0ðu0ÞKint;x0

CSR ðu; u0Þdu0; u 2 ½a; b�; (76)

for some constant � � 0.
To solve (76) numerically, it is convenient to represent

the integral in terms of an integrated Green function [19],
using a procedure similar to that of Sec. II B. For this
purpose, we define

Iint;x
0

CSR ðu; u0Þ ¼ �
Z u0

�1
Kint;x0

CSR ðu; u00Þdu00: (77)

Using (68b), (77) becomes

Iint;x
0

CSR ðu; u0Þ ¼
Z sf

0
Cð�ÞR26ð� ! sfÞ

	 ICSR½u=Cð�Þ þ �; u0=Cð�Þ þ ��d�; (78)

where

ICSRð�; �0Þ ¼ �
Z �0

�1
KCSRð�; �00Þd�00: (79)

Let us sample the lattice at equally spaced locations
�j ¼ �0 þ j�� (j ¼ 0; . . . ; N), and the bunch coordinate

at equally spaced locations uk ¼ u0 þ khz (k ¼ 0; . . . ; n).
Using an extended trapezoidal rule to evaluate the integral
in �, we can approximate the equation (76) as

� ¼ hz
Xk
k0¼0

�0ðuk0 Þwint
k;k0 ; ðk ¼ 0; . . . ; nÞ; (80)

where

wint
k;k0 ¼

��

2
wigf

k;k0;0 þ
��

2
wigf

k;k0;N þ ��
XN�1

j¼1

wigf
k;k0;j; (81)

and
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wigf
k;k0;j

¼CjR26ð�j!sfÞfICSRðuk=Cjþ�j;½uk0 �hz=2�=Cjþ�jÞ
�ICSRðuk=Cjþ�j;½uk0 þhz=2�=Cjþ�jÞg=hz; (82)

with Cj ¼ Cð�jÞ.
This gives a lower-diagonal linear system of the form

�̂ ¼ Gint�̂; Gint
k;k0 ¼ wint

k;k0 ; (83)

where the arrays �̂ and �̂ have components �̂k ¼ � and

�̂k ¼ �0ðukÞhz. When Gint
k;k � 0 for k ¼ 0; . . . ; n, we may

invert this system numerically to obtain the desired density

�̂. Note that the solution depends on the lattice design
through the matrix elements R26 and R56.

V. APPLICATION TO A BENCHMARK CHICANE

As a numerical example, we consider a benchmark
chicane first proposed in 2002 at the Berlin Mini-
Workshop on CSR [22]. Figure 6 illustrates the chicane
geometry, and Table I contains the lattice and beam pa-
rameters. The compression factor C and the dimensionless

factor D̂, which together control the longitudinal bunch
shape, are shown in Fig. 7 as functions of path length s
through the lattice.

We first demonstrate the evolution of a bunch through
the chicane in the presence of linear magnetic optics and
steady-state ultrarelativistic CSR, as described in Sec. III.
A bunch with the initial distribution function (27) for the
parameters given in Table I was generated using 10 million
particles, and its evolution in the chicane of Fig. 6 was
simulated using IMPACT-Z [23] in the presence of steady-
state, ultrarelativistic CSR using the wakefield model (10)
with 8192 longitudinal bins. A Gaussian bunch with the
same rms bunch length and Twiss parameters was tracked
for comparison. Figure 8 illustrates the net CSR-induced
change in the mean slice energy along the length of the
bunch at three different lattice locations, indicating that the
cumulative energy loss remains uniform along the length
of the optimized bunch as the bunch propagates through
the chicane. Note that the value of this energy loss is
similar to the peak energy loss experienced for a

Gaussian bunch, and the largest energy loss occurs in
Bend 4. Figure 9 illustrates the current pulse at the entrance
of this bend, indicating that the pulse shape remains nearly
optimal at this location, as expected from the small value of

the parameter D̂ � 0:06. (See Fig. 4.) The relative growth

FIG. 6. Schematic of the Berlin-Zeuthen chicane lattice.

TABLE I. Parameters used for simulation of the Berlin-
Zeuthen benchmark chicane [22].

Chicane parameters Symbol Value Unit

Bend magnet length LB 0.5 m

Drift length (B1 ! B2, B3 ! B4) �L 5 m

Drift length (B2 ! B3) Lc 1.0 m

Drift length (final drift) Lf 2.0 m

Bend angle j�j 2.770 deg

Bend radius jRj 10.35 m

Momentum compaction factor R56 �25:0 mm

Electron beam parameters Symbol Value Unit

Nominal energy E0 5.0 GeV

Bunch charge q 1.0 nC

Uncorrelated initial rms energy spread ��0 2.0 10�6

Linear energy chirp h 36.0 m�1

Initial rms bunch length �z0 200 �m
Final rms bunch length �zf 20 �m
Initial rms normalized emittances ��x;y 1.0, 1.0 �m
Initial beta functions �x0;y0 40, 13 m

Initial alpha functions x0;y0 2.6

2 4 6 8 10 12 14

2

4
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8

10

C s

2 4 6 8 10 12 14

0.01

0.02

0.03

0.04

0.05

0.06

s

FIG. 7. (Upper) The compression factor C as a function of path

length through the lattice shown in Fig. 6. (Lower) The factor D̂
of (38) as a function of path length through the lattice shown in
Fig. 6.
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in the transverse rms projected emittance at the exit of the
system is 5% for the optimized beam profile and 19.5% for
the Gaussian beam profile, while the slice emittance is
unchanged in both cases. However, for the optimized
beam, the projected emittance growth is confined to parti-
cles located within 7 �m of the head of the bunch. After
removing these particles, corresponding to 6% of the total
charge, the remainder of the beam experiences a projected
emittance growth of 0.04%, which is near the numerical
resolution of the simulation.

Next, we simulate the same system after including non-
linear magnetic optics through 5th order. In addition, we
include transient CSR effects due to bend entry and exit
transitions by using the wakefield model described in [7].
The inverse problem (76) is solved for the optimized initial
longitudinal density, and we compensate for nonlinear
effects by using the initial energy profile given by (45).
For comparison, we also use a uniform (flattop) bunch with
the same end-to-end bunch length as the optimized profile,
and a Gaussian bunch with the same rms bunch length as
the optimized profile. The three longitudinal profiles are
shown together in Fig. 10.

We obtain for the Gaussian beam a final projected
horizontal emittance growth of 55%, for the uniform
beam 8%, and for the optimized beam 0.9%. The emittance
growth of the Gaussian beam is comparable to the bench-
mark results for ELEGANT described in [22]. This emittance

FIG. 8. (Top) The difference in mean slice energy in the
presence and absence of CSR for the density given in (15).
The result is shown at the entry to Bend 3 (red), the entry to
Bend 4 (green), and the exit of the system (blue). The final
compressed current profile is shown for reference (dashed).
(Bottom) The difference in mean slice energy in the presence
and absence of CSR for a Gaussian density with the same second
moments.
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FIG. 10. Three initial current profiles used with the parameters
shown in Table I for simulation in the chicane of Fig. 6.
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FIG. 9. The current profile at the entry to Bend 4 (blue) is
shown both without (upper) and with (lower) compensation for
the lattice nonlinear optics, as described in Sec. III B. The lower
result is shown together with the compressed optimal current
profile (green) of (15), indicating that the initial density profile is
preserved.
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growth is due to the transverse misalignment of longitudi-
nal slice centroids, as apparent in Fig. 11, which illustrates
the transverse-longitudinal correlations in the three beam
distributions at the exit of the system. The blue lines
indicate the predicted centroid offsets given by (67), the
green points denote particles in the final beam distribution,
and the red points denote particles in the beam core that are
used to calculate the final projected emittance. A detailed
analysis of the projected emittance growth using the model
of the previous section is provided in Appendix C.

Thus, the bunch with an optimized longitudinal density
profile experiences a projected emittance growth that is
smaller by more than an order of magnitude relative to
bunches with comparable Gaussian and uniform profiles,
and it is clear that this is due to careful control of the
longitudinal slice dynamics.

VI. DISCUSSION AND SUMMARY

We have shown that careful preparation of the initial
beam current profile can be used to generate a bunch whose
core experiences suppressed transverse emittance growth
in the presence of longitudinal CSR within a chicane
(< 1%). For the limiting case of an ultrarelativistic beam
undergoing ideal compression in the presence of steady-
state CSR, this emittance growth can be eliminated. For the
case of nonideal compression, the presence of initial en-
ergy spread and transverse emittance will lead to longitu-
dinal spreading of the beam profile, resulting in emittance
growth that is confined to particles located in small regions
at the head and tail of the bunch. It is speculated that the
desired longitudinal distribution (15) might be prepared
using longitudinal laser shaping or by using a longitudinal-
transverse emittance exchanger, although the mechanism
for preparing such an initial current pulse deserves further
exploration.
The results of this paper make use of a 1D model for the

longitudinal CSR wakefield, which is known to be valid

under moderate compression when �x � �zðR=�zÞ1=3,
where �x and �z are the instantaneous horizontal and
longitudinal rms beam sizes [24]. In the final bend of the
Berlin-Zeuthen chicane, where CSR effects are largest, this
condition is easily satisfied. A free-space model of the CSR
interaction is also used, so that the shielding effect of the
vacuum chamber walls has been neglected. This effect
becomes significant when the vacuum chamber gap height

is comparable to or less than ðR�2
zÞ1=3 [15]. In this case, the

formalism of Sec. IV can be used after modifying the
function KCSR to include the contribution of image charges
present on the chamber walls [6,10].
In an FEL beam delivery system, a beam with the

longitudinal density (15) will generate wakefields due to
other effects in various sections of the lattice, and the
discontinuous current profile at the head of the bunch
might be a cause for concern. We note that the procedure
described in Sec. IV can, in principle, be generalized to
include the effects of these other wakefields. In the future,
this topic deserves to be studied in conjunction with nu-
merical simulation of an optimized beam through a com-
plete FEL system.
Finally, we remark that the procedure described here can

also be used to prepare an initial current pulse that will
generate a steady-state CSR wakefield that varies linearly
across the length of the bunch. The resulting wakefield-
induced energy chirp will result in controlled linear x� z
and x0 � z correlations in the beam distribution, which
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FIG. 11. Projection of the final beam distribution at the exit of
the system shown in Fig. 6 into the x0 � z phase plane for the
three initial profiles shown in Fig. 10.
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could in principle be removed using standard linear optics
[13]. The advantage of this procedure is that one has an
additional degree of freedom corresponding to the value of
the wakefield-induced energy chirp, which can be tuned to
allow for an initial current pulse with more desirable
features, such as continuity. A treatment of this approach
in the ultrarelativistic limit is described in Appendix D.
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APPENDIX A: INTEGRAL EQUATIONS

A Volterra integral equation of the first kind for the
function � on an interval ½a; b� takes the form

Z z

a
�ðz0ÞKðz; z0Þdz0 ¼ fðzÞ; (A1)

where z 2 ½a; b� and the integral kernel K is a known
function of two variables. Such equations are classified
according to the behavior of the function K.

As a special case, the generalized Abel integral equation
[16,25] for a function� on an interval ½a; b� takes the form

Z z

a

�ðz0Þ
ðz� z0Þ� dz0 ¼ fðzÞ; 0<�< 1; (A2)

where z 2 ½a; b� and f is absolutely continuous on ða; bÞ.
It can be shown that there exists a unique solution
� 2 L1ða; bÞ given by [16]

�ðzÞ ¼ sin�	

	

�
fðaÞ

ðz� aÞ1��
þ

Z z

a

f0ðtÞdt
ðz� tÞ1��

�
: (A3)

This result is used in Sec. II A to determine the unique
analytical solution for the longitudinal density profile that
generates a uniform ultrarelativistic CSR wakefield.

Integral equations of the form (A1) can lead to ill-posed
problems that are difficult to invert numerically; we refer
the reader to the literature on regularization for a proper
treatment of these difficulties. In Sec. II B, numerical con-
vergence is problematic since the function f is taken to be a
constant and K is continuous. Under these conditions, we
note that an exact solution exists only if limz!afðzÞ ¼ 0.
This issue can be avoided by replacing (A1) by the regu-
larized problem:

Z z

a
�ðz0ÞKðz; z0Þdz0 ¼ fðzÞ � fðaÞ Kðz; aÞ

Kða; aÞ ; (A4)

provided Kða; aÞ � 0. For the kernel KCSR described in
this paper, the problem (A4) is numerically well behaved in
the continuum limit, and gives a solution that is indistin-
guishable from the approximate solution of (A1).

APPENDIX B: PROJECTED EMITTANCE MODEL

The projected horizontal, unnormalized rms emittance �
is defined by

�2 ¼ hðx� �xÞ2ihðx0 � �x0Þ2i � hðx� �xÞðx0 � �x0Þi2; (B1)

where �x and �x0 are the coordinates of the bunch centroid in
the transverse phase space:

�x ¼ hxi; �x0 ¼ hx0i; (B2)

and averages denoted h�i are taken with respect to the
distribution function of the entire beam. Similarly, the slice
emittance corresponding to a slice with longitudinal coor-
dinate zj is given by

�2j ¼ hðx� xjÞ2ijhðx0 � x0jÞ2ij � hðx� xjÞðx0 � x0jÞi2j ;
(B3)

where xj and x0j are the coordinates of the centroid of the

slice in the transverse phase space:

xj ¼ hxij; x0j ¼ hx0ij; (B4)

and we have used the notation h�ij ¼ h�izj to the denote that
an average is taken over the slice corresponding to the
longitudinal coordinate zj.

Suppose that the slice moments are identical for each
slice, except for possible translations of the slice centroids.
We wish to determine the relationship between the slice
emittance �0 ¼ �j (which is identical for each slice) and

the projected emittance �. We have the following expres-
sions for the second-order moments of the beam:

hðx� �xÞ2i ¼ 1

N

X
j

�jhðx� �xÞ2ij (B5)

¼ 1

N

X
j

�jh½ðx� xjÞ þ ðxj � �xÞ�2ij (B6)

¼ �2
x? þ �2

xk; (B7)

where

�2
x?¼hðx�xjÞ2ij; �2

xk ¼
1

N

XN
j¼1

�jðxj� �xÞ2: (B8)

Similarly,

hðx0 � �x0Þ2i ¼ �2
x0? þ �2

x0k; (B9)

where

�2
x0? ¼ hðx0 � x0jÞ2ij; �2

x0k ¼
1

N

XN
j¼1

�jðx0j � �x0Þ2:

(B10)

Also,
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hðx� �xÞðx0 � �x0Þi ¼ 1

N

X
j

�jhðx� �xÞðx0 � �x0Þij (B11)

¼ 1

N

X
j

�jh½ðx� xjÞ þ ðxj � �xÞ�½ðx0 � x0jÞ þ ðx0j � �x0Þ�ij

¼ hXX0i? þ hXX0ik; (B12)

where

hXX0i? ¼ hðx� xjÞðx0 � x0jÞij; (B13)

hXX0ik ¼ 1

N

X
j

�jðxj � �xÞðx0j � �x0Þ: (B14)

This gives then

�2 ¼ ð�2
x? þ �2

xkÞð�2
x0? þ �2

x0kÞ � ðhXX0i? þ hXX0ikÞ2
¼ �20 þ �2

xk�
2
x0? þ �2

x?�
2
x0k � 2hXX0i?hXX0ik þ �2k;

(B15a)

where

�20 ¼ �2
x?�

2
x0? � hXX0i2?; �2k ¼ �2

xk�
2
x0k � hXX0i2k:

(B15b)

Defining the slice Twiss functions by

�2
x? ¼ ��0; �2

x0? ¼ ��0; hXX0i? ¼ ��0

(B16)

gives the following result for the projected emittance of the
beam:

�2 ¼ �20 þ �0ð��2
x0k þ ��2

xk þ 2hXX0ikÞ þ �2k: (B17)

APPENDIX C: PROJECTED EMITTANCE
ESTIMATES

In this Appendix, we provide emittance estimates for the
Berlin-Zeuthen benchmark chicane for several longitudi-
nal density profiles using the slice-evolution model of
emittance growth described in the main text.

1. Density profiles

The following longitudinal density profiles are normal-
ized according to (1), where N denotes the number of
particles within a bunch. Here �z denotes the rms bunch
length and L denotes the end-to-end (total) bunch length.

Gaussian:

�ðzÞ ¼ N

�z

ffiffiffiffiffiffiffi
2	

p expð�z2=2�2
zÞ: (C1)

Uniform:

�ðzÞ ¼
�
N=L jzj � L=2

0 jzj>L=2;
�z ¼ L=

ffiffiffiffiffiffi
12

p
: (C2)

Parabolic:

�ðzÞ ¼
8<
:

3N
2L

h
1�

	
2z
L



2
i

jzj � L=2

0 jzj>L=2;
�z ¼ L=

ffiffiffiffiffiffi
20

p
:

(C3)

Optimal:

�ðzÞ ¼
(
4N
3L

	
z
L þ 1

2



1=3 jzj � L=2

0 jzj>L=2;
�z ¼ 3

7

ffiffiffi
2

5

s
L:

(C4)

2. Steady-state wakefield (� ! 1)

In this section, we give the steady-stateCSRwakefield (8)
generated by bunches with the density profiles (C1)–(C4).
Following the notation in the main text, we define


 ¼ 2rcmc2

31=3R2=3
; (C5)

where rc is the classical electron radius, R is the bending
radius, andmc2 is the electron rest energy. Thewakefield for
each case is given below.
Gaussian:

WðzÞ ¼ N


�4=3
z

~Wðz=�zÞ; (C6)

where

~WðzÞ ¼ 1

4
ffiffiffiffi
	

p
�
�24=3�

�
5

6

�
1F1

�
2

3
;
1

2
;� z2

2

�

þ 25=6z�

�
4

3

�
1F1

�
7

6
;
3

2
;� z2

2

��
: (C7)

Uniform:

WðzÞ ¼ � N


L4=3

�
z

L
þ 1

2

��1=3
; jzj � L=2: (C8)

Parabolic:

WðzÞ ¼ N


L4=3

18

5

�
z

L
þ 1

2

�
2=3

�
3
z

L
� 1

�
; jzj � L=2:

(C9)

Optimal:

WðzÞ ¼ � 8

9
ffiffiffi
3

p N	


L4=3
; jzj � L=2: (C10)

3. CSR-induced energy change and rms spread

In this section, we evaluate the quantities:

hWik; �W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hW2ik � hWi2k

q
; (C11)

for each longitudinal density (C1)–(C4). We will compare:
(i) four bunches with the density profiles (C1)–(C4) and
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matched rms bunch length; and (ii) three bunches with the
density profiles (C2)–(C4) and matched end-to-end bunch
length.

The number of particles is identical in each case, and we
normalize by the magnitude of the steady-state wakefield
that is generated by the optimal density:

W0 ¼ 8

9
ffiffiffi
3

p N	


L4=3
; (C12)

where L is the total length of the optimal bunch. The results
are shown in Tables II and III. Notice that the rms variation
in the CSR-induced energy change per unit length is zero
for the optimal density profile but comparable for the other
density profiles considered here.

4. CSR-induced emittance growth

The final emittance is given by

�2 ¼ �20 þ �0ð��2
x0k þ ��2

xk þ 2hXX0ikÞ þ �2k: (C13)

To use this model, we must numerically compute the
quantities �xk, �x0k, and hXX0ik, and we need the Twiss

functions at the exit of the system (the end of the final
drift). Direct evaluation using the linear transfer matrix for
the Berlin-Zeuthen chicane gives the Twiss functions:

 ¼ �0:315; � ¼ 5:67 m; � ¼ 0:194 m�1:

(C14)

We evaluate the effect of the slice centroid offsets by
evaluating the quantities:

�xk; �x0k; rk ¼ hXX0ik; �k: (C15)

The final CSR-induced offset of a longitudinal slice with
initial longitudinal coordinate u is given by

�x0ðuÞ ¼ 1

E

Z u

�1
�0ðu0ÞKint;x0

CSR ðu; u0Þdu0; (C16a)

�xðuÞ ¼ 1

E

Z u

�1
�0ðu0ÞKint;x

CSRðu; u0Þdu0; (C16b)

where

Kint;x0
CSR ðu; u0Þ ¼

Z
d�R26ð� ! sfÞKCSR½u=Cð�Þ

þ �; u0=Cð�Þ þ ��; (C17a)

Kint;x
CSRðu; u0Þ ¼

Z
d�R16ð� ! sfÞKCSR½u=Cð�Þ

þ �; u0=Cð�Þ þ ��; (C17b)

and the integrals are taken over the length of the lattice.
These integrals can be computed numerically and used to
evaluate (C15), and the results are shown in Tables IVandV.
In Table IV, each density profile is given the same initial

rms bunch length. The emittance growth of 57% that is
predicted for the Gaussian bunch is in agreement with the
IMPACT-Z simulation result of 55% described in Sec. V.

In Table V, each density profile is given the same initial
total bunch length. When expressed in terms of the final
(compressed) longitudinal coordinate z=C, each density
has been truncated outside a range ½zmin; zmax� for the
purpose of emittance calculation, where the values zmin

and zmax are chosen in order to correspond to the numerical
procedure used to compute emittance from the particle
distributions resulting from IMPACT-Z. (See Fig. 11.)
Simulation using IMPACT-Z gives a final projected emit-
tance growth of<0:9% for the optimized bunch and 8% for
a uniform bunch with matched total bunch length. It fol-
lows that for these parameters, the slice model of emittance

TABLE III. Comparison of CSR-induced energy change and
rms CSR-induced energy spread for densities with matched total
bunch length.

Density hW=W0ik �W=W0

Uniform �0:930368 0.537148

Parabolic �1:076568 0.582887

Optimal �1:000000 0.000000

TABLE II. Comparison of CSR-induced energy change and
rms CSR-induced energy spread for densities with matched rms
bunch length.

Density hW=W0ik �W=W0

Gaussian �0:893627 0.627212

Uniform �1:011881 0.584210

Parabolic �0:832947 0.450983

Optimal �1:000000 0.000000

TABLE IV. Relative CSR-induced emittance growth at the end
of the final drift of the Berlin-Zeuthen benchmark chicane,
assuming a matched initial rms bunch length of 200 �m.

Density �xk (�m) �x0k (�r) rk (�m-�r) �k (�m-�r) ��=�0

Gaussian 2.164 5.241 9.166 6.682 0.575

Uniform 1.972 2.938 5.507 1.803 0.205

Parabolic 1.824 3.571 5.141 4.001 0.298

Optimal 1.120 0.000 0.000 0.000 0.001

TABLE V. Relative CSR-induced emittance growth at the end
of the final drift of the Berlin-Zeuthen benchmark chicane,
assuming a matched initial end-to-end bunch length of
0.738 mm (after truncating slices near the head and tail as
seen in Fig. 11).

Density �xk (�m) �x0k (�r) rk (�m-�r) �k (�m-�r) ��=�0

Uniform 1.597 1.882 2.971 0.5899 0.088

Parabolic 2.290 4.431 8.401 5.690 0.432

Optimal 1.092 0.000 0.000 0.000 0.001
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growth gives a prediction of the final projected emittance
in the beam core that is accurate to within 1%.

5. The steady-state ultrarelativistic limit

In the steady-state ultrarelativistic limit, the integrals
appearing in (C17) take a simpler form. Since transient
CSR within the drifts is neglected, the integrands vanish
for values of � corresponding to locations within a drift.
For values of � corresponding to locations within a bend of
radius R,

KCSR½u=Cð�Þ þ �; u0=Cð�Þ þ �� ¼ Cð�Þ4=3K�
CSRðu� u0Þ;

(C18)

where K�
CSR is given by (9). Assuming that the four bends

of the chicane have the same radius of curvature, this gives

Kint;x0
CSR ðu; u0Þ ¼ K�

CSRðu� u0Þ�x0 ;

Kint;x
CSRðu; u0Þ ¼ K�

CSRðu� u0Þ�x;

where

�x0 ¼ X4
j¼1

Z
Bj

R26ð� ! sÞCð�Þ4=3d�; (C19a)

�x ¼ X4
j¼1

Z
Bj

R16ð� ! sÞCð�Þ4=3d�; (C19b)

and the notation Bj, j ¼ 1; . . . ; 4 denotes that the integral

is taken over the length of bend j. Now let

W1ðuÞ ¼ 1

E

Z u

�1
�0ðu0ÞK�

CSRðu� u0Þdu0 (C20)

denote the steady-state CSR wakefield generated by the
initial density �0 within Bend 1 of the chicane (after
scaling by the beam energy). Then it follows from (C16)
that

�x0ðuÞ ¼ W1ðuÞ�x0 ; �xðuÞ ¼ W1ðuÞ�x: (C21)

It follows that the final projected emittance in the steady-
state, ultrarelativistic approximation is given by

�2 ¼ �20 þ �0�
2
W1
ð��x02 þ ��x2 þ 2�x�x0 Þ: (C22)

The dependence of the emittance on the initial longitudinal
density is determined by the quantity �W1

, which can be

determined from Tables II and III.
In order to demonstrate the relative contribution of the

CSR in each bend to the total emittance growth in the
chicane, Table VI gives the contribution made by each

bend to the integrals �x and �x0 appearing in (C19).
Using the final line of Table VI in (C22) to calculate the
relative emittance growth for a Gaussian bunch, we find
��=� ¼ 0:185, which is consistent with the steady-state,
ultrarelativistic simulation result of 19%. Notice that the

dominant term comes from the contribution made to �x0

by Bend 4. However, using this contribution alone (with
�x ¼ 0) gives the underestimate ��=� ¼ 0:114.
Let us relate (C22) to the approximate expression for the

emittance growth generated within a single bend, as given
in (5). Suppose that the first term in parentheses in (C22)
dominates. This gives

�2 � �20 þ �0�
2
W1
��x02: (C23)

Let us now assume that the effect of CSR is dominated by
the dynamics in the fourth bend of the chicane. That is,

�x0 �
Z
B4

R26ð� ! sÞCð�Þ4=3d�: (C24)

Since the compression factor is nearly unchanged within
the final bend, we integrate over the matrix element
R26ð� ! sÞ ¼ sin½ðs� �Þ=R� to obtain

�x0 � C4=3Rð1� cos�Þ;
where � is the bend angle and C is the compression factor
at the chicane exit. Making the usual small-angle approxi-
mation in � and using this result in (C23) gives

�2 ¼ �20 þ �0�
2
W1

C8=3L3
b�

2

4

�
�

Lb

�
: (C25)

However, under the model of ideal compression (36) that is
assumed here, the wakefield at a lattice location s is related
to the wakefield within the first bend (C20) by

Wðz; sÞ ¼ CðsÞ4=3W1½zCðsÞ�E; (C26)

so that the CSR-induced energy change per unit length at
the exit of the final bend is given by

�W ¼ C4=3�W1
E: (C27)

Using (C27) in (C25) gives finally

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�20 þ �0�ð�Lb�W=2EÞ2

q
: (C28)

This is to be compared with (5). Noting that the CSR-
induced energy spread at the exit of the bend is given by
�E ¼ Lb�W , we see that these expressions apparently
differ due to the factor of 2 appearing in the denominator of
(C28). The disagreement occurs because the estimate
given in (5) implicitly assumes that the beam experiences

TABLE VI. Contributions to the quantities (C19) that deter-
mine the relative CSR-induced emittance growth due to each of
the four bends of the Berlin-Zeuthen benchmark chicane.

Bend �x0 (m) �x (m2)

B1 �0:0120 �0:1787
B2 �0:0152 �0:3336
B3 0.1065 �0:0249
B4 0.2615 0.5670

Total 0.3407 0.0297
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an instantaneous CSR-induced energy spread at the bend
entrance. In reality, the CSR-induced energy spread
accumulates linearly over the length of the bend; the two
expressions agree provided that one uses the average of the
beam CSR-induced energy spread along the bend length
(given by �E ¼ Lb�W=2) in evaluating (5).

Computing the emittance growth using this expression
gives for a Gaussian bunch ��=� � 0:104. It follows
that to obtain an accurate estimate (within 50%) of the
CSR-induced emittance growth in the chicane requires that
one consider the effects of CSR within Bends 3 and 4, as
well as the transient CSR within the drifts.

APPENDIX D: GENERATING A LINEAR
ENERGY CHIRP

In some cases, the bunch may possess a linear energy-
bunch length correlation that one wishes to remove. We
will see that for an appropriate choice of current profile,
this energy chirp may be removed by exploiting the longi-
tudinal CSR wakefield [26]. Alternatively, we may use the
CSR wakefield to add a desired energy chirp to the beam.
In either case, wewish to obtain a longitudinal wakefield of
the form

WðzÞ ¼ hz�W0; z 2 ½a; b�; (D1)

where h ¼ dW=dz is the desired energy chirp per unit
length, and W0 is a net wakefield offset. Making use of
the ultrarelativistic expression (8) for the steady-state CSR
wakefield, a solution is obtained for the longitudinal den-
sity � by using the result of Appendix A in terms of the
dimensionless parameter:

ĥ ¼ 27hL7=3

112
ffiffiffi
3

p
N	


; (D2)

where L ¼ b� a is the total length of the bunch and 
 is
given by (11). Let us choose our coordinate system so that
a ¼ �L=2 and b ¼ L=2. Defining the dimensionless
quantities �z ¼ z=L and �� ¼ ðL=NÞ�, the unique solution
can be written:

��ð �zÞ ¼ ð�zþ 1
2Þ1=3½43 � ĥð14�z� 1Þ�; �z 2 ½�1=2; 1=2�:

(D3)

This solution possesses two zeros �z1 and �z2 at �z1 ¼ �1=2
(the bunch tail) and

�z 2 ¼ 1

14

�
1þ 4

3ĥ

�
: (D4)

However, a physical bunch of single-species charge car-
riers can produce a longitudinal density �� only if �� 
 0
everywhere. Enforcing this requirement therefore limits

the energy chirp values ĥ that can be attained to the range:

� 1
6 � ĥ � 2

9: (D5)

The wakefield offset associated with a given energy chirp ĥ
is given by

W0 ¼ 8

9
ffiffiffi
3

p N	


L4=3
ð1� ĥÞ> 0: (D6)

These results reduce to those of Sec. II in the limit ĥ ! 0.
Of particular interest are the extreme cases given by the

upper and lower limits on the chirp given in (D5). The case

ĥ ¼ �1=6 produces a longitudinal density whose deriva-
tive is smooth at the bunch tail (�z ¼ �1=2), while the case

ĥ ¼ 2=9 produces a longitudinal density which is continu-
ous at the bunch head ( �z ¼ 1=2). These cases are shown
together in Fig. 12.
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