
Transverse operator method for wakefields in a rectangular dielectric
loaded accelerating structure

S. S. Baturin,1,* I. L. Sheinman,1 A.M. Altmark,1 and A.D. Kanareykin1,2

1St. Petersburg State Electrotechnical University, St. Petersburg, Russia
2Euclid Techlabs, LLC, 5900 Harper Road, Solon, Ohio 44139, USA

(Received 12 February 2013; published 16 May 2013)

Cherenkov radiationgeneratedbya relativistic electronbunch in a rectangular dielectric-loadedwaveguide

is analyzed under the assumption that the dielectric layers are inhomogeneous normal to the beam path. We

propose a method that uses eigenfunctions of the transverse operator applied to develop a rigorous full

solution for the wakefields that are generated. The dispersion equation for the structure is derived and the

wakefield analysis is carried out. The formalism developed here allows the direct solution of the inhomoge-

neous system ofMaxwell equations, an alternative analytic approach to the analysis of wakefields in contrast

to the previously used impedance method for rectangular structure analysis. The formalism described here

was successfully applied to the analysis of rectangular dielectric-lined structures that have been recentlybeam

tested at the Argonne (ANL/AWA) and Brookhaven (BNL/ATF) accelerator facilities.

DOI: 10.1103/PhysRevSTAB.16.051302 PACS numbers: 41.75.Lx, 42.82.Et, 84.40.�x

I. INTRODUCTION

Future high energy charged particle (electron and ion)
accelerators will require new technologies to ensure ex-
pansion of the energy and intensity frontiers. Future linear
colliders will need to be based on new methods since
foreseeable normal and superconducting technologies are
unavoidably limited in accelerating gradient. Progress in
compact x-ray source design based on free electron lasers
also requires high gradient nonconventional linear accel-
erators to be developed.

Some of the most promising new methods of charged
particle acceleration are laser-plasma [1,2], beam-driven
plasma [2,3], and dielectric based accelerators [4–7]. All
the advantages and limitations of these schemes as well as
their current status in simulations and experimental results
can be found in the references. In this paper we focus
on dielectric based wakefield acceleration technology
(DWA) as one of the most promising new technologies
for next generation linear colliders [8] and future x-ray
free-electron lasers (FELs)[9].

In this paper we consider dielectric-lined structures that
are excited by a high intensity relativistic electron beam to
generate high power X-band, mm-wave, or THz radiation
[7–9]. This rf pulse is used to drive another dielectric or
conventional accelerating structure (e.g. the CLIC project
power extraction structure [10,11]) or accelerate a second
electron beam in the same structure. This method of elec-
tromagnetic wave generation avoids the need to develop

more traditional rf sources and components that are able to
sustain and transmit GW-level microwave or THz power
into the structure [5–7].
A dielectric-loaded accelerating (DLA) or power extrac-

tion structure is a dielectric waveguide with an axial vac-
uum channel for beam propagation and which is
surrounded by a conducting metal wall [4–6]. Recent ex-
periments have shown that dielectric based structures can
sustain accelerating gradients in excess of 100 MV=m [12]
and GV=m [6] in the upper GHz and THz frequency
ranges, respectively.
For example, a high current (up to 100 nC) short

(1–2 mm) relatively low energy (15–100 MeV) electron
bunch in this type of a structure can generate Cherenkov
wakefields with the longitudinal field magnitude up to
100–300 MV=m in the X–Ka band frequency ranges [12].
A 3 nC charge and 30 �m long bunch of the 23GeV SLAC/
FACET accelerator generates 1–10 GV=m wakefields in
the THz range [6,13]. These wakefields are used for
accelerating a less intense but high energy electron bunch
propagating behind the drive bunch at a distance corre-
sponding to the accelerating phase of the Ez field [4,5,14].
Dielectric based structures provide, in addition to the high
accelerating gradient, the possibility of controlling the fre-
quency spectrum of the structure by introducing nonlinear
dielectrics (ferroelectrics) [15,16]. There is also the poten-
tial of using new manufactured materials (such as diamond
and sapphire) with unique dielectric strength and thermo-
conductive properties [17–19].
As a rule, the cylindrical geometry usually proposed for

dielectric based structures is required for attaining the
highest accelerating gradients as well as for providing
the maximal possible shunt impedance of the structure
[4,5]. Results of analytic mode analyses of cylindrical
dielectric accelerating structures are found in [20,21].
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Since 1988 when the first proof of principle experimental
results were published [4], studies of cylindrical dielectric
structures have been presented in numerous publications
(see [5–9,11–16]).

At the same time, the dielectric-lined planar or rectan-
gular cross section geometries are also being considered; a
minor reduction in performance is acceptable in view of
the technological difficulties of fabricating cylindrical
structures (related to the stringent tolerance requirements
for geometrical parameters and uniformity of the permit-
tivity of the dielectric [3]). Rectangular structures can be
used for measurements on new dielectric materials
effective in sustaining high acceleration rates and tolerant
of pulsed heating of the structure [4]. Planar structures
are also being studied (along with cylindrical geometries)
for generating terahertz radiation in the frequency range
0.5–1.0 THz [4] and for energy spread reduction
(‘‘silencer’’) systems for FEL linacs [22].

Another advantage of using a planar geometry is related
to the drive beam stability problem for DWAs. The longi-
tudinal electric fieldmagnitude of thewakefield is inversely
proportional to the square of the vacuum channel radius;
therefore it is critically important to employ small aperture
structures. At the same time, reducing the vacuum channel
radius increases the severity of beam breakup (BBU) effects
[5,7,23]. Planar DWA structures can provide a reasonable
compromise between the reduced accelerating gradient and
the required beam transverse stability [23]. The planar
option has the additional advantage that a flat electron
beam can be generated directly in photoinjectors [24].

Theoretical analyses of dielectric accelerating structures
with rectangular geometries have been reported in a number
of publications [23,25–31]. To determine the amplitudes of
individual Cherenkov radiation modes excited in a rectan-
gularwaveguidewith dielectric slabs, the impedancematch-
ing technique was used in the earlier papers [23,25,26].
When that formalism is used instead of the direct solution
of the nonhomogeneous system of Maxwell equations
(the standard analytic approach in analysis of wakefields
in cylindrical structures [20,21]), the amplitudes of the
wakefields needs to be expressed in terms of the shunt
impedance (or integrated loss factor) for each mode of the
structure [23,25,26]. The approach involves certain approx-
imations, while the direct solution of the inhomogeneous
system of Maxwell’s equations without intermediate ap-
proximations is always preferable for analyzing the wake-
field generation problem in DWA structures. In this paper, a
rigorous direct solution was found for the wakefields in an
arbitrary rectangular dielectric-lined waveguide.

In this paper, we applied a transverse operator method
that was used previously as an analytical algorithm for
wave propagation of modes in a waveguide with complex
loading, where the rectangular waveguide is partially filled
with dielectric, ferrite, ferroelectric, or any type of anisot-
ropy is present (chiral loading, for example) [28–34]. Some

specific version of transverse operator method called the
mode basis method was developed and applied to the
analysis of wave propagation in conical antennas with
dielectric filling [35,36].
Themethod of the first order transverse operator has been

applied to waveguide problems in [32–34]. The generalized
orthogonality relations between the longitudinal magnetic
and longitudinal electric modes have been derived in
[28,29]. However, the bilinear form introduced in [28,29]
is not the scalar product, and requires justification of the use
of this relation for orthogonality between the components
of the electric and magnetic field vectors. In [30], the
analysis was performed on the basis of the second order
differential equations for the transverse field components
(direct solution of the Maxwell equations) of a two-channel
rectangular structure with dielectric-lined waveguides. This
structure design was proposed for increasing the trans-
former ratio from the drive beam to the beam being accel-
erated. However, some of the mathematical aspects of the
analysis [28–30] have not been rigorously verified and need
additional studies. To be specific, there is a problem of sign
inversion of the weight function in the definition of the
norm, and the completeness of the set of functions over
which the expansion was performed was not demonstrated.
Our approach to this problem is the use of a modified

transverse operator method. It should be noted that in
contrast to the analysis of [28–34], we consider the
Sturm-Liouville second order operator with an alternating
sign weight function. It will be shown below that the
integral relation derived in [28,29] is a consequence of
the bi-orthogonality of the eigenfunctions as well as the
similarity of the operator to a self-adjoint operator. This
approach makes it possible to obtain a complete analytic
solution for the eigenmodes of this system, and thus, to
solve in the most general form the problem of Cherenkov
wakefield generation in a rectangular accelerating structure
with a composite dielectric loading.
Finally, (i) the proposed method does not require

any assumptions on the form of the beam’s Coulomb field
(in contrast to the impedance method [25,26], where it is
often assumed that the field of the beam is essentially
flat, an assumption that is valid only at ultrarelativistic
energies); (ii) we also did not use the mode decomposition
for the problem formulation and its subsequent solution;
the mode series obtained as a solution emerges in a natural
way as a result of solving the problem; (iii) as a conse-
quence of (ii), and the use of the transverse operator
formalism the series of modes of the solution is uniformly
convergent. This is not obvious for the solution obtained by
the impedance method [25,26] and requires additional
analysis and proof.

II. THEORETICAL ANALYSIS

We consider the waveguide shown in Fig. 1. We start
from the Maxwell system in CGS units (1)–(4), with the
additional constitutive relations:
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r� E ¼ � @B

c@t
; (1)

r�H ¼ @D

c@t
� enV

c
; (2)

r �B ¼ 0; (3)

r �D ¼ �en; (4)

B ¼ �H; D ¼ "E; (5)

where E, H are the electric and magnetic field vectors
respectively; D, B are the electric and magnetic flux
vectors respectively; V—average speed of the bunch;
n—particle concentration of the bunch; e—electron
charge; t—time.

The electron bunch is moving in the vacuum channel
along the waveguide axis. The wakefield is generated
by the bunch when the Cherenkov condition v=c ¼
�> "�1=2 is satisfied. Here c is the speed of light and v
the speed of the moving particle (or bunch).

For a point charge q, moving along waveguide’s z axis
the charge distribution is given by

nðx; y; z; tÞ ¼ 4�N�ðz� vtÞ�ðx� x0Þ�ðy� y0Þ; (6)

where x, y are transverse coordinates, z is the longitudinal
coordinate, and x0, y0 are the transverse coordinates of the
beam, N number of electrons in the bunch, bunch charge
q ¼ �eN.

We consider a rectangular waveguide with symmetric
dielectric layers placed parallel to the OZX plane and
separated by a vacuum gap. In this case the dielectric is
inhomogeneous along the y axis, so that " ¼ "ðyÞ, � ¼
�ðyÞ. Next we evaluate the Maxwell system (1)–(4) with
(5) for this case. From (4) we obtain

r �E ¼ �
�
Ey

"

@"

@y
þ en

"

�
; (7)

applying the curl operator to (1) and using (7), we get
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�
Ey

"

@"
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�
� "�

@2E

c2@t2

¼ �e

�
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�
n
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þ��

@n

c@t

V

jVj
�
þ @�

c@t
; (8)

where we define

� �
Hz

@�
@y

0
�Hx

@�
@y

0
B@

1
CA; (9)

and

�x;y � @2

@x2
þ @2

@y2
: (10)

By inspection of Eq. (8), only the equation for the Ey

component does not include additional terms depending
on other field components. In other words, only the Ey

equation is independent.
The equation for the Ey component of the electric field

given by (8) is

@2Ey
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þ�x;yEy þ @
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@"
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@2Ey
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¼ �e

@

@y

�
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�
:

(11)

The terms of the operator on the left side of the equation
containing only derivatives with respect to y can be sim-
plified as

@2Ey
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@y

�
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@"
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�
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�
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�
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We introduce the new variable � ¼ z� vt and we
will look for a solution in the form Eyðx; y; z; tÞ ¼
Eyðx; y; z� vtÞ ¼ Eyðx; y; �Þ. The equation for Ey then

becomes
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(13)

We introduce the operator

T̂ EEy ¼ 1

ð1� "��2Þ
�
@2Ey

@x2
þ @

@y

�
1

"

@

@y
½"Ey�

��
: (14)

We can then rewrite (13) as

@2Ey

@�2
þ T̂EEy ¼ �e

"0ð1� "��2Þ
@

@y

�
n

"

�
: (15)

Following the same steps for the magnetic part of the
Maxwell system we obtain

�Hþr
�
H � r�

�

�
¼ �@ðr �EÞ

c@t
� @�

c@t
þ e

c
r� ðnVÞ;

(16)

FIG. 1. A rectangular dielectric-loaded accelerating structure;
(1) vacuum, (2) dielectric, (3) conducting walls.
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where

� �
Ez

@"
@y

0
�Ex

@"
@y

0
B@

1
CA: (17)

The velocity vector V has only a z component, so

r� ðnVÞ ¼ v

@n
@y

� @n
@x

0

0
B@

1
CA: (18)

We should mention here that for the magnetic vector the
situation is similar to the electric case in that the only
equation that does not depend on other field components
is the one for Hy.

Thus combining (16)–(18), we can write the equation for
the Hy component as

�Hy þ @

@y

�
Hy

�

@�

@y

�
� "�

@2Hy

c2@t2
¼ �e�

@n

@x
: (19)

As before, we seek a solution in the form Hyðx; y; z; tÞ ¼
Hyðx; y; z� vtÞ ¼ Hyðx; y; �Þ:
@2Hy

@�2
ð1�"��2Þþ@2Hy

@x2
þ @

@y

�
1

�

@

@y
½�Hy�

�
¼�ev@n
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(20)

We introduce the operator

T̂ HHy¼ 1

ð1�"��2Þ
�
@2Hy

@x2
þ @

@y

�
1

�

@

@y
½�Hy�

��
: (21)

We then can rewrite (19) as

@2Hy

@�2
þ T̂HHy ¼ �ev

1� "��2

�
@n

@x

�
: (22)

We should stress here that Eqs. (15) and (22) are inde-
pendent. Each equation corresponds to a specific type of
propagating wave, (15) to longitudinal section magnetic
(LSM) modes, (22) to longitudinal section electric (LSE)
modes.

A. Transverse operator structure and
transverse eigenfunctions

If we assume that the charge distribution is a finite
function inside the vacuum gap and

"ðyÞ ¼
�
1; y 2 ½�b; b�
"1; y 2 ½�c;�bÞ [ ðb; c�;

�ðyÞ ¼
�
1; y 2 ½�b; b�
�1; y 2 ½�c;�bÞ [ ðb; c�;

(23)

then the boundary conditions for the y components of the
magnetic and electric fields on the conducting boundaries
are

Eyjx¼0 ¼ 0; Eyjx¼w ¼ 0;
@Ey

@y

��������y¼�c
¼ 0;

@Hy

@x

��������x¼0
¼ 0;

@Hy

@x

��������x¼w
¼ 0; Hyjy¼�c ¼ 0;

(24)

and on the dielectric boundaries

Eyjy¼�b�0 ¼ "1Eyjy¼�b�0;

@Ey

@y

��������y¼�b�0
¼ @Ey

@y

��������y¼�b�0
;

Hyjy¼�b�0 ¼ �1Hyjy¼�b�0;

@Hy

@y

��������y¼�b�0
¼ @Hy

@y

��������y¼�b�0
:

(25)

We consider the eigenvalue equations for the operators T̂E

and T̂H [(26) and (27)]:

T̂E�Eðx;yÞ¼�E�Eðx;yÞ; �Eð0;yÞ¼0;

�Eðw;yÞ¼0;
@�Eðx;yÞ

@y

��������y¼c
¼0;

@�Eðx;yÞ
@y

��������y¼�c
¼0 (26)

T̂H�Hðx; yÞ ¼ �H�Hðx; yÞ; @�Hðx; yÞ
@x

��������x¼0
¼ 0;

@�Hðx; yÞ
@x

��������x¼w
¼ 0; �Hðx;�cÞ ¼ 0;

�Hðx; cÞ ¼ 0:

(27)

Then we can introduce a series expansion ansatz for the
transverse eigenfunctions �Eðx; yÞ and �Hðx; yÞ:

�Eðx; yÞ ¼
X1
n¼1

Xn
EðxÞYn

EðyÞ; (28)

�Hðx; yÞ ¼
X1
n¼1

Xn
HðxÞYn

HðyÞ: (29)

The eigenvalue problem for the X functions is

@2

@x2
XE;HðxÞ¼�k2xXE;HðxÞ; XEð0Þ¼0;

XEðwÞ¼0;
@XHð0Þ
@x

¼0;
@XHðwÞ

@x
¼0:

(30)

Because of the self-adjointness of the operator defined
by (30), the sets

fXEðxÞgn¼fsinðknxxÞgn; fXHðxÞgn¼fcosðknxxÞgn (31)

define complete orthogonal systems with knx ¼ �n=w. This
is of course the familiar Fourier series.
Substituting (28) into (26) and taking into account (25)

we can write the equations for the transverse electric
eigenfunctions as (suppressing the n index for simplicity)
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ð1�"��2Þ
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"

@"YEðyÞ
@y
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� k2x
ð1�"��2ÞYEðyÞ¼�EYEðyÞ; @YEð�cÞ
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@YEðcÞ
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¼0;

YEð�b�0Þ¼"1YEð�b�0Þ; @YE
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��������y¼�b�0
¼@YE

@y

��������y¼�b�0
:

(32)

Similarly, substituting (29) into (27) and taking into account (25) we get a set of analogous expressions for the transverse
magnetic eigenfunctions:

1

ð1�"��2Þ
@

@y

�
1

�

@�YHðyÞ
@y

�
� k2x
ð1�"��2ÞYHðyÞ¼�HYHðyÞ; YHð�cÞ¼0; YHðcÞ¼0:

YHð�b�0Þ¼�1YHð�b�0Þ; @YH

@y

��������y¼�b�0
¼@YH

@y

��������y¼�b�0
:

(33)

Because the material layers are assumed to be placed symmetrically relative to the OZX plane, the electric and magnetic
eigenfunctions of (32) and (33) can be separated further into symmetric and asymmetric functions.

We can the write the solution to (32) as follows.
Symmetric eigenfunctions.—

YE;sðy; �EÞ ¼ As �

8>>>><
>>>>:

coshðkE
ch
bÞ

"1 cos½kEmd
ðc�bÞ� cos½kEmdðc� yÞ�; b � y � c

coshðkEchyÞ; �b � y � b

coshðkE
ch
bÞ

"1 cos½kEmd
ðc�bÞ� cos½kEmdðcþ yÞ�; �c � y � �b:

(34)

Asymmetric eigenfunctions.—

YE;asðy; �EÞ ¼ Aas �

8>>>><
>>>>:

sinhðkE
ch
bÞ

"1 cos½kEmd
ðc�bÞ� cos½kEmdðc� yÞ�; b � y � c

sinhðkEchyÞ; �b � y � b

� sinhðkE
ch
bÞ

"1 cos½kEmd
ðc�bÞ� cos½kEmdðcþ yÞ�; �c � y � �b:

(35)

Here we have defined the wave numbers in the vacuum channel and dielectric respectively as

kEch ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �2Þ�E þ k2x

q
; kEmd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð"1�1�

2 � 1Þ�E � k2x

q
: (36)

The dispersion relations for the symmetric and asymmetric functions can then be written as

"1k
E
ch tanhðkEchbÞ � kEmd tan½kEmdðc� bÞ� ¼ 0; "1k

E
ch cothðkEchbÞ � kEmd tan½kEmdðc� bÞ� ¼ 0: (37)

Eigenfunctions of the magnetic problem (33) also separate into symmetric and asymmetric parts.
Symmetric eigenfunctions are given by

YH;sðy; �HÞ ¼ Bs �

8>>>><
>>>>:

coshðkH
ch
bÞ

�1 sin½kHmd
ðc�bÞ� sin½kHmdðc� yÞ�; b � y � c

coshðkHchyÞ; �b � y � b

coshðkH
ch
bÞ

�1 sin½kHmd
ðc�bÞ� sin½kHmdðcþ yÞ�; �c � y � �b:

(38)

Asymmetric eigenfunctions are given by

YH;asðy; �HÞ ¼ Bas �

8>>>><
>>>>:

sinhðkH
ch
bÞ

�1 sin½kHmd
ðc�bÞ� sin½kHmdðc� yÞ�; b � y � c

sinhðkHchyÞ; �b � y � b

� sinhðkH
ch
bÞ

�1 sin½kHmd
ðc�bÞ� sin½kHmdðcþ yÞ�; �c � y � �b:

(39)

Here we define

kHch ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �2Þ�H þ k2x

q
; kHmd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð"1�1�

2 � 1Þ�H � k2x

q
:

The dispersion relations for the symmetric and asymmetric functions respectively are given by
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�1k
H
ch tanhðkHchbÞ þ kHmd cot½kHmdðc� bÞ� ¼ 0;

kHmd tanhðkHchbÞ þ�1k
H
ch tan½kHmdðc� bÞ� ¼ 0:

B. Expansion method

Let us next examine the operator T̂E (14). We consider
the Hilbert space H E ¼ L2f½�c; c�; j"ð1� "��2Þjg �
L2ð½0; w�Þ, where � ¼ j"ð1� "��2Þj is the weight func-
tion. The scalar product in this space is given by

ðc ; ’ÞE ¼
Z w

0

Z c

�c
j"ð1� "��2Þjc 	’dxdy; (40)

where ’, c 2 H E.
The metallic (24) and dielectric boundary conditions

(25) lead to

DomðT̂EÞ ¼ f’ 2 H E:@y’ðx;�cÞ ¼ 0;

’ð0; yÞ ¼ ’ðw; yÞ ¼ 0;

’ðx;�b� 0Þ ¼ "1’ðx;�b� 0Þ;
@y’ðx;�b� 0Þ ¼ @y’ðx;�b� 0Þg: (41)

[DomðXÞ indicates the domain of the operator X.]

The adjoint operator T̂E
	 can be found using the

definition

ðc ; T̂E’ÞE � ðT̂E
	c ; ’ÞE ¼ 0: (42)

This leads to

DomðT̂	
EÞ ¼ f’ 2 H E:@y’ðx;�cÞ ¼ 0;

’ð0; yÞ ¼ ’ðw; yÞ ¼ 0;

’ðx;�b� 0Þ ¼ �"1’ðx;�b� 0Þ;
@y’ðx;�b� 0Þ ¼ �@y’ðx;�b� 0Þg: (43)

Following the same steps for the operator T̂H (21),
we introduce the Hilbert space H H ¼ L2f½�c; c�;
j�ð1� "��2Þjg � L2ð½0; w�Þ, with the scalar product

ðc ; ’ÞH ¼
Z w

0

Z c

�c
j�ð1� "��2Þjc 	’dxdy; (44)

where ’, c 2 H H.
Applying the boundary conditions (24) and (25) we get

DomðT̂HÞ ¼ f’ 2 H H:’ðx;�cÞ ¼ 0;

’ð0; yÞ ¼ ’ðw; yÞ ¼ 0;

’ðx;�b� 0Þ ¼ �1’ðx;�b� 0Þ;
@y’ðx;�b� 0Þ ¼ @y’ðx;�b� 0Þg: (45)

Using the definition of the adjoint (42), the adjoint opera-
tor’s domain is found to be

DomðT̂	
HÞ ¼ f’ 2 H H:’ðx;�cÞ ¼ 0;

’ð0; yÞ ¼ ’ðw; yÞ ¼ 0;

’ðx;�b� 0Þ ¼ ��1’ðx;�b� 0Þ;
@y’ðx;�b� 0Þ ¼ �@y’ðx;�b� 0Þg: (46)

It immediately follows that DomðT̂EÞ � DomðT̂	
EÞ and

DomðT̂HÞ � DomðT̂	
HÞ, which means that the operators

T̂E and T̂H are not self-adjoint in H E and H H, respec-
tively, so the eigenfunctions are not guaranteed to form a
complete orthogonal set. In turn this would imply that all
solutions for �E (�H) are not necessarily given by (28),
(34), and (35) [(29), (38), and (39)]. However, it can be
proved that the eigenfunctions of the tasks (26) and (27)
along with the conditions (25) form Riesz bases inH E and
H H, respectively. This means that for the sets f�Eðx; yÞg
and f�Hðx; yÞg there exist bounded and boundedly inverti-

ble operators X̂E and X̂H such that eE ¼ X̂�1
E �Eðx; yÞ and

eH ¼ X̂�1
H �Hðx; yÞ, where feEg and feHg are orthogonal

bases in H E and H H, respectively. (The proof of this is
rather involved; we provide an outline of the proof in the
Appendix. A paper containing the complete proof will be
submitted to a journal with a more mathematical focus.)
Hence, any f 2 H E and any g 2 H H can be expanded as

f ¼ Xð�E; fÞE�E; g ¼ Xð�H; fÞH�H: (47)

Here f�Eg are eigenfunctions of T̂	
E and f�Hg are ei-

genfunctions of T̂	
H. Because " and � are bounded on

½�c; c� and ", � 2 L1ð½�c; c�Þ, metrics on H E and
H H are equivalent to the metrics on L2ð½�c; c�Þ �
L2ð½0; w�Þ. Hence, the expansions (47) hold for f, g 2
L2ð½�c; c�Þ � L2ð½0; w�Þ. However, we should stress here
that the conditions (25) hold only for finite functions on the
intervals ½�c;�b�, ½�b; b�, ½b; c�; in other words the
excitation charge distribution should vanish at material
boundaries.
The functions f�Eg, f�Eg and f�Hg, f�Hg satisfy the bi-

orthogonality conditions

ð�n
E;�

m
E ÞE¼

Z
j"ð1�"��2Þjð�n

EÞ	�m
Edxdy¼An;m

E �n;m;

ð�n
H;�

m
HÞH¼

Z
j�ð1�"��2Þjð�n

HÞ	�m
Hdxdy¼An;m

H �n;m:

(48)

Because of the fact that

�E ¼ Ĵ�E; �H ¼ Ĵ�H; (49)

where

Ĵ ¼
�
1; y 2 ½�b; b�
�1; y 2 ½�c;�bÞ [ ðb; c�; (50)

one can write
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ð�n
E;Ĵ�

m
E ÞE¼

Z
"ð1�"��2Þð�n

EÞ	�m
Edxdy¼An;m

E �n;m;

ð�n
H;Ĵ�

m
HÞ¼

Z
�ð1�"��2Þð�n

HÞ	�m
Hdxdy¼An;m

H �n;m;

(51)

which corresponds to a result from [29] of the so-called
mode orthogonality condition

Z
"ð"��2 � 1ÞEym;nE

	
yp;qdxdy ¼ �LSM

m;n �mp�nq;

Z
�ð"��2 � 1ÞHym;nH

	
yp;qdxdy ¼ �LSE

m;n �mp�nq:

(52)

III. SOLUTIONS FOR Ey AND Hy

Assuming a point charge passing through the structure at
transverse coordinates ðx0; y0Þ, Fourier transformation of
(15) with respect to � leads to

T̂ E½ ~Eyðx; y; kÞ� � k2 ~Eyðx; y; kÞ

¼ 2q�ðx� x0Þ
ð1� "��2Þ

@

@y

�
�ðy� y0Þ

"

�
: (53)

We introduce the normalized eigenfunctions

c �n

E ðx; yÞ ¼ 1ffiffiffiffiffiffiffiffiffi
An;n

p ��n

E ðx; yÞ;

��n
E ðx; yÞ ¼ 1ffiffiffiffiffiffiffiffiffi

An;n

p ��n
E ðx; yÞ;

½��n

E ðx; yÞ; c �n

E ðx; yÞ�E ¼ �n;m:

(54)

We then expand the transverse electric field (assuming
y0 � �b)

~E�
y ðkÞ¼ ð��

Eðx;yÞ; ~Eyðx;y;kÞÞE;
~Eyðx;y;kÞ¼

X
~E�
y ðkÞc �

Eðx;yÞ;

�ðx�x0Þ
ð1�"��2Þ

@

@y

�
�ðy�y0Þ

"

�
¼�X@½��

Eðx0;y0Þ�	
@y

c �
Eðx;yÞ:

(55)

Substituting (55) into (53), one can write for the region
�b < y0 < b,

~E �
y ðkÞ ¼ �2q

@½��
Eðx0; y0Þ�	
@y

1

�E � k2
: (56)

Performing the inverse Fourier transform for � < 0 (field
behind the bunch) leads to a solution in the form

Eyðx;y;�Þ¼2�q
X
�E

@½��E
E ðx0;y0Þ�	
@y

c �E

E ðx;yÞ

�
2
4expð� ffiffiffiffiffiffiffiffiffiffij��

E j
p j�jÞffiffiffiffiffiffiffiffiffiffij��

E j
p �2

sin
� ffiffiffiffiffiffiffi

�þ
E

q
j�j

	
ffiffiffiffiffiffiffi
�þ
E

q
3
5; (57)

where �þ
E refers to the positive eigenvalues (�E > 0) of T̂E

and ��
E to the negative eigenvalues (�E < 0) of T̂E.

By a similar process applied to (22) we obtain the
solution for Hy. For the case � < 0, �b < y0 < b we can

write

Hyðx;y;	Þ¼2�q�
X
�H

@½��H

H ðx0;y0Þ�	
@x

c �H
H ðx;yÞ

�
2
4exp

�
� ffiffiffiffiffiffiffiffiffiffij��

H j
p j�j

	
ffiffiffiffiffiffiffiffiffiffij��

H j
p �2

sin
� ffiffiffiffiffiffiffi

�þ
H

q
j�j

	
ffiffiffiffiffiffiffi
�þ
H

q
3
5; (58)

where �þ
H refers to positive eigenvalues (�H > 0) of T̂H

and ��
H to negative eigenvalues (�H < 0) of T̂H; �

�H

H and

c �H

H are normalized eigenfunctions of T̂	
H and T̂H,

respectively.

IV. ACCELERATING FIELD AND
DEFLECTING FORCE

By Fourier transformation with respect to � of the
Maxwell equations (1) and (2), we can express the trans-
verse fields in terms of the longitudinal fields as

ik½1� "��2� ~Ex ¼
�
@ ~Ez

@x
þ��

@ ~Hz

@y

�
; (59)

ik½1� "��2� ~Ey ¼
�
@ ~Ez

@y
���

@ ~Hz

@x

�
; (60)

ik½1� "��2� ~Hx ¼
�
@ ~Hz

@x
� "�

@ ~Ez

@y

�
; (61)

ik½1� "��2� ~Hy ¼
�
@ ~Hz

@y
þ "�

@ ~Ez

@x

�
: (62)

Combining the equations for ~Ey and ~Hy we obtain

@2 ~Ez

@y2
þ"��2@

2 ~Ez

@x2
��

@ ~Hz

@x

@�

@y

¼ ik

�
@

@y
ð½1�"��2� ~EyÞþ��½1�"��2�@

~Hy

@x

�
: (63)

Now let us consider the Helmholtz equation for the ~Ez

components

TRANSVERSE OPERATOR METHOD FORWAKEFIELDS . . . Phys. Rev. ST Accel. Beams 16, 051302 (2013)

051302-7



�x;y
~Ezþ ik

~Ey

"

@"

@y
� ik� ~Hx

@�

@y
�k2½1�"��2� ~Ez

¼2qik

"
½1�"��2�~n: (64)

Substitution of
@2 ~Ey

@y2
from (63) and ~Hx from (61) into (64)

with ~Ey from (60) gives

@2 ~Ez

@x2
�k2 ~Ez¼�ik

�
@ ~Ey

@y
þ

~Ey

"

@"

@y

�
þ ik

2

"
~n� ik��

@ ~Hy

@x
:

(65)

Now we consider the ~Ey Helmholtz equation:

�
@2

@x2
þ @

@y

�
1

"

@

@y
½"��

��
~Ey�½1�"��2�k2 ~Ey¼2

@

@y

�
~n

"

�
:

(66)

Integrating this equation with respect to y, we have

Z �
@2

@x2
� ½1� "��2�k2

�
~Eydyþ 1

"

@

@y
½" ~Ey� þ C ¼ 2

~n

"
:

(67)

Multiplication of this equation by ik and substitution into
(65) leads to

@2 ~Ez

@x2
�k2 ~Ez¼ ik

Z �
@2

@x2
�½1�"��2�k2

�
~Eydy

� ik��
@ ~Hy

@x
: (68)

Using the boundary condition on the conductors
~Ezð�cÞ ¼ 0, we find the constant of integration C ¼ 0.
For the boundary conditions on the sides of the structure,

Ezðx¼0Þ¼0, Ezðx¼aÞ¼0, we can expand ~Ez in the series

~E z ¼
X

XE
n ðxÞEn

z ðyÞ: (69)

Taking into account that

~Ey¼�2qXE
n ðxÞXE

n ðx0Þ
En
y

�E�k2
; En

y ¼@Y	
Eðy0Þ
@y

YEðyÞ;

(70)

where Y	
E is the conjugate eigenfunction of the adjoint

problem (32), and

~Hy ¼ �2q��n
xX

H
n ðxÞXE

n ðx0Þ
kxH

n
y

�H � k2
;

Hn
y ¼ Y	

Hðy0ÞYHðyÞ;
(71)

where Y	
H is the conjugate eigenfunction of the adjoint

problem (33). Substitution of (69)–(71) into (68) gives

En
z ¼� 2qXn

Eðx0Þ
ðknxÞ2þk2

ik

�E�k2
½1�"��2�k2þðknxÞ2

kyðyÞ

�I½En
y�½kyðyÞy�þ2q��2Xn

Eðx0Þ
ðknxÞ2þk2

ikðknxÞ2
�H�k2

Hn
y : (72)

Here we define

kyðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1� "��2��E þ ðknxÞ2

q
; (73)

and denote for brevity the integral by the operation I:

I½f�ðyÞ �
Z

fðyÞdy; d

dy
I½f�ðyÞ ¼ fðyÞ: (74)

Using the inverse Fourier transformation the Cherenkov
radiation field (only real poles contributing for 	 < 0

and only positive eigenvalues of T̂E and T̂H) can be
found as

Ezðx;y;	Þ¼4�q
X
n

Xn
Eðx0ÞXn

EðxÞ

�
�X

�E

kyI½En
y�½kyðyÞy�

�EþðknxÞ2
cosð ffiffiffiffiffiffi

�E

p j	jÞ

���2
X
�H

ðknxÞ2Hn
y

�HþðknxÞ2
cosð ffiffiffiffiffiffiffi

�H

p j	jÞ
�
: (75)

The transverse force inside the channel can be found using
the Panofsky-Wenzel theorem:

@F?
@z

¼ er?Ez: (76)

Hence,

Fx ¼
Z @Ez

@x
dz; Fy ¼

Z @Ez

@y
dz: (77)

Substitution of Ez leads to the full expressions for the
transverse force components:

Fxðx; y; 	Þ ¼ 4�q
X
n

Xn
Eðx0Þ

@Xn
EðxÞ
@x

�X
�E

kyI½En
y�½kyðyÞy�

�E þ ðknxÞ2
sinð ffiffiffiffiffiffi

�E

p j	jÞffiffiffiffiffiffi
�E

p ���2
X
�H

ðknxÞ2Hn
y

�H þ ðknxÞ2
sinð ffiffiffiffiffiffiffi

�H

p j	jÞffiffiffiffiffiffiffi
�H

p
�
; (78)

Fyðx; y; 	Þ ¼ 4�q
X
n

Xn
Eðx0ÞXn

EðxÞ
�X

�E

ðkyÞ2En
y

�E þ ðknxÞ2
sinð ffiffiffiffiffiffi

�E

p j	jÞffiffiffiffiffiffi
�E

p ���2
X
�H

ðknxÞ2
�H þ ðknxÞ2

@Hn
y

@y

sinð ffiffiffiffiffiffiffi
�H

p j	jÞffiffiffiffiffiffiffi
�H

p
�
: (79)
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V. COMPARISON WITH NUMERICAL
SIMULATIONS AND EXPERIMENTAL RESULTS

The formalism presented above allows obtaining a rig-
orous full solution for the wakefields generated by charged
particle bunches passing along a rectangular accelerating
structure loaded with symmetric dielectric slabs. Note that

this analysis allows the permittivity in one slab to be an

arbitrary function of y as long as the distribution in the

other slab is mirrored across the central x-z plane.

Comprehensive wakefield analysis and optimization of

the structure parameters require electric and magnetic field

magnitudes and spectra to be evaluated and used in the

expressions for the accelerating gradient. The forces

deflecting the electron bunch and the amplitudes of the

electric and magnetic fields on the inner surfaces of the

structure are also of importance for any practical accelera-

tor based on this technology. To solve this problem using

the formalism described above, the code RECTANGULAR

was developed, and the results of computations based on

the code using the analytic approach developed here are

both in good agreement with the results of analyses based

on traditional numerical codes like CST
TM [37].

Wakefields in rectangular dielectric-loaded structures
have been experimentally studied [14,38–40], Table I. In
[38,39] a wakefield measurement using a single crystal
diamond-loaded rectangular accelerating structure was re-
ported. Diamond was proposed as a material for dielectric-
loaded accelerating (DLA) structures a few years ago
[18,19]. It has a very low microwave loss tangent, the
highest available coefficient of thermal conductivity, and
high rf breakdown field [17]. In [38,39], the high charge
beam from the argon wakefield accelerator (AWA) linac
(
70 nC, 
z ¼ 1:5–2:5 mm) was transported through a
rectangular diamond-loaded resonator and induced an in-
tense wakefield behind the bunch.

The expressions derived above were used for analyzing
the wakefields generated by a Gaussian relativistic electron
bunch with the parameters of the Argon Wakefield
AcceleratorAWA in this structure—w ¼ 8 mm, b ¼
2 mm, c ¼ 3:19 mm, and "1 ¼ 5:7. The dependence of
the Ez component as a function of the distance � ¼ z� vt
behind it is shown in Fig. 2. The bunch is located at point
x0 ¼ w=2, y0 ¼ 0, �0 ¼ 8 cm; the observation point is
x ¼ w=2, y ¼ 0. The results of computations based on
the theory developed here (dotted curve computed using

the RECTANGULAR code) show good agreement with
the results of numerical calculations of fields in the
same structure using the CST PARTICLE STUDIO

TM

code (solid) [37]. Small difference between curves in
Fig. 2 is connected with limitation of mode quantity and
taking into account here only the Cherenkov part of
radiation.
In [40], wakefield acceleration of a relativistic electron

beam in a dielectric-lined slab-symmetric THz structure
was reported. The high energy tail of a
60 MeV electron
beam was accelerated by 
150 keV in a 2 cm long, slab-
symmetric quartz (" ¼ 3:8) structure. This split-bunch
distribution was verified by a longitudinal reconstruction
analysis of the emitted coherent transition radiation. The
dielectric waveguide structure was characterized by spec-
tral analysis of the Cherenkov radiation at THz frequen-
cies. The spacing of a relativistic bunch train was
selectively tuned to excite the second longitudinal mode
LSM21 [40]. The structure parameters are b ¼ 120 �m,
c ¼ 360 �m, structure width w ¼ 2 cm, structure length
L ¼ 2 cm, bunch charge Q ¼ 90 pC, bunch length

z ¼ 120 �m, 
x ¼ 5 mm, 
y ¼ 0; bunch energy

W ¼ 59 MeV.
Figure 3(a) shows the Ez field spectrum and Fig. 3(b)

shows the Ez magnitude behind the bunch with the struc-
ture parameters [40]. It should be noted that the only

TABLE I. DLA structure geometries and electron beam parameters used for the comparison of the theory developed in this paper and
wakefield experiments carried out at the Argonne Wakefield Accelerator at ANL [38,39] and the Accelerator Test Facility at BNL
[14,40].

Experiment/Ref. f, GHz, LSM11 " w, cm b, mm c, mm Energy, MeV 
z;mm Q

ANL/AWA [38,39] 25 5.7 0.8 2 3.19 15 1.5–2.5 70 nC

BNL/ATF [40] 170 3.8 2 0.12 0.36 59 0.12 90 pC

BNL/ATF [14] 295 5:7=1:8 0.1 0.10 0.25 57 0.10 70 pC

Distance behind the bunch (cm)

0

-100

-200

200

100

8 10 12 14 16 18

E
z 

(M
V

/m
)

FIG. 2. Longitudinal electric field behind the bunch in a
25 GHz diamond based rectangular accelerating structure with
w ¼ 8 mm, a ¼ 2 mm, b ¼ 3:19 mm, and "1 ¼ 5:7. The bunch
has a Gaussian charge distribution, energyW ¼ 15 MeV, charge
Q ¼ 100 nC, and length 
z ¼ 1:5 mm. The solid curve is
obtained using the PARTICLE STUDIO CST

TM code [37]; the dotted
curve is computed using the RECTANGULAR code [38,39].
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asymmetric LSM1;1, LSM2;1, and LSM3;1 modes can be

excited by the (relatively wide in X) bunch 
x ¼ 5 mm,

y ¼ 0. These mode frequencies are in full agreement with

[40] that gives �1 ¼ 1800 �m, �2 ¼ 600 �m, and �3 ¼
355 �m for the mode wavelengths. Meanwhile, the pro-
posed formalism allows resolving the fine structure of the
LSM modes: Fig. 4 shows the Ez field spectrum for the
wider LSMi;j mode spectrum, where LSM1;1, LSM2;1, and

LSM3;1 are shown for the narrower bunch width 
x ¼
500 �m, 
y ¼ 0. The bar groups near the base LSM1;1,

LSM2;1, and LSM3;1 frequencies correspond to higher kx
values of each mode and can be written as LSM1;2,

LSM1;3 . . . ; LSM2;2, LSM2;3 . . . ; LSM3;2, LSM3;3 modes

correspondingly. Figure 5 presents the Ez field spectrum of
the symmetric LSEi;j modes for the same bunch width


x ¼ 500 �m, 
y ¼ 0, where the bar groups now

correspond to higher kx values. Figure 6(a) shows the
spectrum of the Ez field and Fig. 6(b) presents the Ez field
for the bunch width 
x ¼ 500 �m, 
y ¼ 0. The vertical

deflecting force Fy spectrum and magnitude for a 40 �m

offset are shown in Fig. 7. The only LSM1;1 and LSM1;2

modes are excited for 
x ¼ 5 mm, 
y ¼ 0 bunch width. It

is worth mentioning than the mode spectrum consists of an
extremely low frequency component at 7.6 GHz in com-
parison with the LSM1;1 mode frequency of 167 GHz but

this low frequency mode is only weakly excited. The
fine structure of the Fy field spectrum in the range of

10–700 GHz is presented in Fig. 8(a) for 40 �m offset;
LSM1;j symmetric modes dominate for 
x ¼ 500 �m,


y ¼ 0. The transverse deflecting field magnitude behind

the bunch for a 40 �m offset is shown in Fig. 8(b) for the
LSM1;j symmetric modes and the bunch width 
x ¼
500 �m, 
y ¼ 0.

A THz structure was recently tested at Brookhaven
National Laboratory [14], consisting of a rectangular
waveguide loaded with polycrystalline chemical vapor
deposition diamond plates as an accelerating structure. In
this experiment, a drive (high charge) electron beam was
launched through the structure exciting a wakefield follow-
ing behind it. A smaller charge witness beam was launched
at a variable delay with respect to the drive beam and
experienced acceleration or deceleration depending on
the delay. This measurement effectively maps the wake-
field produced by the drive beam. The work presented

                                             (a)                                              (b) 

FIG. 3. (a) Ez field spectrum and (b) lineout of the field behind the bunch (black curve) for the LSM1;1, LSM2;1, and LSM3;1

asymmetric modes, 
x ¼ 5 mm, 
y ¼ 0. Frequencies are in good agreement with [40] �1 ¼ 1800 �m, �2 ¼ 600 �m, and �3 ¼
355 �m. (For this and subsequent figures, see Ref. [40] and Table I for further details.)

FIG. 4. Ez field spectrum for the LSMi;j modes. LSM1;1,
LSM2;1, and LSM3;1 modes are shown for


x ¼ 500 �m,
y ¼ 0. Bar groups near LSM mode frequencies

correspond to higher kx values for each mode: LSM1;2, LSM1;3;

LSM2;2, LSM2;3; LSM3;2, LSM3;3, respectively.

FIG. 5. Ez field spectrum of the LSEi;j modes for 
x ¼
500 �m, 
y ¼ 0. Bar group near the LSE mode frequencies

corresponds to higher kx values.
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in [14] represents the first mapping of the wakefield in a
dielectric device in the THz regime (Table I).

The structure parameters presented in [14] and Table I
provide a good opportunity to use the rigorous solution
presented above for analytical simulations of the spectrum
and magnitude of the wakefields excited by the bunch
passing through a dual-layer rectangular DLA structure.
75 �m thick polycrystalline diamond plates were loaded in
a 6 cm long waveguide. The second outer layer with a
thickness of 55–75 �m between each diamond plate and

conducting wall of the waveguide was formed by a dielec-
tric glue with permittivity "
 1:8. The beam gap was
2b ¼ 200 �m. This structure yields a wakefield domi-
nated by a LSM11 mode with a 1200 �m wavelength.
The ATF drive beam is short enough to excite higher

order modes, hence the wake is not a pure sine wave.
Parameter optimization carried out to fit the experimental
data and analytical simulations with the formalism
presented above allows us to predict the following parame-
ters for the data fit of the experiment [14]: b ¼ 100 �m,

(a) (b)
Distance behind the bunch (cm)

E
z 

(K
V

/m
)

0

2

4

6

0 0.25 0.5 0.75 1

FIG. 7. Fy field spectrum (left) and distribution behind the bunch (right) for 40 �m offset. Only LSM1;1 and LSM1;2 symmetric
modes survive for 
x ¼ 5 mm, 
y ¼ 0. It is worth mentioning that this class of modes has an extremely low base frequency (7.6 GHz)

and that their amplitude is also small.
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/m
)
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Distance behind the bunch (cm)

FIG. 6. (a) Ez field spectrum (a) and Ez field magnitude behind the bunch (b) for the bunch width 
x ¼ 500 �m.
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FIG. 8. Fy field spectrum (left) and distribution behind the bunch (right) for a 40 �m beam offset. LSM1;j symmetric modes
dominate for 
x ¼ 500 �m, 
y ¼ 0.
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c ¼ 250 �m consisting of a 75 �m thick diamond plate
and
75 �m thick dielectric glue layer. Permittivity of the
diamond slab is "1 
 5:7, and for the dielectric glue layer
"2 ¼ 1:8. Figure 9(a) shows LSM=LSE mode spectrum
for the structure parameters presented above and a
Gaussian electron beam with 
z 
 100 �m and beam
charge 70 pC. The lowest frequency corresponds to an
LSE11 symmetric mode at 273 GHz while the modes at
295 and 845 GHz are LSM11 and LSM12 asymmetric
modes, respectively. Figure 9(b) presents the magnitude
of the accelerating field Ez for the structure parameters,
a flattop beam charge distribution Q ¼ 70 pC and
length 320 �m as it was used in the wakefield mapping
experiment [14].

VI. CONCLUSION

We have developed a modified method for the decom-
position of Maxwell’s equations by transverse operator
eigenfunctions and we have applied this method to calcu-
lating the Cherenkov radiation fields in a rectangular wave-
guide. Our technique allows a rigorous full solution of the
electromagnetic wakefields generated by a relativistic
bunch moving along a rectangular dielectric-lined wave-
guide with nearly arbitrary dependence of the permittivity
on the transverse coordinates.

A method based on the first order transverse operator
has been previously applied to the analysis of Cherenkov
radiation in waveguides, but at the same time the applica-
tion of this method to transversely inhomogeneous
rectangular waveguides is not obvious because of the
problems of orthogonality between the components of
the electric and magnetic field vectors and the definition
of the bilinear form in L2 space.

In this study we used a modification of the transverse
operator method, where we considered the Sturm-Liouville
second order operator with an alternating sign weight
function. Consequently, the bi-orthogonality of the eigen-
functions as well as the similarity of the operator to a

self-adjoint operator made it possible to obtain a rigorous
and complete analytic solution for the eigenmodes and to
solve in the most general form the problem of Cherenkov
wakefield generation in a rectangular accelerating structure
with a composite dielectric loading. This formalism does
not require any assumptions on the self-Coulomb field of
the beam, and we did not use the mode decomposition for
the problem formulation and its subsequent solution.
Finally, using the transverse operator method, the modes
series for the solution is uniformly convergent.
The formalism described here was successfully applied

to the analysis of rectangular dielectric-lined structures
that were recently beam tested in experiments at the
Argonne (ANL/AWA) and Brookhaven (BNL/ATF) accel-
erator facilities.
The analytic solutions obtained here were implemented

in the RECTANGULAR code. The use of an analytic solutions
based code makes it independent of the frequency range
and the geometrical size of the structure. This ensures
fast and effective analysis compared to the use of other
standard numerical codes in the frequency range from
10 GHz to up 1 THz, which usually require massive
time consuming computations. In the Ka band frequency
range, we have carried out analytical simulations of wake-
fields excited in rectangular dielectric accelerating struc-
tures; using this method for the Argonne/AWA beam
parameters, we have analyzed a dielectric structure with
a rectangular cross section, in which accelerating gradients
higher than 100 MV=m can be attained. In the THz range,
the structures tested at the BNL/ATF accelerator were
considered and compared to experimental results.
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Q ¼ 70 pC and length 320 �m, Ref. [14] and Table I.
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APPENDIX

In this Appendix we demonstrate the main steps of the

proof that eigenfunctions of T̂E and T̂H operators form
Riesz basis sets in L2 space.

First of all, because of the symmetry of the system, the

analysis of the T̂E and T̂H operator properties can be
reduced to a simpler task. We consider operators
expanded in a Fourier series in the x coordinate.
This reduces the analysis task from two dimensions
(in the XY plane) to one dimension (only on the y axis)
with the additional parameter kx. Further, the symmetry
with respect to the origin of the y axis gives us the
opportunity to consider the reduced task on the interval

½0; c� only so that symmetric functions of T̂E and T̂H will
satisfy the Neumann condition at 0 and the corresponding
asymmetric functions to the Dirichlet condition at 0. After
rescaling the interval, it can be seen that the properties of

the T̂E and T̂H operators are the same as the properties of
the operator

Â ¼ ��

�
d2

dy2
� C

�
; (A1)

where � ¼ 1 for y 2 ½�1; 0� and � ¼ �� for y 2 ð0; 1�,
with the additional conditions on its domain fð�0Þ ¼
�fðþ0Þ, f0ð�0Þ ¼ �f0ðþ0Þ. At the points �1 for recon-

structing all parts of the T̂E and T̂H operators we need to
consider all combinations of conditions: Dirichlet-
Dirichlet, Neumann-Neumann, etc. However, this does
not affect the basis properties of eigenfunctions in
principle. For simplicity of calculation we consider here
the Dirichlet-Dirichlet conditions at the end of the inter-
val. Here we assume that �, �, �, C 2 R, C> 0
(although this method of proof will work for complex
parameters also).

The equivalent eigenvalue problem can be formulated as
follows:

��

�
d2f

dy2
�Cf

�
¼�f; fð�0Þ¼�fðþ0Þ;

f0ð�0Þ¼�f0ðþ0Þ; fð�1Þ¼fð1Þ¼0:
(A2)

The proof is divided into four steps.
(i) Basic analysis and asymptotes.—One can check by

direct calculation using root vectors formulas that all of them
are equal to zero. Thus, the problem (A2) does not have any
additional solutions except eigenfunctions that correspond
to eigenvalues. Proceeding to the limit of large eigenvalues,
one can determine the asymptotic eigenvalues as

�þ ¼ ðb1 þ �nÞ2 þ C;

�� ¼ ��

�
�b1 þ �

2
þ �n

�
2 � C:

(A3)

Here b1 is given by

b1 ¼
�1� i ���
1þ i ���

�
: (A4)

One can see that spectrum is purely real but not positive.
It consists of two branches. The first is purely positive and
the second is purely negative.
(ii) Partial Gram matrix.—The Gram matrix is

necessary to demonstrate the linear independence of the
eigenfunctions inside each branch. Using the asymptotic
eigenfunctions, one can build Gram matrices for each
branch of eigenvalues. These matrices are equivalent and
only one of them needs to be analyzed. We use the theorem
that if the Gram matrix is invertible then vectors it is built
from are linearly independent. A matrix that is similar to
the Gram matrix of one branch has the form

Gn;m ¼ Tn;m � c1Hn;m þ 
2; (A5)

where Gn;m is the element of the Gram matrix, Tn;m is the

element of the Toeplitz matrix, Hn;m is the element of the

Hilbert matrix;

Tn;m ¼ 1

n�m
; Hn;m ¼ 1

nþm
; (A6)

and 
2 is a Hilbert-Schmidt (compact) add-on, which can
be ignored, c1 is the constant that depends on initial
parameters.
Hilbert and Toeplitz matrices are noncompact matrices.

The matrix is invertible if its spectrum does not include
zero. Using the fact that the Gram matrix is a nonnegative
matrix in finite-dimensional space and then proceeding to
the limit of an infinite dimensional space, one can show
that

G � aT; (A7)

where a > 0 is a constant, and T is the Toelplitz
matrix. Using representation of Toeplitz matrix as an op-
erator of multiplication by a function on Hardy space,
one can show that T > 0. This implies the linear indepen-
dence of the eigenfunctions inside one branch or in other
words that each branch is a Riesz basis in its linear
envelope.
(iii) Angle between eigensubspaces.—The two branches

are linearly independent if the angle between eigensubspa-
ces is nonzero (i.e. the subspaces do not coincide) in the
limit n;m ! 1 (n and m are the indices of the first and
the second branch). For the proof we use the technique of
the Riesz projector and the fact that the Riesz projector is a

parallel projector. We consider the Riesz projector P̂ on
one eigensubspace calculated over the contour �1 which
surrounds only one branch. The inverse relation of the
projector’s norm bounds the sine of the angle between
the eigensubspaces:

j sin�j � 1

kP̂k : (A8)
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Thus, to ensure that the angle is not equal to zero
we should estimate the norm of this projector. This is
done by using an additional self-adjoint resolvent of

some operator B̂ and considering the difference P̂d be-

tween the resolvent of operator Â and B̂. Estimating the
norm of

P̂ d ¼
Z
�1

d�

�
1

I � �Â
� 1

I � �B̂

�
; (A9)

one can show that kP̂dk<1, which leads to the bounded-
ness of the projector and nonzero angle �.

(iv) Completeness.—For completeness we need to
show that the Riesz integral over the infinite contour
�2 which surrounds both branches is equal to the identity
operator. This can again be done using as a supportive
construction a self-adjoint resolvent and considering

only the difference between the resolvent of operator Â

and a self-adjoint operator B̂. In this case the Riesz
integral of the difference should vanish at the infinity
of the contour. This check can be made on any dense set
of functions, for example on functions that are finite
at y ¼ 0.

In (iii) and (iv) we suggest using the self-adjoint opera-

tor B̂ given by

��

�
d2f

dy2
�Cf

�
¼�f; fð�0Þ¼�fðþ0Þ;

f0ð�0Þ¼�1=�f0ðþ0Þ; fð�1Þ¼fð1Þ¼0:

(A10)

The results of the steps (i)–(iv) prove the statement
that eigenfunctions of the problem (A2) form a Riesz
basis in L2.
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