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In this study, the observation of three simultaneously rotating beams in the SOLEIL storage ring is

reported. This event occurred in November 2007 while operating in a low momentum compaction factor

mode. The dynamics of the three beams is simulated using the longitudinal equations of motion and the

longitudinal phase-space Hamiltonian which are extended to include higher-order terms of momentum

compaction factor up to the third order. The effect of the transverse oscillation amplitude of the particles is

also included in this work. It is shown that this term, which is experimentally very difficult to compensate

for very low momentum compaction factor optics, can strongly affect the longitudinal beam dynamics.

Finally, an extended formula of the variation of synchrotron frequency with respect to the relative

variation of the rf frequency is derived and is used to deduce the higher-order terms of the momentum

compaction factor from experimental data.
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I. INTRODUCTION

A series of experiments has been conducted since 2007
at the SOLEIL synchrotron light source [1] to obtain pico-
second electron bunch length conditions to produce infra-
red coherent synchrotron radiation in the Terahertz region
and, at the same time, to allow time-resolved x-ray experi-
ments [2,3].

In the low bunch current regime, disregarding collective
beam effects, the bunch length scales with the square root
of the momentum compaction factor �. A new lattice
optics for the SOLEIL storage ring has then been opti-
mized to reach lower momentum compaction factors (low
�). In this optics, the first and second-order momentum
compaction terms �1 and �2 are reduced using quadrupole
and sextupole magnets, respectively, while the horizontal
emittance is kept as small as possible [4–6]. The value of
�2 has been tuned to be less than a critical value which
guarantees stability of longitudinal phase space at very low
�1 values [7]. During the experiment of November 6, 2007,
three beams were observed simultaneously rotating in the
storage ring with variable transverse sizes, positions, and
energies depending on the sextupole strengths and the
frequency values of the radio-frequency (rf) cavities [8].
To our knowledge, this was the first experimental evidence
of three simultaneously stored beams in an electron storage
ring created by direct manipulation of the nonlinear longi-
tudinal beam dynamics. Two beams had already been
stored at Brookhaven [9] while two and three beams

have been stored recently at the Metrology Light Source
[10–12].
To understand these experimental observations, the lon-

gitudinal equations of motion and the corresponding
Hamiltonian have been expanded up to the third-order
momentum compaction factor �3 as well as taking into
account the particle transverse excursion amplitude. This
momentum-independent path lengthening term which can
be compensated, in principle, by the rf frequency, becomes
a more critical parameter at lower � values and its com-
pensation is more challenging for extremely low-� optics.
Conditions on the values of �3 and the momentum-
independent particle path lengthening term have been cal-
culated to explain the behavior and the dynamics of the
three simultaneous beams. The analytical investigations
and numerical simulations have shown that, by including
�3, additional stable areas are created in the longitudinal
phase space with shape and stability dependent on the
value and sign of �3. Moreover, some stability criteria
valid in the �2-dominant longitudinal dynamics become
now conditional to the value and sign of �3. On the other
hand, this raised the importance of controlling �3 for the
sake of producing stable (very) low-� user operation in the
SOLEIL storage ring.
After reporting the three-beam observation in Sec. II, the

needed theoretical background to explain the longitudinal
beam dynamics is described first in Secs. III and IV. In
Sec. III, the expressions of �1, �2, and �3 are rederived to
take into account the momentum-independent path length-
ening term, while in Sec. IV, solutions of the longitudinal
equations of motion are given for zero and nonzero
momentum-independent path lengthening terms. Then
Sec. V describes the behavior of the longitudinal
phase space under the effects of �1, �2, �3, and the
momentum-independent path lengthening term. A formula
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for synchrotron frequency as a function of variation in the
rf frequency is derived in Sec. VI taking into account the
�3 and momentum-independent path lengthening terms.
This formula is used to evaluate �1, �2, �3 from experi-
mental data. In Sec. VII, the behavior of the three beams is
explained based on simulation using the Hamiltonian of
the longitudinal phase space.

II. THREE SIMULTANEOUS BEAMS STORED IN
THE SOLEIL STORAGE RING

During a low-� experiment, a mode in which �1 theo-
retical value is 2:1� 10�5 (nominal �1=20 optics), three
stable electron beams were simultaneously stored in the
SOLEIL storage ring. The beams were imaged using a
visible light monitor at a bending magnet exit port
[Fig. 1(a)]. The horizontal separation between the two
side beams was measured to be 3 mm. The streak camera
bunch length measurements gave almost the same rms
value of 4 ps for each of the beams at low current. This
configuration was stable enough to enable injection di-
rectly in the three beams. It was then possible to ramp up
the total beam current up to 33 mA distributed over 104
buckets. The total beam lifetime was 15 h.

By changing the rf-frequency value [Fig. 1(b)] and the
strength of one focusing sextupole family [Figs. 1(c) and 1
(d)], densities and transverse distributions of the beams
were varying. Migrations of electrons from one rf bucket to
another were observed with or without loss of particles
depending on the varied physical parameters.

Storing three beams in a circular accelerator can be
understood theoretically when higher orders of the mo-
mentum compaction factor are included in the model
providing that the bucket energy acceptance is large
enough and that the chromatic closed orbit of each beam
stays within the physical aperture of the accelerator. Phase
spaces supporting this event will be given in Sec. VII.

III. HIGHER ORDER TERMS OF THE
MOMENTUM COMPACTION FACTOR

The momentum compaction factor � is defined by
the relative change in the particle path length around a
storage ring due to relative deviation in the particle mo-
mentum with respect to the synchronous particle, � ¼
dð�L=L0Þchr=d�. Mathematically, the � parameter can
be developed up to the third order using the relative chro-
matic variation in path length [7]:�

�L

L0

�
chr

¼ �1�þ �2�
2 þ �3�

3; (1)

where L0 is the length of the synchronous particle orbit
and � ¼ �p=p0 is the relative momentum deviation from
the synchronous particle momentum p0. Equivalently, the
variation in path length can be expanded to the third
order as

�L

L0

¼ 1

L0

Z L0

0

�
1� kxx

2
ðx02 þ y02Þ þ kxx

�
ds; (2)

where x (y) and x0 (y0) are respectively the horizontal
(vertical) electron position and angle, kx ¼ 1=�x where
�x is the horizontal curvature radius of the bending mag-
net, taking into account that x0, y0, kxx are much less than
unity [7].
By breaking down the horizontal particle amplitude

(angle) x (x0) into betatron oscillation term x� (x0�), resid-
ual closed orbit term x0 (x

0
0), and off-momentum orbit term

Dx� (D0
x�) expanded to third order in �, then one gets

x ¼ x� þ x0 þDx1�þDx2�
2 þDx3�

3;

x0 ¼ x0� þ x00 þD0
x1�þD0

x2�
2 þD0

x3�
3;

(3)

whereDx1 (D
0
x1),Dx2 (D

0
x2), andDx3 (D

0
x3) are respectively

the horizontal first-, second-, and third-order dispersion
function terms (and their respective derivatives). Similar
expressions can be derived for the vertical plane assuming
that the vertical dispersion function is negligible:

y ¼ y� þ y0; y0 ¼ y0� þ y00; (4)

where y� (y0�) and y0 (y00) are respectively the vertical

betatron and the residual closed orbit amplitude (diver-
gence) of the beam.
By inserting Eqs. (3) and (4) into Eq. (2) and considering

the terms up to third order in energy deviation �, the total
relative variation in path length becomes [4]

FIG. 1. Different configurations of the three beams stored in
the SOLEIL storage ring in November 2007. The four images are
obtained using the visible part of a dipole based photon beam for
different settings of rf frequency (b) and sextupole magnet
strengths [(c), (d)]. Figure axes are vertical and horizontal
beam positions. The strong vertical trails of the beams are
artifacts of the measurement and result from the mirror quality
of the visible light monitor which was damaged after an irre-
versible thermal stress.
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�L

L0

¼ 1

L0

Z L0

0

�
�þ ðkxDx1 � kxDx1�Þ�

þ
�
D02

x1

2
þ kxDx2 � kxDx2�

�
�2

þ
�
D0

x1D
0
x2 þ kxDx3 � kxD

02
x1Dx1

2
� kxDx3�

�
�3

�
ds;

(5)

where � ¼ ðx02� þ x020 þ y02� þ y020 Þ=2 represents the contri-

butions of betatron oscillations and residual closed orbit to
the relative variation of the path length. In deriving Eq. (5),
all the linear terms in x�, x

0
�, y�, and y0� vanish since

betatron amplitudes and angles average to zero after
many turns [3]. All the linear terms in x0, x

0
0, y0, and y00

can also be dropped when the closed orbit is corrected such
as the residual distortion averages to zero. Moreover, since
betatron oscillations and closed orbit distortion are inde-
pendent, the cross terms of these variables also vanish [7].

By comparing Eqs. (1) and (5), one deduces an expres-
sion for the momentum-independent term in the path
length variation, �, which represents path lengthening
effects of betatron oscillations and closed orbit errors:

� ¼ 1

L0

Z L0

0
�ds; (6)

and expressions for momentum compaction factor terms
up to the third order:

�1 ¼ 1

L0

Z L0

0
kxDx1ð1� �Þds;

�2 ¼ 1

L0

Z L0

0

�
D02

x1

2
þ kxDx2ð1� �Þ

�
ds;

�3 ¼ 1

L0

Z L0

0

�
D0

x1D
0
x2 �

kxDx1D
02
x1

2
þ kxDx3ð1� �Þ

�
ds:

(7)

To give an order of magnitude for the parameter �, this
latter can be split into two main contributions: betatron
oscillation and orbit distortion, which gives in more prac-
tical units [7], ��ð�xh�xiþ�yh�yiÞ=4þðhx020 iþhy020 iÞ=2
where �x (�y) is the horizontal (vertical) emittance and

�x (�y) is one of the Twiss parameters. In the low-�

optics of SOLEIL, the horizontal emittance is �x ¼ 8:5�
10�9 m rad and the Twiss parameter average value is
h�xi � 2 (as given by BETA code [13]). By neglecting the
much smaller vertical term, the value of betatron oscilla-
tion part is 4:3� 10�9, which is the minimum value of �.
In the normal operational optics of SOLEIL the residual
orbit peaks are �0:3 mm. However, due to the higher
sensitivity to energy fluctuation of the orbit distortion at
lower � value, the residual orbit peaks will become larger.
Simulations using BETA code showed that orbits with
residual peaks of �0:2 mm, �1 mm, and �5 mm corre-

spond to the values 1:3� 10�9, 4� 10�8, and 1� 10�6,
respectively, for the closed orbit part of �. Although the rf
frequency can be used to compensate for the orbit distor-
tion, the substantially increasing sensitivity of lower �
optics to energy fluctuations or horizontal orbit deviations
makes it worth including the � effect in the longitudinal
phase-space dynamics.
For further use in the next section, the relation between

momentum compaction factor and phase-slip factor will be
derived up to the third order. The later is derived in a
similar way using the relative variation in the particle
chromatic revolution time up to third order in � [14].
Using the relation between the variations in path length
and the corresponding revolution time [15,16], one
finds [4]

�1 ¼ �1 � 1

�2
;

�2 ¼ �2 þ 1

2�4
þ 3�2

2�2
;

�3 ¼ �3 � 1

2�6
� 3�2

2�4
� 2�4

�2
;

(8)

where�1,�2, and�3 are the first-, second-, and third-order

phase-slip factors,� ¼ v0=c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=�2

p
is the synchro-

nous particle velocity v0 normalized to the speed of light c,
and � is the Lorentz factor defined as the ratio of the
particle energy E0 to its rest mass energy Em.
Taking into account that the Lorentz factor for the

2.75 GeV SOLEIL storage ring is of 5382, the previous
formula can be simplified (highly relativistic case):
all energy-dependent slip-factor terms are negligible
(�k � �k for k ¼ 1; 2; 3).

IV. SOLUTIONS OF THE LONGITUDINAL
EQUATIONS OF MOTION INCLUDING �3 TERM

The equations of longitudinal motion, expanded to third
order in phase-slip factor, can be written compactly as
follows [4,17]:

dc

dt
¼ !rfð�þ �1�þ �2�

2 þ �3�
3Þ; (9)

d�

dt
¼ eVRF

�2E0T0

ðsin�� sin�sÞ; (10)

where !rf ¼ 2	hf0 is the rf-angular frequency, h the
harmonic number, f0 is the nominal particle revolution
frequency, c ¼ ���s is the relative phase between
the particle phase � and the synchronous phase �s, Vrf

is the total rf voltage in the storage ring, and T0 is the
synchronous particle revolution time.
The Hamiltonian describing longitudinal phase space

can be constructed by integrating Eqs. (9) and (10) using
c and � as canonically conjugate variables:
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H¼!rf

�
��þ�1

2
�2þ�2

3
�3þ�3

4
�4

�

þ eVrf

�2E0T0

½cos��cos�sþð���sÞsin�s�; (11)

Since only the highly relativistic case is considered, the
above approximations �1 � �1, �2 � �2, �3 � �3, and
� � 1 will be used from now on.

By solving Eqs. (9) and (10) for fixed phases and mo-
mentum deviations, one can determine the coordinates
ð�; �Þ of the stable and unstable fixed points in longitudi-
nal phase space [18]. Phases of the fixed points are given by
the two solutions of Eq. (10), � ¼ �s and � ¼ 	��s.
In the linear case, the rf-bucket layer will be centered on
the synchronous phase �s with the unstable fixed points
centered at 	��s in the phase range ½0; 2	�.

Momentum deviations of those fixed points can be ob-
tained by solving Eq. (9) for �:

�3�
3 þ �2�

2 þ �1�þ � ¼ 0: (12)

Solutions of the third-order Eq. (12) can be real or
complex depending on the values of �1, �2, �3, and �.
The real solutions give the number of stable bucket layers
in longitudinal phase space whereas complex solutions
indicate that the corresponding bucket layers do not exist
in the phase space. Two cases are illustrated hereafter using
the nominal optics (see Table I); the effect of � is taken into
account in the second case.

A. Case of a negligible momentum-independent term �

In this case, the closed orbit is very well corrected so that
� can be negligible (rf frequency can theoretically com-
pensate for �). Equation (12) simplifies to

�ð�3�
2 þ �2�þ �1Þ ¼ 0; (13)

with the solutions

�1 ¼ 0; �2;3 ¼
��2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
2 � 4�3�1

q
2�3

: (14)

Using the SOLEIL nominal operational parameters (see
Table I), the numerical solutions are f�1 ¼ 0; �2 ¼
�0:091; �2 ¼ 1:22g. These three real solutions indicate
the existence of one on-momentum bucket layer in longi-
tudinal phase space with coordinates (�1 ¼ �s, �1 ¼ 0),
i.e., the already stored electron beam, and two off-
momentum beams with coordinates (�2 ¼ 	��s, �2 ¼
�0:091), and (�3 ¼ 	��s, �3 ¼ 1:22). However, these
off-momentum beams are out of the machine transverse
momentum and physical acceptances so no electron can be
stored in them.

B. Case of a non-negligible momentum-independent
term �

When the residual orbit distortion is non-negligible (for
instance, the resolution of the 352 MHz master oscillator
can limit the compensation of the � term using the rf
frequency), solutions of Eq. (12) can be nonetheless de-
rived using the handbook of mathematical functions [19]:

�1 ¼ � �2

3�3

� ð
 � �Þ;

�2;3 ¼ � �2

3�3

þ 1

2
ð
 � �Þ � i

ffiffiffi
3

p
2

ð
 þ �Þ;
(15)

where 
 ¼ 21=3ð3�1�3 � �2
2Þ=ð3�3�Þ, � ¼ �=ð3 21=3�3Þ,

and � ¼ ð�̂þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð3�1�3 � �2

2Þ3 þ �̂2
q

Þ1=3 with �̂ ¼
9�1�2�3 � 2�3

2 � 27�2
3�.

Using again the SOLEIL parameters of the nominal
optics, three bucket layers exist in the longitudinal phase
space as long as � is less than 1� 10�5, i.e., the residual
orbit peaks are less than�50 mm assuming linear scaling.
Even for this critical value of the � parameter, only one
bucket is accepted by transverse beam dynamics and physi-
cal aperture of the storage ring; however, its energy is
shifted (�1 ¼ �0:0380). For the two other buckets, the
energy deviations are too large (�2 ¼ �0:0547, �3 ¼
1:2192).
Beyond this critical value, only one bucket layer sur-

vives in the longitudinal phase space but with large energy
deviation that is well beyond the transverse dynamics
and transverse physical acceptances. For example, for
� ¼ 1:1� 10�5, the fixed points are found to be
(�1 ¼ �0:0464þ 0:0114i, �2 ¼ �0:0464� 0:0114i,
�3 ¼ 1:2194).
The very large value of � used in this case is not

practical for the storage ring operation. The aim is just to
exhibit its effect on the longitudinal phase space using the
less sensitive nominal optics to such distortion. However, it
will be shown that its value becomes more critical for
optics with extremely low � values. The optics becomes
highly sensitive to energy and orbit fluctuations so that a
small value of � can cause beam loss. At such conditions
compensating for the � value by using the rf frequency
may become very challenging.

TABLE I. Main experimental parameters for the nominal op-
tics of the SOLEIL storage ring operation in 2007 as calculated
with the BETA code.

Parameter (unit) Symbol Value

Energy (GeV) E0 2.75

Frequency (MHz) frf 352.202

Harmonic number h 416

rf voltage (MV) Vrf 2.4

Revolution frequency (s) T0 1.181

Synchronous phase (degree) �s 156.8

1st momentum compaction factor �1 4:38� 10�4

2nd momentum compaction factor �2 4:45� 10�3

3rd momentum compaction factor �3 �3:95� 10�3
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V. LONGITUDINAL BEAM DYNAMICS AND
PHASE SPACE

The aim of this section is to establish a theoretical
background which will be used to explain the three-beam
event. For this purpose the Hamiltonian describing the
dynamics of the longitudinal phase space including
the effects of �, �1, �2, and �3 values [see Eq. (12)] is
written as

H ¼ !RF

�
��þ �1

2
�2 þ �2

3
�3 þ �3

4
�4

�

þ eVRF

E0T0

½cos�� cos�s þ ð���sÞ sin�s�: (16)

The effects of the �, �1, and �2 values on the beam
dynamics will be first investigated without taking into
account �3 to show in a last part how this latter reshapes
the phase space. These investigations will be done first
using the nominal optics, and then applied to the low-�
optics.

A. Effect of the momentum-independent term �

By increasing the � parameter from the initial betatron
oscillation part, the nominal phase space starts to get
distorted. The deformation is featured by shifting energy
of the on-momentum rf-bucket layer by the value���shift

1

while shifting that of the second off-momentum rf-bucket
layer by the value��shift

2 . Moreover, the bucket momentum

acceptance starts to get deformed. This is shown in Fig. 2
displaying the impact of the � value on the longitudinal
phase space of SOLEIL for the nominal optics (Table I). At
larger � values the rf buckets turn into alpha buckets [15]
with smaller areas, and then no stable points exist in the
phase space, so that no beam can be stored in the storage
ring (in Fig. 2 �3 is set to zero).
The marks A and B represent respectively unstable,

stable fixed points in the first bucket layer while C, D are
respectively stable, unstable fixed points in the second
bucket layer. Coordinates of the stable fixed points B and
C are listed in Table II. It is worth mentioning that
��shift

1 ¼ �=�1 when the following condition is met:
�2 � �1.
The case of Fig. 2(d) can be seen clearly from the

solutions of Eq. (12) when �3 ¼ 0, �1;2 ¼ ð� �1 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
1 � 4�2�

q
Þ=2�2, where increasing the value of � will

make, at some point, all the solutions complex.
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FIG. 2. Effect of the � parameter on the longitudinal phase space for the SOLEIL nominal optics with �1 ¼ 4:38� 10�4, �2 ¼
4:45� 10�3 assuming �3 ¼ 0, and � ¼ 4:3� 10�9 in (a), � ¼ 9� 10�6 in (b), � ¼ 1:05� 10�5 in (c), and � ¼ 1:3� 10�5 in (d).
The fixed points B and D are located at phase �s, while the points A and C are located at phase 	��s. The on-momentum bucket is
progressively off-centered while � increases (see Table II for numerical values of the stable fixed points).

TABLE II. Coordinates of the stable fixed points in function of
the � value for the first and second bucket series of Fig. 2.

� value B coordinates C coordinates

4:30� 10�9 (�s, þ0:0000) (	��s, �0:0984)
9:00� 10�6 (�s, �0:0292) (	��s, �0:0692)
1:05� 10�6 (�s, �0:0413) (	��s, �0:0571)
1:30� 10�5 Undefined Undefined
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As stressed before, the � parameter can have a critical
effect on the longitudinal phase space for extremely low-�
optics. Figure 3 displays this feature for a very low-�
optics of SOLEIL with �1 ¼ 1� 10�7. Figure 3(a) shows
that a value of � ¼ 5:5� 10�9 (i.e. orbit distortion with
maximum peaks of �0:2 mm) shifts the energy of the on-
momentum beam (B) out of the machine transverse mo-
mentum acceptance with an offset larger than �5%. A
value of � ¼ 3� 10�8 (i.e. orbit distortion with maximum
peaks of �1 mm) is already large enough to make all the
buckets shrink to zero momentum acceptance as shown in
Fig. 3(b).

As a result, correcting the closed orbit is essential to get
the beam stored at very low-� optics.

B. Effect of the first-order momentum
compaction factor

Equation (16) shows that the �1 parameter supports the
symmetry of the linear rf buckets around the� axis as well
as the linear behavior of the longitudinal phase space. The
negative sign of �1 reverses the phase space around the
� ¼ 90� axis so that the stable and unstable fixed points
exchange their positions.

C. Effect of the second-order momentum
compaction factor �2

The second-order momentum compaction factor �2 has
an effect similar to that of � in terms of breaking down the
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FIG. 4. Effect of the �2 on the longitudinal phase space for the SOLEIL using the nominal value for �1 ¼ 4:38� 10�4 assuming
� ¼ 4:3� 10�9 and �3 ¼ 0. The energy gap between the two rf-bucket layers decreases while the momentum acceptance (i.e. areas)
of the buckets shrinks to zero as �2 increases from 4:45� 10�3 in (a) to 1:5� 10�2 in (b), 5� 10�2 in (c), and 5� 10�1 in (d). No
energy shift occurs in contrast to the effect of the � parameter. The stable and unstable fixed points are respectively (A, D) and (B, C).
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symmetry of rf-bucket momentum acceptance, reducing
the bucket sizes and reducing the energy gaps between the
on-momentum and off-momentum bucket layers.
However, it does not cause energy shift to the on-
momentum one. This can be seen from Fig. 4 where �2

is increased from the nominal value, �2 ¼ 4:45� 10�3, to
respectively 1:5� 10�2, 5� 10�2, and 0.5. Other
parameters are kept constant: �1 ¼ 4:38� 10�4, � ¼
4:3� 10�9, and �3 ¼ 0.

The vertical distance between the two rf-bucket layers in
Fig. 4 is given by [15,20]: �disp ¼ ��1=�2.

According to Eq. (12), with �3 ¼ 0, no stable fixed
point can be found in the phase space if the condition �2 >
�2
1=4� is fulfilled. So for low-� optics, �2 must be mini-

mized to keep enough bucket momentum acceptance for
reasonable injection efficiency and beam lifetime.
Moreover, if the energy gap between the two bucket layers
stays within the machine transverse energy acceptance and
the physical aperture, then two simultaneous beams are
expected in the storage ring. It is worth mentioning that the
negative sign of �2 reverses the phase space around the
� ¼ 0 axis so that the off-momentum bucket layers ex-
change their positions.

D. Effect of the third-order momentum
compaction factor �3

By taking into account the third order of the momentum
compaction factor,�3, the dynamics described in Secs. VA
and VC will display different features; there still would be
one bucket layer in the phase space with finite energy
acceptance regardless of the values of � and �2, however
shifted in energy by a value that may exceed the machine
transverse energy acceptance. This can be seen from the
solutions of Eq. (12) when �3 � 0. In the case �1�3 > 0,
the phase-space symmetry around the � axis is enhanced,
depending on the value of �3. On the contrary, if the
condition �1�3 < 0 is met, the energy gaps between the
on-momentum bucket layer and both the positive and

negative off-momentum ones are reduced depending on
the values of �1 and �2. For example, using the values of
the nominal SOLEIL optics three bucket layers are
within the transverse machine acceptance of 4% as long
as �3 � �0:39.
Figure 5 shows the impact of the sign of �3, with differ-

ent signs, on SOLEIL longitudinal phase space using
SOLEIL nominal parameters �1 ¼ 4:4� 10�4, �2 ¼
4:5� 10�3, and � ¼ 4:3� 10�9. Figure 5(b) exhibits a
phase-space portrait obtained with a negative value of �3

where three bucket layers simultaneously exist: one with
nominal energy and two off-momentum buckets with en-
ergy offsets þ4:0% and �2:8%. The on-momentum rf
bucket is separated from the off-momentum ones longitu-
dinally by j	� 2�sj in phase or by t ¼ 1:054 ns in time
according to SOLEIL rf parameters (Table I). In the hori-
zontal plane, the off-momentum buckets are separated
by a distance ‘‘x’’ depending on the value of dispersion
function Dx at the observation location. Since the key
parameter �3 governs the possibility to store or not three
simultaneous beams then for more stable low-� operation
in the synchrotron SOLEIL, it needs to be controlled with
great care.

VI. SYNCHROTRON FREQUENCY
INCLUDING �3 TERM

At small synchrotron oscillation amplitude, the synchro-
tron frequency fs is directly proportional to the square root
of � [21]:

fs ¼ f0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
heVrf cos�s

2	E0

s
�

1
2; (17)

where E0 and f0 are the energy and the revolution fre-
quency of the synchronous particle, respectively.
When the high order terms of � are taken into account,

Eq. (17) becomes
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fs ¼ f0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
heVrf cos�s

2	E0

s
ð�1 þ 2�2�þ 3�3�

2Þ12: (18)

Writing Eq. (18) in terms of the solutions of Eq. (15)
results in three different synchrotron frequencies corre-
sponding to each bucket layer [4]:

fsk ¼ f0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
heVrfj cos�sj
2	E0ð1þ �kÞ

s
ð�1 þ 2�2�k þ 3�3�

2
kÞ12; (19)

with k ¼ 1; 2; 3. The absolute value for cos�s comes from
the fact that the buckets are centered at two phases �s and
	��s having the same cosine values but with opposite
signs.

The most direct way to evaluate �1, �2, and �3 is to
measure the synchrotron frequency of any of the three
beams as a function of relative variation in rf frequency
�frf=frf [9,11,21].

To establish the required function for the on-momentum
beam, for instance, the corresponding energy deviation �1

is considered. Assuming a well-corrected closed orbit, the
energy deviation �1 is so small that it can be neglected in
the denominator of Eq. (19) and the beam energy can be
approximated to the nominal one without loss of accuracy:

fs1 ¼ f0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
heVrfj cos�sj

2	E0

s
ð�1 þ 2�2�1 þ 3�3�

2
1Þ1=2: (20)

Inserting the �1 value from Eq. (15) leads, after some
mathematical manipulations, to [4]

fs1ð�Þ � f0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
heVrfj cos�sj

2	E0

s �
��1 þ �2

2

3�3

þ 22=3ð3�1�3 � �2
2Þ2

3�3�
2

þ �2

22=33�3

�
1=2

; (21)

with � ¼ ½$þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð3�1�3 � �2

2Þ3 þ$2
q

�1=3 and $ ¼
9�1�2�3 � 2�3

2 � 27�2
3
�frf
frf

where the relation � �
�frf=frf [21] has been used.

It is worth mentioning that when �3 is not taken into
account, Eq. (21) will be reduced to the known second-

order formula: fs ¼ f0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
heVrf cos�s

2	E0

q
�1=2
1 ð1� 4 �2

�2
1

�frf
frf

Þ1=4
[9,20,21].

This method was applied at SOLEIL to evaluate experi-
mentally the values of �1, �2, and �3 in one of the low-�
optics mode whose theoretical parameters are �1 ¼
4:35� 10�6, �2 ¼ �1:81� 10�5, and �3 ¼ 7:5� 10�2.
By measuring the synchrotron frequency fs as a function
of�frf=frf , as shown in Fig. 6, and by fitting Eq. (21) to the
measurement data, the obtained values for �1, �2, and �3

were 5:0� 10�6, �1:8� 10�4, and 1:1� 10�1,
respectively.

The discrepancy between the measured and theoretical
values could be due to several reasons such as the mea-

surement errors for low values of synchrotron frequency,
machine nonlinearities not taken into account in the model,
and the high sensitivity of the �2 value to the variation of
the sextupole strengths for very low-� optics [4].

VII. THE THREE STORED BEAM EVENT
SUPPORTED BY SIMULATION

In this part, the event of the three beams reported in
Sec. II and their dynamics in the transverse and longitudi-
nal phase spaces, when the rf frequency and a focusing
sextupole family (SF) strength are modified, are explained
based on the theoretical framework set in the previous
sections. The Hamiltonian of Eq. (16) is used to simulate
different cases of the observed dynamics.
Although the different orders of the momentum com-

paction factor were not measured in the low-� optics in
which the three beams were observed, nevertheless this
event can be simulated using realistic parameters.
The simulations were based on the �1=20 optics of

which the first-order theoretical value is �1 ¼ 2:2�
10�5. As a first attempt, using the fact that the imaged
off-momentum beams (2) and (3) of Fig. 1(a) are equally
displaced from the on-momentum beam (1) with a full
spatial separation of x ¼ 3 mm at the dipole exit port,
the energy offsets of the off-momentum beams were de-
duced from the chromatic orbit using the theoretical dis-
persion function up to the third order. The solutions found
are �2 ¼ 4:6% and �3 ¼ �8:5%, respectively. Since such
energy deviations lead to large off-momentum chromatic
closed orbits well beyond the machine physical accep-
tance, the conclusion was that the model was not the
good one to fit the observations. Indeed the optics was
distorted during the experiment and it was not possible to
measure the optical functions due to technical constraints.
As a second attempt, because of the lack of information

on the higher-order terms of dispersion function, the en-
ergies of the two off-momentum beams were assumed not
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FIG. 6. Measured variation of the synchrotron frequency with
respect to the relative variation in the rf frequency. The dots are
the measurement data with their error bars of �10 Hz. The solid
curve corresponds to a fit of Eq. (21) in the case of a �=100
low-� optics: �1 ¼ 5:0� 10�6 � 4� 10�7, �2 ¼ �1:8�
10�4 � 4� 10�5, and �3 ¼ 1:1� 10�1 � 2� 10�2.
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to exceed �1:5% in order to be kept inside the transverse
dynamic and physical acceptances (based on computation
performed using the TRACY code [22]). Starting with these
� values, and using the theoretical value of �1 the reverse
problem was considered. By assuming that the orbit was
corrected so that � � 4:3� 10�9, then by solving Eq. (12)
for �2 and �3, a new lattice model was obtained with �2 ¼
�1:9� 10�5 and �3 ¼ �9:3� 10�2. By plotting Eq. (16)
for these parameters, a longitudinal phase space compat-
ible with Fig. 1(a) is obtained [Fig. 7(a)]. In this case the
off-momentum bucket layers (2) with �2 ¼ �1:5%, and

(3) with �3 ¼ 1:5% are identified to be the additional off-
momentum beams while the index (1) denotes the on-
momentum beam.
The beam depicted by Fig. 1(b) is the result of a 25 Hz

variation in the rf frequency. Because of the small�1 value,
even a small variation in rf frequency causes a non-
negligible horizontal orbit distortion that shifts in turn the
on-momentum beam energy. The variation in the rf fre-
quency can be more or less represented by the � value (see
Sec. VI). Hence, varying the rf frequency of 25 Hz in-
creases for instance the value of � by 7:1� 10�8 which
shifts the on-momentum beam energy by�0:36% towards
the beam (2). So using the same above values of the
momentum compaction factors and the increased value
of � (7:53� 10�8), a similar case to Fig. 1(b) can be
obtained: its phase space is shown in Fig. 7(b). It should
be noted that �2 (the most sensitive term to orbit distortion
in the low-� optics according to simulations using BETA)
was varied by a factor �10 without any significant change
in the dynamics shown in Fig. 7(b).
Finally, one considers the case where the SF sextupole

family strength is changed while the rf frequency is kept
constant. Increasing the strength of the SF sextupole family
reduces the�2 value which in turn increases the energy gap
between on-momentum beam (1) and the negative off-
momentum one (2). However, a variation of the sextupole
strength modifies the �3 value due to its high sensitivity to
the nonlinear dispersion. For example, using the �1=20
optics, simulations show that increasing the sextupole
strength by 8% decreases the value of �2 by a factor 34
from�2� 10�5 to�6:9� 10�4 and increases �3 by 43%
from 9:2� 10�2 to 1:35� 10�1. Assuming a negligible
closed orbit distortion, a similar case to Fig. 1(c) can be
obtained by decreasing the �2 value by a factor 30 and
increasing the �3 value by 40%. Figure 7(c) shows that the
beam (2) energy is deviated in energy to �2 ¼ �2:6%
which exceeds the machine transverse dynamic acceptance
for the low-� optics.
Using a realistic adjusted model of the low-� optics to

simulate multibeam dynamics, it has been possible to draw
longitudinal phase spaces compatible with the observations
performed in the SOLEIL storage ring. More refined simu-
lations could be made by using measured values for�1,�2,
and �3, and using the knowledge of dispersion function for
each case previously described.

VIII. CONCLUSION

In this paper, the first observation in November 2007
of three beams simultaneously stored into a circular
accelerator has been reported. By including the third-
order momentum compaction factor into the longitudinal
equations of motion, it has been possible to explain
theoretically, to some extent, the three-beam configura-
tion observed in a low-� operation mode of the SOLEIL
storage ring.
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DYNAMICS OF THREE SIMULTANEOUSLY STORED BEAMS . . . Phys. Rev. STAccel. Beams 16, 054001 (2013)

054001-9



Moreover, due to its large sensitivity at low-� optics,
taking the path lengthening momentum-independent term
� into account was necessary to simulate the observed
three-beam dynamics under variation of rf frequency. By
including �3 and � into the longitudinal beam dynamics, it
was possible to extend the formula of synchrotron fre-
quency as a function of the relative rf-frequency change
which was used to evaluate experimentally the first three
terms of momentum compaction factor for a low-� optics.

The analysis of three typical cases has shown, theoreti-
cally and experimentally, the high sensitivity of the longi-
tudinal phase-space behavior to the residual orbit error, the
rf frequency, and the sextupole strength, through the value
of � and of the higher-order terms of momentum compac-
tion factor.

The value of the third-order momentum compaction
factor is a key parameter to obtain several stable beams
in low-� operation. Then, similar to the operation at the
Metrology Light Source, the third-order momentum com-
paction could be adjusted by inserting octupole magnets
into the SOLEIL magnet lattice to better control the lon-
gitudinal beam dynamics for extremely low-� operation.
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