
Envelope model for passive magnetic focusing of an intense proton
or ion beam propagating through thin foils

Steven M. Lund* and Ronald H. Cohen†

Lawrence Livermore National Laboratory, Livermore, California 94550, USA

Pavel A. Ni‡

Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
(Received 20 January 2012; revised manuscript received 27 March 2013; published 23 April 2013)

Ion beams (including protons) with low emittance and high space-charge intensity can be propagated

with normal incidence through a sequence of thin metallic foils separated by vacuum gaps of order the

characteristic transverse beam extent to transport/collimate the beam or to focus it to a small transverse

spot. Energetic ions have sufficient range to pass through a significant number of thin foils with little

energy loss or scattering. The foils reduce the (defocusing) radial electric self-field of the beam while not

altering the (focusing) azimuthal magnetic self-field of the beam, thereby allowing passive self-beam

focusing if the magnetic field is sufficiently strong relative to the residual electric field. Here we present an

envelope model developed to predict the strength of this passive (beam generated) focusing effect under a

number of simplifying assumptions including relatively long pulse duration. The envelope model provides

a simple criterion for the necessary foil spacing for net focusing and clearly illustrates system focusing

properties for either beam collimation (such as injecting a laser-produced proton beam into an accelerator)

or for magnetic pinch focusing to a small transverse spot (for beam driven heating of materials). An

illustrative example is worked for an idealization of a recently performed laser-produced proton-beam

experiment to provide guidance on possible beam focusing and collimation systems. It is found that foils

spaced on the order of the characteristic transverse beam size desired can be employed and that envelope

divergence of the initial beam entering the foil lens must be suppressed to limit the total number of foils

required to practical values for pinch focusing. Relatively modest proton-beam current at 10 MeV kinetic

energy can clearly demonstrate strong magnetic pinch focusing achieving a transverse rms extent similar

to the foil spacing (20–50 �m gaps) in beam propagation distances of tens of mm. This is a surprisingly

optimistic result since placing many foils per characteristic beam radius, which one might expect to be

necessary to strongly attenuate the self-electric field, would likely result in excessive scattering and loss of

focusing from the current neutralization due to the beam propagating too far through solid metal. Results

from the envelope model are compared with particle-in-cell simulations to help clarify limits related to

envelope-model idealizations. Possible degradations of focusing in situations where strong halo can be

generated and where pulse duration is short are clarified.
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I. INTRODUCTION

Focusing of space-charge dominated proton and ion
beams is required in various applications, including intense
beam injectors derived from short pulse laser-illuminated
foils via target normal sheath acceleration (TNSA), radi-
ography, generation of beam-heated warm dense matter,
proton and ion-based fast ignition concepts, and medical
therapies [1–6]. Beams produced by TNSA processes have

comoving electrons which must be stripped while focusing

is provided if the beam is injected into a conventional beam

transport lattice for further acceleration and phase-space

manipulations. Such ‘‘collimation’’ procedures should be

simple and compact to enable future TNSA injectors for a

wide range of applications. These classes of focusing and

collimation applications are a substantial challenge due to

strong space-charge forces in the intense beams. To date,

active focusing techniques based on both applied solenoid

and quadrupole magnets and rf systems have been em-

ployed in beam focusing and collimation systems [7,8].

Such applied-focusing based systems have critical disad-

vantages including high beam losses due to chromatic

aberrations; often, small focal spot radii (& 50 �m) are

desired, requiring large and expensive magnet systems.
We analyze a structure in which net beam focusing can

be passively generated by the beam’s own self-magnetic

*smlund@llnl.gov
†rcohen@llnl.gov
‡pani@lbl.gov

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 16, 044202 (2013)

1098-4402=13=16(4)=044202(29) 044202-1 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevSTAB.16.044202
http://creativecommons.org/licenses/by/3.0/


field with no external fields applied. As an ion beam
propagates in vacuum it interacts with its own self-
generated defocusing radial electric field and focusing
azimuthal magnetic field. In vacuum, the electric defocus-
ing force is always stronger than the magnetic focusing
force, resulting in a net transverse expansion of the beam.
If the electrical force can be attenuated to the point where it
is weaker than the magnetic force by adding conducting
surfaces to induce image charges which cancel a sufficient
fraction of the beam self-field in the absence of the con-
ductors, then net focusing can occur. The approach exam-
ined here is to attenuate the radial electric field by allowing
the beam to propagate through a stack of thin metallic foils
separated by finite vacuum gaps. Because the tangential
electric field but not the tangential magnetic field vanishes
at the surface of a good conductor, the metal foils will serve
to suppress the electric field in the vacuum gaps while
leaving the magnetic field unaffected relative to the value
with no foils. This is schematically illustrated in Fig. 1
where a shaped, laser-illuminated foil produces a proton
beam by TNSA processes. The beam is then collimated
(comoving electrons blocked) and focused by a stack of
thin foils. As the beam fills the gap between foils, image
charges build up on the surfaces of the foils and generate an
image electric field that counteracts the vacuum electric
field of the beam in the absence of the foils. The thinness of
the foils suppresses eddy current effects while the foils can
simultaneously be thick enough to stop electrons with
much lower range than protons or ions to suppress unde-
sired ‘‘e-cloud’’ effects. The smaller the gap size, the
weaker the net electric field which interacts with the
beam, whereas the thin foils do not significantly alter
the beam current and the magnetic field produced by the
beam remains at its vacuum value. One expects that the gap
must be on the order of the characteristic transverse beam
extent to significantly attenuate the transverse electric
field. Thus, in focusing applications for small transverse
beam extent (possibly tens of micron radius), foil stacks
with very small gaps may be necessary. However, the foils
must have sufficient thickness to provide adequate material
strength, to be consistent with fabrication limits, and to be

able to stop electrons. Therefore, smaller gaps separating
the foils also result in the beams propagating more distance
through solid metal which can eventually lead to signifi-
cant reductions in beam energy and defocusing from scat-
tering. The fundamental question is how large a gap can be
employed to sufficiently attenuate the electric field while
mitigating such deleterious effects.
There are other practical constraints on the foils beyond

the issues outlined above. The radial extent of the foils
should be much larger than the characteristic transverse
beam radius. Although foil lenses can be single shot optics
for many applications, the foils must at least survive heat-
ing over the duration of the beam pulse from whatever
fraction of the beam energy is deposited in the foil, as well
as heating from electrons stopped in the foils. In addition to
limits imposed by mechanical strength needs and fabrica-
tion, the minimal foil thickness can also be limited by the
value necessary to stop energetic electrons (at least in the
first foil) which can be present from the injected beam
(e.g., beams produced by short pulse lasers in TNSA
applications) as well as ‘‘knock-on’’ electrons produced
by beam particles incident on the foils due to a Rutherford
scattering mechanism (production cross sections scale with
beam ion atomic number Zb and the foil conductor atomic
number Zfoil as Z2

bZ
2
foil making the issue much less for

protons than heavier ions) [9]. Aluminum is an obvious
choice for foil material since among good conductors it is
light (high beam range leading to less foil heating), low
atomic number Zfoil (less knock-on electrons), and
has favorable material properties for fabrication. Fewer
knock-on electrons diminishes the potential for partial
neutralization of the beam current which could attenuate
the magnetic focusing force. Another option is carbon
which is mechanically more robust but has worse conduc-
tivity and higher energy loss. Because the main purpose of
the foils is to attenuate the radial electric field, alignment
tolerances (tilts, offsets, distortions) are not anticipated to
be demanding insofar as neighboring foils do not touch.
Chemical etching processes have recently been demon-
strated at TU-Darmstadt [10,11] to fabricate stacks of
* 1 �m thick Al foils separated by gaps with * 1 �m
separating adjacent foils with & 10 mm characteristic
transverse extent. Many (hundreds to thousands) such foils
can be stacked with the necessary precision and stability
and spacing between adjacent foils can be variable. It is
also possible that a regular or irregular pattern of small
holes can be placed in foils to produce a mesh with a higher
ion transparency than a solid foil while not significantly
altering the electric-field attenuation relative to a solid
foil. Similarly, a lower density metal foam or a regular or
semi-irregular arrangement of fine wires could be used.
However, such a mesh may result in a detrimental partial
current neutralization because it may allow a significant
fraction of beam-generated electrons to pass through the
mesh. Alternatively, materials with strongly anisotropic

Laser

Thin Foil
Emitter

Stacked Thin Foil Lens

Proton Beam
Envelope

FIG. 1. Schematic of a thin-foil lens focusing a proton beam
generated off the back side of a shaped, thin foil illuminated by
an intense laser pulse. The beam-generated field azimuthal
magnetic field B� is focusing while the radial electric field Er

is defocusing.
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conductivity could be considered. Practical issues associ-
ated with the choice of foil parameters are analyzed in
more detail in Ref. [12]. The purpose of the present article
is primarily to systematically analyze the basic focusing
properties of the system.

Needed foil properties depend on details of the specific
application. For present-generation TNSA produced pro-
ton beams there may be significant energy spread and short
pulse duration [10,13–16]. For an illustrative example, we
provide estimates based on an idealized TNSA proton-
beam experiment analyzed in later sections with �400 A
of protons in a 4 ps pulse window about 10 MeV and a
broad energy spectrum and �50 �m spaced Al foils that
are �0:5 �m thick [10]. More details are provided in
Ref. [12]. In this case, the total proton energy deposited
over the full pulse is sufficient to evaporate several thin
foils. However, most of the deposited energy comes from
protons with energies less than, or of order of, the mean
beam energy (1–5 MeV). Hence, if the higher-energy
portion of the proton beam (�10 MeV) can be focused,
one can perform a foil transport experiment using this
energy group, before the more numerous lower-energy
protons arrive at the foils and damage them. Estimates
indicate that foils as thin as 0:5 �m are adequate to be
structurally stable, survive heating during the �10 MeV
portion of the pulse, and stop comoving electrons (few
hundred keV). Scattering is expected to contribute a small
angular beam divergence at each foil which can be part
mitigated by keeping the foils thin. In this idealized theo-
retical study centered on infinitesimally thin foils, scatter-
ing is neglected. The influence of finite scattering on
focusing properties (including influence on achievable
spot size) is being investigated and will be submitted for
publication [17]. A classical Drude-type model [18] can be
applied to estimate image charge response time from the
plasma frequency associated with conduction electrons in
the Al metal foils. This gives a �0:0003 ps response time
which is much more rapid than the 4 ps pulse duration and
the �1 ps transit time of a nominal 10 MeV particle
between the foils. Light propagation time across a
50 �m foil gap is of order 0.2 ps which suggests small
electromagnetic effects.

The idea to utilize thin, conducting foils to passively
focus a particle beam has been analyzed and experimen-
tally demonstrated for electrons [19–21]. For electrons,
semitransparent metal meshes are employed in place of
foils. Numerous schemes to focus ion beams using fine
conducting wires, meshes, and other structures to attenuate
the defocusing self-electric field and/or utilizing plasma
generated fields to neutralize or overwhelm defocusing
beam self-field components have been proposed. Many
of these were associated with studies in collective ion
acceleration [22] and documentation can be difficult to
obtain. Recently, foil focusing for heavy ions and protons
using the method outlined above has been proposed by
Logan [23] to focus a heavy ion beam to a small spot for
the proposed X-target [6] for heavy-ion fusion and various

fast ignition and warm dense matter applications. One of
the motivations of the present study is to derive a simple
and efficient theoretical model which can be applied to
guide experiments to verify passive foil focusing for both
protons and heavy ions. This should aid both carrying out
higher detail simulations and design of proof-of-principle
experiments to enable applications in both ion and proton
beam focusing to a small spot for targets and for beam
collimation for injection in an accelerator. Short pulse
laser-illuminated foils produce proton beams with very
low emittances, high enough energy, and high space-
charge intensity [24–27]. Such proton beams provide an
opportunity to test passive foil focusing on existing labo-
ratory systems. However, present systems typically also
have short pulse duration and large distribution spreads
which may need to be controlled for clear demonstration of
passive magnetic focusing. Electric-field attenuation pre-
dicted by the theory could also be experimentally tested on
intense, low-energy proton and ion beams propagating
through closely spaced semitransparent meshes.
An envelope model is derived under a set of simplifying

assumptions: the beam pulse is axially long relative to the
gap between foils and the spread in beam axial energy is
negligible. It is shown that the self-magnetic-focusing term
is independent of the radial charge distribution provided
the beam density profile varies slowly in the axial coordi-
nate. The self-electric defocusing force is calculated em-
ploying a Green’s function and is explicitly evaluated for
self-similarly evolving density profiles which evolve only
weakly in the axial coordinate between pairs of foils. Little
difference is found in the form of the defocusing force for
Gaussian and uniform radial charge-density profiles and
similarly small differences are expected for other reason-
ably smooth radial charge profiles. Provisions are included
in the model for augmented focusing by a superimposed
solenoidal field which can provide additional system flexi-
bility for tuning. Emittance measures are carefully ana-
lyzed to include in the proper form when solenoidal
focusing is employed. Terms in the envelope model clearly
illustrate where the magnetic focusing force is larger than
the electric defocusing force and the strength of the effect.
The model enables rapid evaluation of maximum gap size
between the foils to produce a small transverse beam spot
for magnetic pinch focusing or to maintain transverse
beam size for beam collimation and transport. An ideal-
ization of a recently performed short pulse laser driven
TNSA produced proton-beam experiment at the PHELIX
facility at GSI [10] is analyzed for an illustrative applica-
tion of the model. This experiment will be reported sepa-
rately. Results for a long pulse 10 MeV, 400 A proton beam

with initial transverse rms width hx2i1=2? � 200 �m shows

that several hundreds of �0:5 �m thick foils separated by
20–50 �m gaps should produce a strong, observable fo-
cusing effect for a viable proof-of-principle experiment
provided initial beam divergence can be limited. The en-
velope model helps clarify a critical sensitivity to initial
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beam divergence for viable experiments. Particle-in-cell
(PIC) simulations are applied with reference to this ex-
ample to help elucidate where envelope-model restrictions
may break down due to model idealizations including
evolution of the distribution and halo, short pulse duration,
and energy spread. It is found that short pulse duration
increases the focal distance when the initial beam length
becomes comparable to its radius, but does not appreciably
affect the minimum spot size, and the radial particle dis-
tribution evolves from the initially loaded shape in such a
way as to degrade (increase) somewhat the minimum spot
size. Regarding energy spread, simply spreading the parti-
cles in a finite-length monoenergetic beam over a finite
energy window degrades focusing due to beam spreading.
On the other hand, in the idealized modeling described
above, the current in the monoenergetic beam was chosen
to be about that in a 1 MeV window of a much broader
energy distribution. Simulations with such an extended
energy distribution (with a correspondingly larger total
current) show enhanced focusing relative to the corre-
sponding monoenergetic case, because of the magnetic
field contribution due to neighboring energy groups.

The organization of this paper is the following. In Sec. II
we overview the idealized geometry (Sec. II A) and sim-
plifying model assumptions (Sec. II B). Self-fields pro-
duced by the system consistent with the presence of the
conducting foils are evaluated in Sec. III for both magnetic
(Sec. III A) and electric (Sec. III B) components. These
results are used in Sec. IV to derive a statistical envelope
equation describing the evolution of the transverse beam
size. In this section, approximate transverse particle tra-
jectory equations are derived (Sec. IVA), which are then
averaged over the beam (Sec. IVB) to obtain reduced
model envelope equations. The envelope model predicts
(Sec. IVC) when self-magnetic focusing forces can over-
come the electric defocusing force attenuated by the foils
to allow passive focusing and can be applied to predict the
achievable beam spot in magnetic pinch focusing. An
illustrative application of the envelope model in Sec. V
demonstrates the utility of the envelope model in under-
standing beam evolution in the thin-foil lens. Particle-in-
cell simulations presented in Sec. VI are carried out under a
lesser degree of idealization and help quantify where the
envelope model can be trusted and deviations which might
be reasonably expected. Concluding discussions in
Sec. VII frame results presented.

II. GEOMETRYAND BEAM MODEL

The geometry of the foil system is specified (Sec. II A)
and modeling idealizations of the beam are outlined
(Sec. II B).

A. Geometry

The idealized geometry of the thin-foil transport lattice
is illustrated in Fig. 2. A beam of particles of charge q and

mass m propagates in the axial z direction. A sequence of
thin, equally spaced and perfectly conducting foils are
located at z ¼ const planes spaced an axial distance L
apart. We analyze the region between a pair of foils located
at z ¼ �L=2 and z ¼ L=2 which, for generality, are as-
sumed biased to potential � ¼ Vl ¼ const and � ¼ Vr ¼
const. (In later modeling we take Vl ¼ Vr ¼ 0, but it is
useful to retain these biases to apply results in later appli-
cations where they might be retained for electron sweep-
ing.) The particles are assumed to be sufficiently energetic
that the beam can penetrate many thin foils with negligible
loss in axial kinetic energy and negligible transverse scat-
tering. It is further assumed that the beam is both suffi-
ciently long to fill the axial space between several
successive foils and is long compared to its characteristic
transverse radius, and is nearly monoenergetic with axial
velocity Vb ¼ �bc ¼ const. Here, �b is the axial relativ-
istic factor of the beam and c is the speed of light in vacuo.
The axial velocity Vb ¼ �bc is related to the axial kinetic
energy Eb of the particles by Eb ¼ ð�b � 1Þmc2 with

�b ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

b

q
. For possible augmented beam focusing

and system tunability, we allow for a superimposed applied
solenoidal magnetic field Ba with

B a ¼ � 1

2

@Bz0ðzÞ
@z

ðx̂xþ ŷyÞ þ ẑBz0ðzÞ: (1)

Here, Bz0ðzÞ ¼ Ba
z ðx? ¼ 0; zÞ is the specified on-axis mag-

netic field of the solenoid. The solenoidal field can provide
additional beam focusing consistent with maintaining an
axisymmetric (@=@� ¼ 0) beam. The expression in Eq. (1)
allows axial fringe-field variation in Ba

z while retaining
terms consistent with linear beam optics [28,29].

Right Foil

Beam

Left Foil

FIG. 2. Axisymmetric beam between two, thin conducting
foils located at z ¼ �L=2. The foils are biased to potentials
� ¼ Vl and � ¼ Vr on the left and right.
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B. Beam model

We adapt a Vlasov model and the single-particle distri-
bution function fbðx;p; zÞ describing the beam in x-p
coordinate-momentum phase space with the axial coordi-
nate z used as the independent variable. The beam distri-
bution fb is constrained as follows. The beam charge
density �b ¼ q

R
d3pfb is axisymmetric (@=@� ¼ 0) and

fills the region between any two sets of foils with negligible

variation in z, i.e., �b ¼ �bðrÞ with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. We take

the total charge density of the system to be

� ’ ð1�F �Þ�bðrÞ: (2)

Here, F � ¼ const 2 ½0; 1� is a specified neutralization

fraction to allow for low-order modeling of partial neutral-
ization of the beam charge density by electrons which
might, for some choices of system parameters, be emitted
from or penetrate the foils. The axial beam velocity Vb ¼
�bc ¼ const further constrains the beam distribution
through Vb ¼

R
d3pvzfb=

R
d3pfb with vz the axial par-

ticle velocity. The beam velocity Vb ¼ �bc is set consis-
tently with the axial particle energy Eb ¼ ð�b � 1Þmc2.
The beam line charge

� ¼ 2�
Z 1

0
drr�bðrÞ ¼ const; (3)

or equivalently the beam current I ¼ �bc�, is regarded as
specified. The beam current density is consistently set by
Jb ’ ẑJbz with Jbz ¼ q

R
d3pvzfb ¼ �bc�b. We take the

total current density of the system to be

J ’ ẑð1�F JÞ�bc�bðrÞ: (4)

Here, F J ¼ const 2 ½0; 1� is a specified neutralization
fraction to allow for low-order modeling of partial neutral-
ization of the beam current density by electrons; in general
F J � F �. Scattering of ions by interactions with other

ions, electrons, material in the foils, or neutral species are
all neglected.

We define a transverse ( ? ) statistical average over the
beam distribution fbðx;p; zÞ by

h� � �i? �
R
d2x?

R
d3p � � � fbR

d2x?
R
d3pfb

; (5)

where x? ¼ x̂xþ ŷy denotes the transverse coordinate. In
such averages, we take the functional form of the beam
charge density �bðrÞ ¼ q

R
d3pfb to be fixed. However,

transverse statistical averages are allowed to evolve in z
due to characteristic scale lengths in the functional form of
�b evolving. This evolution is consistent with conservation
of system line charge � ¼ const under the influence of
focusing self-magnetic fields and defocusing self-electric
fields generated by the beam and electrons in the presence
of the foils as well as any applied magnetic field Ba.
Following an evaluation of system self-fields in Sec. III,
statistical envelope equations for the transverse rms-beam

width hx2i1=2? are derived in Sec. IV. Two forms of �b are

analyzed corresponding to Gaussian- and uniform-charge-
density beams with

�bðrÞ ¼ �

�

8>>>><
>>>>:

1
2	2

x
e�ðr2=2	2

xÞ; Gaussian;8<
:

1
r2
b

; 0 � r � rb;

0; rb < r;
uniform:

(6)

Here, 	x ¼ hx2i1=2? is the rms width in x of the Gaussian

beam and rb ¼ 2hx2i1=2? is the edge radius of the uniform

beam. Both 	x and rb are allowed to evolve in z. The
choice of Gaussian �b may be appropriate for a neutralized
intense beam near a laser-plasma source where a short
pulse laser beam typically has a Gaussian-distributed focal
spot and the expanding plasma sheath appears to produce
an approximately Gaussian beam [30,31]. Conversely, the
choice of uniform �b may be appropriate for an unneutral-
ized intense beam emerging from a linear transport channel
where Debye screening of the linear applied-focusing force
leads to an approximately uniform charge-density beam
[28,32,33]. The two density profiles are contrasted in
Fig. 3, where �b is plotted versus r for ‘‘rms-equivalent’’

profiles with equal line charge � and rms width hx2i1=2? .

This rms equivalency requires that rb ¼ 2	x.

III. SELF-FIELD SOLUTION

Magnetic (Sec. III A) and electric (Sec. III B) self-fields
produced by the beam and neutralizing electrons are cal-
culated under a quasistatic approximation consistent with
the presence of thin metallic foils. We assume that the
magnetic field is unaffected by the foils while the tangen-
tial electric field at the foil surfaces is reduced to near zero.
In the physical situation with small but finite-thickness
foils, this is equivalent to assuming good but not perfect
conductivity, so that the (azimuthal) magnetic field can

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

Gaussian

Uniform

FIG. 3. Scaled radial beam charge density �bðrÞ [Eq. (6)]
versus scaled radius r for Gaussian (black) and uniform

(red) beams. Shown for rms-equivalent profiles with hx2i1=2? ¼
	x ¼ rb=2.
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penetrate through finite-thickness foils during the beam’s
transit, while the electric field remains small within the
foils [34]. Longer beam pulses with relatively slow varia-
tion in self-fields generated should be more accurately
represented by this idealization. Fields are explicitly
evaluated for the Gaussian- and the uniform-charge-
density beam models presented in Sec. II B. Results are
checked against limiting forms amenable to simpler
analytic solution.

A. Magnetic field

We take the magnetic field B produced by the beam and
electrons to be related to a self-field vector potential A
by B ¼ r�A. Adopting the Coulomb gauge choice
r �A ¼ 0, the Maxwell equations describing the self-
magnetic field in a quasistatic approximation can be ex-
pressed as [34]

r2A ¼ ��0J: (7)

Here, �0 ¼ 4�� 10�7 Henry/m is the permeability of
free space. Taking J to be given by Eq. (4) and consistently
taking A ’ ẑAz, Eq. (7) is approximated by

r2Az ’ �ð1�F JÞ�0�bc�b: (8)

Because the thin foils do not influence the quasistatic
magnetic field, Eq. (8) is the same form as the vacuum
Poisson equation for the electrostatic potential �v pro-
duced by the unneutralized beam in the absence of the
foils (free space), i.e.,

r2�v ¼ ��b


0
: (9)

Here, 
0 is the permittivity of free space and�0
0 ¼ 1=c2.
Comparing Eqs. (8) and (9), we have

Az ’ ð1�F JÞ�b

c
�v; (10)

and the magnetic self-field B ¼ r�A is then

B ’ �̂B� ’ ��̂ð1�F JÞ�b

c

@�v

@r
: (11)

Integrating Eq. (9) once with respect to r and substituting
into Eq. (11) then gives

B� ’ ð1�F JÞ �b


0cr

Z r

0
d~r ~r �bð~rÞ: (12)

For the case of Gaussian- and uniform-charge-density
beams described by Eqs. (6) and (12) for B� can be
explicitly evaluated to show that

B� ’ ð1�F JÞ ��b

2�
0c

8><
>:
ð1=rÞ½1� e�r2=ð2	2

xÞ�; Gaussian;�
r=r2b; 0 � r � rb;

1=r; rb < r;
uniform:

(13)

These fields are plotted in Fig. 4 for rms-equivalent beams
(equal � and rms-beam radii) with rb ¼ 2	x. For the
uniform-density beam, the field is linear within (r � rb)
the beam and falls off as 1=r outside (rb � r) the beam. For
the Gaussian beam, there is no sharp beam edge, but the
field is approximately linear for small r and increases more
rapidly for small r than the uniform case due to the
equivalent beam density being higher for the Gaussian
case and approximately uniform in the core. For radii
well outside the core of the Gaussian beam (r 	 	x), the
field asymptotes with the same �1=r variation as for the
uniform beam.

B. Electric field

We model the self-electric fieldE produced by the beam
and electrons as electrostatic and take E ¼ �r� where
the potential � satisfies the Poisson equation

r2� ¼ � �


0
(14)

between two foils held at potentials� ¼ Vl ¼ const at z ¼
�L=2 (left foil) and � ¼ Vr ¼ const at z ¼ L=2 (right
foil) as sketched in Fig. 2. Using linear superposition, �
can be expressed as

� ¼ 1

2
ðVr þ VlÞ þ ðVr � VlÞ zLþ ð1�F �Þ�g; (15)

where �g is the solution to

r2�g ¼ ��b


0
(16)

subject to �g ¼ 0 on the foils.

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

Uniform

Gaussian

FIG. 4. Scaled self-magnetic field B� [Eq. (13)] versus scaled
radial coordinate r for beams with Gaussian (black) and uniform
(red) charge density. Shown for rms-equivalent distributions with

hx2i1=2? ¼ 	x ¼ rb=2.
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Equation (16) for �g can be formally solved as [34]

�g ¼ 1

4�
0

Z L=2

�L=2
d~z
Z

d2~x?�bð~xÞGðx; ~xÞ; (17)

where Gðx; ~xÞ is the Dirichlet Green’s function satisfying

r2Gðx; ~xÞ ¼ �4��ðx� ~xÞ (18)

with Gðx; ~xÞ ¼ Gð~x;xÞ and Gðx; ~xÞjz¼�L=2 ¼ 0. In

Eq. (18) �ðxÞ ¼ �ðxÞ�ðyÞ�ðzÞ, where �ðxÞ represents the
usual Dirac-delta function in one dimension. An explicit
representation for G can be calculated in a convenient
expanded form as [34]

Gðx; ~xÞ ¼ 2
X1

n¼�1

Z 1

0
dkeinð��~�ÞJnðkrÞJnðk~rÞ

� sinh½kðL=2þ z<Þ� sinh½kðL=2� z>Þ�
sinhðkLÞ : (19)

Here, i � ffiffiffiffiffiffiffi�1
p

, � ¼ tan�1ðy; xÞ is the azimuthal angle,
z>=z< denotes the greater/lesser of z and ~z, JnðxÞ is an
nth order ordinary Bessel function [35], and sinhðxÞ is the
hyperbolic sine function. Using Eq. (19) in Eq. (17), we
obtain

�g ¼ 1


0

Z 1

0

dk

k

coshðkL=2Þ � coshðkzÞ
coshðkL=2Þ J0ðkrÞ

�
Z 1

0
d~r ~r �bð~rÞJ0ðk~rÞ; (20)

where coshðxÞ is the hyperbolic cosine function. The radial
and axial contributions to the electric-field components can
be calculated as

�@�g

@r
¼ 1


0

Z 1

0
dk

coshðkL=2Þ � coshðkzÞ
coshðkL=2Þ J1ðkrÞ

�
Z 1

0
d~r ~r �bð~rÞJ0ðk~rÞ;

�@�g

@z
¼ 1


0

Z 1

0
dk

sinhðkzÞ
coshðkL=2Þ J0ðkrÞ

�
Z 1

0
d~r ~r �bð~rÞJ0ðk~rÞ:

(21)

Limiting forms of the field solution are useful for both
consistency checks of the Green’s function based expres-
sions in Eqs. (20) and (21) and for use in a scaling analysis
carried out in Sec. IV. First, for the case of small beam
aspect ratio where the characteristic transverse scale of the
beam r? is small relative to the foil separation L, one
expects that for z not close to the foils that

�g ’ �v; (22)

where �v is the solution to the vacuum Poisson equation
(9). Solving for �v then gives the expected limiting form
of the radial electric field

�@�g

@r
’ �

2�
0

8><
>:
ð1=rÞ½1�e�r2=ð2	2

xÞ�; Gaussian;�
r=r2b; 0�r�rb;

1=r; rb�r;
uniform;

(23)

for Gaussian and uniform charge-density beams with �bðrÞ
given by Eq. (6). Validity of these expressions requires
	x=L 
 1 and rb=L 
 1 for the Gaussian and uniform
cases. Next, we consider the opposite limit of large beam
aspect ratio where the foils are close together relative to the
characteristic transverse dimension r? of the beam. It is
shown in Appendix A using a power-series expansion, that
to leading order in ðL=r?Þ2 we have

�g ’ L2�bðrÞ
8
0

�
1� 4z2

L2

�
: (24)

This leading-order solution is consistent with merely ne-
glecting transverse derivatives (i.e., @

@r ¼ 0) in the Poisson

equation (16). The corresponding radial and axial field
components are

� @�g

@r
’ � L2

8
0

@�bðrÞ
@r

�
1� 4z2

L2

�
;

� @�g

@z
’ �bðrÞ


0
z:

(25)

From Eq. (25), the z-averaged radial electric field between
the foils is

�
Z L=2

�L=2

dz

L

@�g

@r
’� L2

12
0

@�b

@r

¼ �L2

12�
0

8<
:

r
2	4

x
e�r2=ð2	2

xÞ; Gaussian;
1
r2
b

�ðrb�rÞ; uniform;
(26)

for Gaussian- and uniform-density beams. Comparison of
the result in Eq. (26) for a Gaussian-density beam with
Green’s function results shows that the expanded form is
accurate to within 1% fractional error within the ‘‘core’’ of
the beam (taken to be 0 � r=	x � 3) for 	x=L > 7. For
uniform-density beams, the sharp beam edge complicates
accuracy estimates, though the sharp residual field local-
ized near the beam edge modeled by the delta function is
consistent with results presented below for the large
aspect-ratio radial field using the Green’s function expres-
sions. One can refine the uniform-beam result in Eq. (26)
by performing a boundary-layer analysis about the beam
edge; the result is a finite z-averaged radial electric field,
with a maximum value of order L=ð12�
0r2bÞ in a bound-

ary layer of width of order L. (These estimates are con-
sistent with exact results later presented in Fig. 5.)

In Sec. IV, we employ the z average of
�@�g

@r between the

foils to simplify the envelope model derived. Averaging the
Green’s function results in Eq. (21) gives
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�
Z L=2

�L=2

dz

L

@�g

@r
¼ 1


0

Z 1

0
dk

�
1� 2

kL
tanhðkL=2Þ

�
J1ðkrÞ

Z 1

0
d~r ~r �bð~rÞJ0ðk~rÞ;

�
Z L=2

�L=2

dz

L

@�g

@z
¼ 0;

(27)

where tanhðxÞ ¼ sinhðxÞ= coshðxÞ. For Gaussian- and uniform-density beams with �bðrÞ given by Eq. (6), we calculate

Z 1

0
d~r ~r �bð~rÞJ0ðk~rÞ ¼ �

�

8<
:

1
2 e

�k2	2
x=2; Gaussian;

1
krb

J1ðkrbÞ; uniform;
(28)

and the average radial electric field in Eq. (27) reduces to

�
Z L=2

�L=2

dz

L

@�g

@r
¼ �

�
0

8><
>:

1
2

R1
0 dk

h
1� 2

kL tanhðkL=2Þ
i
e�k2	2

x=2J1ðkrÞ; Gaussian;

1
rb

R1
0

dk
k

h
1� 2

kL tanhðkL=2Þ
i
J1ðkrbÞJ1ðkrÞ; uniform:

(29)

In Fig. 5, the z-averaged radial field in Eq. (29) is plotted as
a function of r for Gaussian- and uniform-density beams
for families of beam radius to foil spacing aspect ratio
(characteristic transverse beam extent to foil spacing).
The aspect ratio is measured by 	x=L and rb=L for
Gaussian- and uniform-density beams, respectively.

Small aspect-ratio limit results from Eq. (23) plotted agree
well with curves for small aspect ratios. Large aspect-ratio
results from Eq. (26) also agree well with the Gaussian-
beam plots but are not shown since they would be com-
pressed at the bottom range scale of the plots. For the
uniform charge-density beam, the field is nearly linear
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within the beam for small aspect ratios rb=L and becomes
progressively more nonlinear and peaked near the radial
edge of the beam as rb=L becomes larger. Gaussian-
charge-density results are qualitatively similar in scaling
with aspect ratio to the uniform-density beam results, but
the field is intrinsically nonlinear even for small aspect
ratio 	x=L due to the Gaussian form of the beam charge
density. Note that in both the Gaussian- and uniform-
density cases an aspect-ratio factor (	x=L and rb=L) is
included in the ordinate scale of the plot. This choice
allows inclusion of small aspect-ratio limit results on a
finite scale to better illustrate changes in radial field struc-
ture due to changes in relative foil spacing. Because of this
scale factor, care should be taken not to directly interpret
differences between curves in Fig. 5 as an attenuation
factor. The curves also have different nonlinear structure
for different aspect ratios. Therefore, differences between
curves cannot be interpreted in terms of a simple attenu-
ation factor. However, in Sec. IVB, a form factor
F 2 ð0; 1Þ (see Fig. 6) is derived consistent with nonlinear
effects which can be interpreted as an effective attenuation
factor applied to the vacuum radial electric field to obtain
the effect of the foils on decreasing the defocusing strength
on the statistical beam evolution.

IV. TRANSVERSE ENVELOPE MODEL

A transverse envelope model is derived for the statistical
size of the beam. First, equations of motion are derived for
the transverse particle trajectories (Sec. IVA). Then the
trajectory equations are averaged over the distribution of
particles within the beam (Sec. IVB) to obtain statistical
envelope equations for the transverse size of the beam.
Limits of the envelope equation are checked. Then the
envelope equations are applied (Sec. IVC) to clarify under

what conditions self-magnetic focusing can be stronger
than self-electric defocusing for pinch focusing with mini-
mal transverse spot size.

A. Particle trajectory equations

We examine the dynamics of a charged particle evolving
between two foils in the presence of beam produced mag-
netic and electric fields and possibly a superimposed sole-
noidal magnetic field. Results can be applied anywhere in a
long stack of foils by making appropriate axial translations.
For present purposes, the beam self-electric field E and the
self-magnetic field B are first only assumed to be consis-
tent with an axisymmetric beam in the paraxial approxi-
mation, but we will later apply the field solutions derived in
Sec. III. Linear focusing components of a superimposed
solenoidal magnetic field Ba consistent with Eq. (1) is
included. The particle is considered relatively energetic
so we neglect changes in axial kinetic energy from
penetrating the foils as well as any applied electric field
resulting from the presence of any foil biases [i.e.,
jqðVl � VrÞj=Eb 
 1], as well as the longitudinal compo-
nent of the self-electric field produced by the beam
between the foils. Neglecting scattering in the foils, the
transverse particle trajectory equation can then be ex-
pressed within the paraxial approximation as [28]

x00
? ’ q

m�b�bc
ẑ� Ba

? þ qBa
z

m�b�bc
x0
? � ẑ

þ ð1�F JÞ � q

m�bc
2

@�v

@x?

� ð1�F �Þ q

m�b�
2
bc

2

@�g

@x?
: (30)

Here and henceforth, primes denote derivatives with
respect to z (i.e., 0 ¼ d

dz ). Note in Eq. (30) that

the coefficients of the self-field terms for magnetic focus-

ing / @�v

@x?
and for electric defocusing / @�g

@x?
differ by a

factor of 1=�2
b.

If there is an applied solenoidal magnetic field [see
Eq. (1)] with Bz0 � 0, the axisymmetric beam will rotate
about the z axis due to the cross-coupled form of the
equation of motion (30). In this case Eq. (30) can be
interpreted in a rotating Larmor frame (see Appendix B)
to reduce to the uncoupled form

x 00
? þ �x? � ð1�F JÞ q

m�bc
2

@�v

@x?

’ �ð1�F �Þ q

m�b�
2
bc

2

@�g

@x?
: (31)

Here,

� �
�

Bz0

2½B��
�
2 ¼

�
qBz0

2m�b�bc

�
2

(32)
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FIG. 6. Form factor F [Eq. (49)] versus aspect ratio

hx2i1=2? =L ¼ 	x=L ¼ rb=ð2LÞ for Gaussian (black) and uniform

(red) charge-density beams. rms-equivalent beams with 	x ¼
rb=2 are plotted to allow direct comparison of the two cases.
Limiting form results [Eq. (51)] valid for large aspect ratios with
	x=L ¼ rb=ð2LÞ 	 1 are plotted (black, dashed). The large
aspect-ratio curve applies both to Gaussian and uniform beams.
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is the applied-focusing function where ½B�� ¼ m�b�bc=q
denotes the particle rigidity. The Larmor-frame transfor-
mation does not influence the transverse size of the
axisymmetric beam measured by hx2i? ¼ hr2i?=2. Note
that Eq. (31) is trivially identical to Eq. (30) in laboratory-
frame variables when Bz0 ¼ 0 (giving Ba ¼ 0 and � ¼ 0).

B. Envelope equations

To derive statistical envelope equations for the trans-

verse size of the beam, we first take z derivatives of hx2i1=2?
and apply the Larmor-frame equation of motion (31)
to obtain

d

dz
hx2i1=2? ¼ hxx0i?

hx2i1=2?
;

d2

dz2
hx2i1=2? ¼ hxx00i?

hx2i1=2?
þ "2x;rms

hx2i3=2?
:

(33)

Here,

"x;rms � ½hx2i?hx02i? � hxx0i2?�1=2 � 0 (34)

is the transverse rms emittance measured in the Larmor
frame, which provides a statistical measure of the trans-
verse phase-space area of the beam [28,32,36,37]. If there
is no solenoidal magnetic field (Bz0 ¼ 0), then the implicit
Larmor-frame x–x0 variables employed (see Appendix B)
become the usual x–x0 laboratory-frame variables and
Eq. (34) is then the familiar expression for the rms emit-
tance. The beam canonical angular momentum can be
expressed in terms of laboratory-frame variables as

P��hxy0 �yx0i?þ qBz0

2m�b�bc
hx2þy2i?¼ const (35)

and is invariant (see Appendix B) for any axisymmetric
beam evolution. For the case of no solenoidal magnetic
field (Bz0 ¼ 0) and a beam distribution with no imposed
macroscopic rotation about the z axis, P� ¼ 0. It is shown
in Appendix B that if there is an axial magnetic field
(Bz0 � 0) and/or finite-beam canonical angular momen-
tum (P� � 0), then Eq. (33) can be applied in laboratory-
frame variables if the rms emittance (34) is replaced
according to

"2x;rms ! "2x;rms � 1
4hr2�0i2? þ 1

4P
2
� (36)

for proper laboratory-frame interpretation. The term re-
lated to hr2�0i2? on the right-hand side of Eq. (36) is

associated with subtraction of the axial flow velocity (see
Appendix B) so that a correct phase-space measure is
obtained when Bz0 � 0 and/or P� � 0.

We assume that "x;rms ’ const for the case of Bz0 ¼ 0
and P� ¼ 0 and the substitution in Eq. (36) is likewise
conserved when Bz0 � 0 and/or P� � 0. These conserva-
tions of emittance measures can be shown to strictly hold
only when transverse forces acting on the particles are

linear [28,38]. In the present model, the space-charge force
generally contains nonlinear terms. However, for short
propagation distances in z, emittance evolutions can be
limited. Moreover, in some systems the emittance term
can be negligibly small relative to other terms in the mo-
ment equations rendering any modest evolution in emit-
tance insignificant in determining the beam size outside of
situations where the beam is focused to a spot with small

hx2i1=2? . In more elaborate analysis, any significant evolu-

tion of "x;rms can be modeled by more advanced theory [21]

or simulations (see Sec. VI) and applied in the reduced
model to improve accuracy. Formulas are given in
Appendix C to estimate the beam emittance and canonical
angular momentum in situations likely to be encountered
in many applications.
We insert the x-component particle equation of motion

from Eq. (31) in Eq. (33), and apply system axisymmetry

to express hx @�j

@x i? ¼ 1
2 hr @�j

@r i? with j ¼ g; v. This gives

d2

dz2
hx2i1=2? þ �ðzÞhx2i1=2? � ð1�F JÞ q

2m�bc
2

hr @�v

@r i?
hx2i1=2?

þ ð1�F �Þ q

2m�b�
2
bc

2

hr @�g

@r i?
hx2i1=2?

� "2x;rms

hx2i3=2?
¼ 0: (37)

First, we simplify the magnetic focusing term / hr @�v

@r i?
in Eq. (37). For any axisymmetric beam charge distribution
�bðrÞ, it follows from the vacuum Poisson equation (9) that�
r
@�v

@r

�
?
¼2

�
x
@�v

@x

�
?
¼� �

4�
0
¼� I

4�
0�bc
: (38)

Here, � ¼ q
R
d2x?

R
d3pfb ¼ I=ð�bcÞ is the line charge

of the beam at axial coordinate z. Equation (38) is a
well-known result in the transverse physics of unbunched
beams [28,39].

Next, to simplify the electric defocusing term / hr @�g

@r i?
in Eq. (37), we assume that the axisymmetric beam charge
density �bðrÞ is known and apply the Green’s function

formulation results in Sec. III B for � @�g

@r . In this proce-

dure, we allow �bðrÞ to vary slowly in z as the transverse

size of the beam measured by hx2i1=2? evolves. It is conve-

nient to define a dimensionless ‘‘form factor’’

FðzÞ � � 4�
0
�

�
r
@�g

@r

�
?

(39)

to express the value of the moment. For closely spaced foils

(i.e., L small), the electric field � @�g

@r varies almost para-

bolically in z from zero at the left and right foils at z ¼
�L=2, to a maximum value between the foils at z ¼ 0.
This results in a rapid z variation of the electric defocusing
force. Because a typical particle moves little radially while
traversing between two closely spaced foils, we take a
multiscale approximation and replace F by its z-averaged
value between the foils with
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F ’ � 4�
0
�

�
r
Z L=2

�L=2

dz

L

@�g

@r

�
?
: (40)

Equation (40) constitutes a continuous defocusing
approximation.

To reduce Eq. (37), we apply Eq. (38) in the magnetic
focusing term and Eq. (39) [or alternatively, Eq. (40)] in the
electric defocusing term and obtain the envelope equation

d2

dz2
hx2i1=2? þ �ðzÞhx2i1=2?

þ �2
b

4
½ð1�F JÞ�2

b � ð1�F �ÞF� Q

hx2i1=2?

� "2x;rms

hx2i3=2?
¼ 0: (41)

Here,

Q � q�

2�
0m�3
b�

2
bc

2
¼ qI

2�
0m�3
b�

3
bc

3
¼ const (42)

is the usual dimensionless perveance fromaccelerator physics
for the beam in the absence of neutralizing electrons
[28,36,37], and

F ¼ 4�

�

Z 1

0
dk

coshðkL=2Þ � coshðkzÞ
coshðkL=2Þ hrJ1ðkrÞi?

�
Z 1

0
drr�bðrÞJ0ðkrÞ

’ 4�

�

Z 1

0
dk

�
1� 2

kL
tanhðkL=2Þ

�
hrJ1ðkrÞi?

�
Z 1

0
drr�bðrÞJ0ðkrÞ

(43)

is the simplified form factor obtained (first line, exact

form) by using Eq. (21) for � @�g

@r including full z varia-

tion, and (second line, in approximate form) using

Eq. (27) for �RL=2
�L=2

dz
L

@�g

@r in the continuous defocusing

approximation. The form factor F is bounded by 0 � F �
1 and can be interpreted as an effective attenuation factor:
the expression of the electric defocusing term in the ab-
sence of foils (i.e., in vacuum) should be multiplied by F
to account for the attenuation of the defocusing strength
due to the foils. For the fixed functional form
of the beam charge density �bðrÞ that we employ [e.g.,
Eq. (6)], F can be expressed as a function of an aspect-
ratio parameter formed from the parameter of dimension
length used to set the transverse extent of �bðrÞ divided by
L. Although the z-varying expression for F is derived for a
reference region between two particular foils, it can be ap-
plied anywhere in z within the foil stack by appropriately
shifting the z location of �g. Finite-thickness foils can be

incorporated by inserting appropriate length zero-field

regions where
�@�g

@r ¼ 0 within the foils. For the case of

the continuous defocusing approximation, the expression
for F in the second line of Eq. (43) has no explicit depen-
dence on z and, provided the foil spacing L remains con-
stant, this expression can be applied throughout the lens.
Before explicitly calculating the form factor F for

Gaussian and uniform choices of �bðrÞ to fully specify
the envelope model, it is instructive to interpret the terms

in the envelope equation (41). First, �ðzÞhx2i1=2? repre-

sents the effect of linear applied-focusing forces from
any solenoid magnetic field applied to the system with
the focusing function �ðzÞ specified by Eq. (32).

The term ð�b�bÞ2
4 ð1�F JÞ Q

hx2i1=2?
represents self-magnetic

(z-pinch-type) focusing. The form of this term is inde-
pendent of the specific form of �bðrÞ and becomes

stronger as the transverse rms-beam width hx2i1=2? be-

comes smaller and therefore constitutes a ‘‘pinching
force’’ which within the paraxial approximation would
focus the beam to a vanishingly small spot in the ab-
sence of other defocusing forces. However, the electric

defocusing term � �2
b

4 ð1�F �Þ QF

hx2i1=2?
and the defocusing

emittance term � "2x;rms

hx2i3=2?
(see following analysis) both

become larger than the magnetic focusing term and
ultimately limit the reduction of transverse rms-beam

extent as hx2i1=2? becomes sufficiently small. The relative

strength of the magnetic focusing term is larger than the
electric defocusing term when

�b >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�F �

1�F J

F

s
: (44)

Further clarification on the scaling of F and the electric
defocusing term for explicit choices of beam charge
density �bðrÞ is made below. Even when Eq. (44) is
initially satisfied, the defocusing emittance term can

limit the size of the pinch focused spot in hx2i1=2? for

any finite "x;rms > 0, because the 1=hx2i3=2? variation of

the emittance term will eventually dominate the

1=hx2i1=2? variation of the magnetic focusing term as

the rms-beam width hx2i1=2? decreases.

For �b corresponding to the case of a Gaussian-charge-

density beam in Eq. (6), hx2i1=2? ¼ 	x and Eq. (41) can be

denoted as

d2

dz2
	xþ�ðzÞ	x

þ�2
b

4
½ð1�F JÞ�2

b�ð1�F �ÞF� Q	x

�"2x;rms

	3
x

¼0: (45)

For �b corresponding to the case of a uniform-charge-

density beam in Eq. (6), hx2i1=2? ¼rb=2 and the rms-

envelope equation can be equivalently expressed as
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d2

dz2
rb þ �ðzÞrb

þ �2
b½ð1�F JÞ�2

b � ð1�F �ÞF�Qrb �
"2x
r3b

¼ 0; (46)

where

"x � 4"x;rms (47)

denotes the usual ‘‘rms-edge emittance.’’ To finish the
envelope model descriptions for Gaussian- and uniform-
charge-density beams, the form factor F should be calcu-
lated. Using Eq. (28) and the moment

hrJ1ðkrÞi? ¼
8<
: k	2

xe
�k2	2

x=2; Gaussian;
2
k J2ðkrbÞ; uniform;

(48)

the continuous defocusing expression for F in Eq. (43) can
be reduced to a single integral with

F ¼
8><
>:
2ð	x=LÞ2

R1
0 dKK

h
1� 2

K tanhðK=2Þ
i
e�K2ð	x=LÞ2 ; Gaussian;

8
ðrb=LÞ

R1
0

dK
K2

h
1� 2

K tanhðK=2Þ
i
J1
	
K rb

L



J2
	
K rb

L



; uniform:

(49)

Here, we employ K � kL as a dimensionless integration
variable to better illustrate the dependence of F on the
aspect-ratio parameters 	x=L and rb=L. Similar steps can
be applied to obtain reduced Gaussian and uniform-beam
expressions for F including full z variation. For specified
�b, L, �ðsÞ,Q, and "x;rms, Eqs. (45) and (49) can be applied
to numerically solve for the evolution of 	xðzÞ for a
Gaussian-charge-density beam from specified initial
(z ¼ zi) values 	xðziÞ ¼ 	xi and

d	x

dz ðziÞ ¼ 	0
xi to model

the evolution of the transverse beam size. To efficiently
implement this numerical procedure, the Gaussian form
factor F in Eq. (49) can be precalculated as a function of
	x=L on a grid over an adequate range and then F can be
efficiently calculated to sufficient accuracy using interpo-
lation to carry out the integrations without many evalu-
ations of the form factor integral over K. Analogous
comments apply to application to Eqs. (46) and (49) to
model the evolution of rb for a uniform-density beam from
specified initial conditions rbðziÞ ¼ rbi and

drb
dz ðziÞ ¼ r0bi.

Note that if 	x ! rb=2 is substituted in Eq. (45) and
"2x ¼ 16"2x;rms is applied, then the uniform-beam envelope
equation (46) is obtained. Thus, for rms-equivalent beams
with hx2i1=2? ¼ 	x ¼ rb=2, all differences between the
Gaussian- and uniform-beam envelope equations are con-
tained in the form factor F.

The form factor F [Eq. (49)] in the continuous defocus-
ing approximation is plotted in Fig. 6 as a function of the
beam aspect ratio for Gaussian- and uniform-density
beams. The curves are shown superimposed for rms-
equivalent beam parameters with 	x ¼ rb=2. Note that
there is comparatively little difference between the two
curves. The maximum deviation of F between the
Gaussian- and uniform-rms-equivalent beams is 0.0157 at
	x ¼ rb=2 ¼ 0:345. Differences in rms-equivalent
Gaussian- and uniform-beam values of F are very small
for both small and large aspect ratios. Because all differ-
ences between rms-equivalent beams are contained in the
form factor F, only relatively small differences are ex-
pected between the Gaussian- and uniform-beam evolution
models if they are applied with proper rms equivalency on

the initial conditions and parameters. It is reasonable to
expect that a wide variety of other rms-equivalent charge-
density functions �bðrÞ which are monotonic in r [i.e.,
d�bðrÞ
dr � 0] and reasonably similar in radial profile should

produce relatively close values of form factor F. In this
regard, it is reasonable to expect the envelope evolution
to be relatively insensitive to the details of the distribu-
tion when the emittance "x;rms is nearly constant or negli-
gibly small.
It is further instructive to examine limits of the form

factor F. First, for small aspect ratios with 	x=L 
 1 or
rb=L 
 1 it can be shown using arguments analogous to
those employed in Eq. (38) that F ! 1 regardless of the
beam density profile. In this limit, there is no difference
between the rms-equivalent Gaussian- and uniform-beam
cases and for an unneutralized beam with F � ¼ F J ¼ 0,
the magnetic and electric terms combine with
�2
bð�2

b � FÞ ¼ �1 and the uniform-beam envelope equa-
tion (46) reduces to

d2

dz2
rb þ �ðzÞrb � Q

rb
� "2x

r3b
¼ 0: (50)

Equation (50) can be recognized as the familiar envelope
equation describing an unbunched, uniform-density beam
focused in an applied solenoidal magnetic field including
space-charge and emittance defocusing forces [28,36,37].
This reduction to the free-space form in Eq. (50) can be
shown to be independent of the transverse beam charge
density for reasons analogous to those discussed in obtain-
ing Eq. (38).
In the opposite limit of a large aspect-ratio beam with

	x=L 	 1 or rb=L 	 1, the limiting form of

�RL=2
�L=2

dz
L

@�g

@r in Eq. (26) can be applied to show that

the form factor expression in Eq. (43) in the approximation
of continuous defocusing reduces to

F ’ L2

3

8><
>:

1
4	2

x
; Gaussian;

1
r2
b

; uniform;
(51)
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for the Gaussian- and uniform-charge-density cases.
Equation (51) is formally valid for 	x=L 	 1 and rb=L 	
1 in the Gaussian and uniform cases. Numerical tests show
agreement to within 5% fractional difference for 	x=L >
1:97 and rb=L > 9:96 for the Gaussian and uniform cases,
but results break down rapidly for smaller aspect ratios (see
Fig. 6). For beams with rms-equivalent aspect ratios with

hx2i1=2? ¼ 	x ¼ rb=2, note that the large aspect-ratio limit

of F given by Eq. (51) is exactly equal for Gaussian and
uniform-density beams with F ¼ L2=ð12hx2i?Þ. From this
result, the envelope equation (41) for either Gaussian- or

uniform-density beams reduces for hx2i1=2? =L 	 1 to

d2

dz2
hx2i1=2? þ �ðzÞhx2i1=2? þ �2

b�
2
b

4
ð1�F JÞ Q

hx2i1=2?

� ð�2
b=48Þð1�F �ÞL2Qþ "2x;rms

hx2i3=2?
¼ 0: (52)

This result explicitly shows that insofar as the aspect-ratio
limit is maintained, the electric defocusing term with

�1=hx2i3=2? variation becomes stronger than the magnetic

focusing term with �1=hx2i1=2? variation for sufficiently

small rms extent hx2i1=2? . Note that the electric defocusing

term in Eq. (52) has the same �1=hx2i3=2? variation as the

defocusing emittance term so the electric defocusing
appears analogous to an emittance term for large aspect-
ratio beams.

C. Requirements for magnetic pinch focusing

A necessary condition to achieve magnetic pinch focus-
ing with a possibly dramatically smaller transverse beam
spot is that the magnetic focusing force must be larger than
the electric defocusing force. The condition for this re-
quirement is given by Eq. (44). Beam energies sufficiently
high to satisfy this criterion can be focused to a smaller
transverse spot size even in the absence of externally
applied-focusing forces (� ¼ 0). The strength of the focus-
ing is dictated by the values of the beam perveance Q and
any neutralization factors F � � 0 and F J � 0. Larger Q

for a given beam kinetic energy produces stronger focus-
ing, which requires less propagation distance in z and less
foils to focus to a reduced spot. However, whether there is
net focusing or not is independent of Q. In the continuous
defocusing approximation, the form factor F occurring in
the pinch focusing condition (44) depends only on the
beam aspect ratio, i.e., the transverse beam size relative
to the foil separation. In Fig. 7(a), Eq. (49) is applied for
the form factor in Eq. (44) to plot the minimum value of�b

for which there is net focusing for an unneutralized beam
(F � ¼ F J ¼ 0) as a function of beam aspect ratio for rms-

equivalent Gaussian- and uniform-charge-density beams
(i.e., 	x ¼ rb=2). The results in Fig. 7(a) are plotted for
protons in Fig. 7(b) in terms of the minimum proton kinetic

energy Eb ¼ ð�b � 1Þmc2 for focusing. Note that there is
little difference between the curves for the Gaussian and
uniform cases. For beams with electron neutralization,
charge neutralization (F � > 0) reduces the critical value

of �b, whereas current neutralization (F J > 0) increases
the critical �b. Beams with initial aspect ratios satisfying
the bound will be focused. If the focusing coefficient is
strong (Q large), the reduction in transverse beam size
occurs rapidly within the lens until the aspect ratio be-
comes sufficiently small that the electric defocusing
force overwhelms the magnetic focusing (see examples
in Sec. V).
For the case of negligible electric defocusing corre-

sponding to closely spaced foils (L ! 0 and F ! 0), no
external solenoidal focusing (� ¼ 0), and negligible beam
emittance ["x;rms ! 0; this limit implicitly includes any

system P� via the replacement in Eq. (36)], the rms-
envelope equation (41) reduces to
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FIG. 7. (a) Minimum value of beam beta (�b) for the magnetic
focusing term to be larger than the electric defocusing term

plotted as a function of beam aspect ratio hx2i1=2? =L ¼ 	x=L ¼
rb=ð2LÞ for Gaussian (black) and uniform (red) charge-density

beams. rms-equivalent beams with hx2i1=2? ¼ 	x ¼ rb=2 are

plotted to allow direct comparison of the two cases and no
neutralization is assumed (F � ¼ F J ¼ 0). (b) Expanded scale

results for protons expressed in terms of the minimum kinetic
energy Eb ¼ ð�b � 1Þmc2.
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d2

dz2
hx2i1=2? þ Qeff

hx2i1=2?
¼ 0; (53)

where

Qeff � ð�b�bÞ2
4

ð1�F JÞQ (54)

denotes an effective perveance. In this idealized situation
modeled within the paraxial approximation (i.e., changes
in �b due to possibly large focusing angles neglected) with
no electric defocusing force or emittance, the magnetic
focusing force will ultimately ‘‘pinch’’ the beam to a

zero rms-extent focal spot (i.e., hx2i1=2? ! 0; see example

solutions in Sec. V). Such a limiting pinch cannot be
achieved in the laboratory for a number of reasons. First,
the limit L ¼ 0 corresponds to the beam propagating
through solid metal and mobile electrons in the metal
may neutralize the beam current reducing the magnetic
focusing force leading to reduced Qeff . Moreover, finite-
beam emittance, nonparaxial particle dynamics, and other
effects may also limit achievable spot size. Nevertheless,
the idealization of taking L ¼ 0 within the context of a
model appropriate for finite L to remove the defocusing
electric term while retaining the magnetic focusing term
serves to clarify limits to obtainable decreases in the
propagation distance to the spot as the foil spacing L
becomes smaller. Equation (53) can be integrated using
the conserved envelope Hamiltonian (see Appendix D) to

show that an initial (z ¼ zi) beam with 	xi ¼ hx2i1=2? jz¼zi

and 	0
xi ¼ d

dz hx2i1=2? jz¼zi will reach a pinched focal spot

with hx2i1=2? ¼ 0 at z ¼ zf with

zf�zi¼
ffiffiffiffiffiffiffiffiffiffiffi
�

2Qeff

s
exp

�
	02

xi

2Qeff

�
	xi

�
1þsgnð	0

xiÞerf
� ffiffiffiffiffiffiffiffiffiffiffi

	02
xi

2Qeff

s ��
:

(55)

Here, erfðzÞ � 2ffiffiffi
�

p R
z
0 dte

�t2 denotes the error function

[35], and sgnðxÞ is a sign function defined by sgnðxÞ ¼ 1
for x � 0 and sgnðxÞ ¼ �1 for x < 0. Note that Eq. (55)
applies to any radial charge distribution (not necessarily

Gaussian) and we employ 	x ¼ hx2i1=2? for notational

convenience. For the special case of an initial beam with
	0

xi ¼ 0, Eq. (55) reduces to

zf � zi ¼ 1

�b�b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ð1�F JÞQ

s
	xi: (56)

These results show that higher perveanceQ results in more
rapid focusing and provide a simple lower bound estimate
of the characteristic propagation distance to focus in more
realistic situations (see examples in Sec. V).

The envelope Hamiltonian can provide a useful con-
straint to estimate the achievable focusing spot in a foil
lens in less idealized situations where a full pinch is not

achieved. Denoting 	x ¼ hx2i1=2? for any charge distribu-

tion (not necessarily Gaussian) for notational convenience,
the Hamiltonian of the rms-envelope equation (41) is

H ¼ 1

2
	02

x þ 1

2
�	2

x þQeff ln	x þ V þ "2x;rms

2	2
x

: (57)

Here, V is a potential associated with electric defocusing
forces which satisfies

� @V

@	x

¼ �2
b

4
ð1�F �ÞQ F

	x

: (58)

If � ¼ const (including zero corresponding to no solenoid
focusing) and the approximate z-independent form of the
form factor F is applied corresponding to continuous de-
focusing [the second form of F given in Eq. (43)], then
there is no explicit z dependence and H ¼ const. When
H ¼ const, the expression forH in Eq. (57) can be equated
between the initial beam with 	x ¼ 	xi and 	0

x ¼ 	0
xi at

z ¼ zi and the beam at the focal spot where 	x ¼ 	xf and

	0
x ¼ 0 at z ¼ zf to give an expression which can be

numerically solved for the rms-beam width at the focal
spot (	xf). For a Gaussian-charge-density beam with F

given by Eq. (49) Eq. (58) can be solved for V as

V ¼ �2
b

4
ð1�F �ÞQ

Z 1

0

dK

K

�
1� 2

K
tanhðK=2Þ

�
� e�K2ð	x=LÞ2 þ const: (59)

An analytical solution for V for a uniform-charge-density
beam can also be derived in terms of an equation based on a
hypergeometric function but is not particularly insightful.
For the special case of a full pinch focus which occurs with
L ! 0 and no electric focusing (giving V ¼ const) and
"x;rms ¼ 0, the Hamiltonian constraint can be applied with

	xf ! 0 to solve for the final pinch angle 	0
xf < 0. To

illustrate the method under less idealized situations, we
examine the case of a Gaussian beam satisfying the large
aspect-ratio limit 	x=L 	 1. Then the reduced form factor
expression in Eq. (51) can be applied to solve Eq. (58) as

V ¼ �2
b

96 ð1�F �ÞQ L2

	2
x
þ const. Using this result in Eq. (57)

for the Hamiltonian and equating the initial and final value
of the Hamiltonian then gives the constraint

1

2
	02

xi þ
1

2
�ð	2

xi � 	2
xfÞ þQeff ln

�
	xi

	xf

�

þ "2x;eff
2

�
1

	2
xi

� 1

	2
xf

�
¼ 0: (60)

Here,

"2x;eff � "2x;rms þ �2
b

48
ð1�F �ÞL2Q (61)

is an effective emittance which includes the effects of the
electric defocusing force for a large aspect-ratio Gaussian
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beam. Note that "x;rms can also include finite system ca-

nonical angular momentum through the replacement in
Eq. (36). Equation (60) is a transcendental equation which
can be numerically solved for 	xf to rapidly explore the

achievable spot size for specified system and initial beam
parameters. Results obtained will be accurate insofar as
both 	xi=L and	xf=L are sufficiently large where Eq. (51)

remains a good approximation.

V. EXAMPLE: APPLICATION OF THE ENVELOPE
MODEL TO AN IDEALIZED PROTON BEAM

Because little difference is found between the envelope
models for rms-equivalent beams with Gaussian- and
uniform-charge density derived in Sec. IV, we present an
illustrative example for the Gaussian case in this section
before analyzing ranges of variation possible if the distri-
bution is different at the end of the section. For simplicity,
we apply the continuous defocusing form of the form
factor F in Eq. (49) and thereby neglect the rapid z varia-
tion of F between foils. The large aspect limiting form of F
in Eq. (51) is not applied to avoid needing to consider
ranges where validity of the simpler limiting expression
breaks down in cases where the beam is strongly focused.
Because the focusing action of linear applied fields is well
understood in envelope models [28,36], we consider enve-
lope evolution in the absence of additional applied focus-
ing (� ¼ 0) which can be provided by a superimposed
solenoidal field. However, comments will be made on
situations where such additional focusing could be benefi-
cial. We only present envelope solutions with zero emit-
tance ("x;rms ¼ 0) and zero canonical angular momentum

(P� ¼ 0). This is assumed because our example is partially
motivated by laser-produced proton sources, which typi-
cally generates a nearly cold beam, implying negligibly
small emittance. Such beams are also usually produced
outside of an applied magnetic field, which implies zero
canonical angular momentum (i.e., P� ¼ 0, see
Appendix C). Moreover, neglecting emittance and angular
momentum more simply emphasizes effects due to the
relative balance of focusing magnetic and defocusing elec-
tric self-field forces acting on the beam—which is the
primary subject of this study. For simplicity, we consider
a fully unneutralized beam with F � ¼ F J ¼ 0. It is

straightforward to modify analysis to evaluate the impli-
cations of partial neutralization with F � � 0 and F J � 0.

We consider parameters idealized from a recently per-
formed foil focusing experiment using a TNSA produced
proton beam at the PHELIX laser facility at GSI [10]. The
parameters employed here can be considered modest and
idealized and serve to illustrate basic focusing properties.
Results from the experiment will be reported separately. It
should also be stressed that parameters associated with
laser-produced proton beams will likely evolve as technol-
ogy and methods develop. Higher proton-beam energies
and currents are available on a variety of other short pulse

laser facilities [2,5], so experiments to verify passive focus-
ing can be carried out on facilities with a more favorable
range of parameters. For present purposes, a Eb ¼ 10 MeV
portion of the beamwith�1010 protons in a 4 ps window of
the pulse is analyzed as a long pulse with negligible energy
spread. These parameters correspond to a beam current of
I ’ 400:5 A (chosen to be approximately that in a 1 MeV
window about 10MeVin the full PHELIX-produced beam)
and dimensionless perveance Q ¼ 8:13� 10�3. This is a
strong idealization of typical TNSA proton beams which
have a broad, roughly exponentially varying energy
spectrum.However,methods exist to produce amoremono-
chromatic energy distribution by restricting the source re-
gionwithin the TNSA context to a small volume [40–42], or
alternatively, through exploiting a radiation-pressure-
induced acceleration mechanism [43,44]. The initial
(z¼zi¼0) rms-beamwidth	xðz¼ziÞ¼	xi and divergence
d	x

dz jz¼zi ¼ 	0
xi of the Gaussian beam is assumed to be

manipulated by shaping the proton emitting side of the
foil illuminated by the laser and adjusting the axial stand-
off distance of the emitting surface to the thin-foil lens
[5,45,46]. Initial rms-beam widths with 	xi � 200 �m
and envelope divergence angles 	0

xi with 	0
xi � 393 mrad

(22.5�) have been demonstrated with no shaping of the
emitting foil and relatively long (� 20 mm) stand-off dis-
tance. It is believed possible to achieve similar scale 	xi

with 	0
xi � 0 or even converging with 	0

xi < 0 if the emit-
ting foil and the stand-off distance are appropriately tuned
[5]. PIC simulations are employed in Sec. VI to address
changes in the idealized results in this section resulting from
somewhat more realistic conditions. Issues on distribution
evolution and halo generation, short pulse length, and large
energy spread combined with short pulse length are exam-
ined. It is found that basic focusing properties illustrated
here largely persist under less idealized conditions.
First, we calculate the required beam aspect ratio for

net focusing with Eb ¼ 10 MeV using Eq. (44) [see also
Fig. 7(b)] as 	x=L ¼ 1:94. For a beam with an initial rms
width 	xi ¼ 200 �m, this requires a foil spacing of L <
103 �m for focusing. In Fig. 8, envelope evolution of 	x

versus z obtained from numerical solutions to Eqs. (45) and
(49) are plotted for round-number increments of foil spac-
ing L about the critical value of L ¼ 103 �m. Zero initial
envelope divergence is assumed (	0

xi ¼ 0). For small foil
spacing with L < 100 �m, the beam focuses with decreas-
ing 	x until the aspect ratio 	x=L increases to where the
electric defocusing force becomes larger than the magnetic
focusing force and causes 	x to ‘‘bounce’’ up to larger
values. Then favorable aspect ratio is achieved again and
the focusing cycle repeats. Note that at the minimum value
of 	x, the aspect ratio 	x=L is significantly smaller (see
data in Table I) than the critical value (	x=L ¼ 1:94)
where the electric force becomes stronger than the mag-
netic force. This can be understood as follows. When the
aspect ratio 	xi=L of the initial beam is consistent with
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focusing, 	x decreases with increasing rate as 	x becomes
smaller until the aspect ratio eventually deteriorates. This
‘‘inertia’’ of inward focusing motion drives the beam be-
yond the critical aspect ratio where the electric force

becomes larger than the magnetic force, but eventually
the electric force overcomes the inward inertia, and forces
the beam back to larger 	x. For foil spacing L ¼ 100 �m,
which is near the critical value with L ¼ 	xi=1:94 ¼
103 �m, the initial envelope is nearly in force balance
and only evolves minimally. For cases with L > 100 �m,
the magnetic force is inadequate to focus, and the electric
defocusing force drives 	x to larger values than the initial
value 	x ¼ 	xi.
The limiting form solution with L ¼ 0 is included on the

plots in Fig. 8 so the strength of the magnetic focusing
relative to the extreme case with no electric defocusing
force (F ¼ 0) is illustrated. As discussed in Sec. IVC, the
limit L ¼ 0 corresponds to the beam propagating through
solid metal and the beam current would likely be neutral-
ized to inhibit focusing in this case. Nevertheless, this
idealization is included to illustrate that within the context
of the model there are limits to the obtainable reduction in
propagation distance to the focal spot as the foil spacing is
reduced. In the special case with L ¼ 0, the beam is rapidly
focused to zero rms extent (	x ¼ 0) within the context of
the paraxial model because there is no beam emittance
("x;rms ¼ 0) or canonical angular momentum (P� ¼ 0).
The propagation distance to focus (see Table I) for L ¼ 0

is consistent with Eq. (56), which gives zf ¼
ffiffiffiffiffiffiffiffiffi
2�=Q

p
�b�b

	xi ¼
37:8 mm. For the cases of foil spacings with L > 0 in
Fig. 8, finite-beam emittance "x;rms � 0 and/or canonical
angular momentum P� � 0 can further limit the minimum
value of 	x achieved in addition to the balance of magnetic
and electric forces to result in larger spots. If necessary,
focusing can be augmented by superimposing an applied
solenoid field (� > 0) to further reduce rms-beam extents
and/or increase system tuning possibilities. Lower beam
kinetic energy (Eb) and larger initial beams (	xi) will
increase the effectiveness of the solenoidal field. The vac-
uum solution corresponding to infinite foil spacing
(L ! 1) is also indicated in Fig. 8(a). In this case,
the beam envelope rapidly expands off the scale of
the plot because there is no net focusing and the perveance
Q is large.
Results in Fig. 8 suggest that if relatively long path

length transport and/or beam collimation from a TNSA
source is desired, then the incident beam should be focused
to the value of transverse rms extent 	x desired for
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FIG. 8. (a) Envelope evolution for the transverse rms-beam

width 	x ¼ hx2i1=2? versus z for a Gaussian-density proton

beam with Eb ¼ 10 MeV and I ¼ 400:5 A. Initial (z ¼ zi) con-
ditions are 	x ¼ 	xi ¼ 200 �m, 	0

x ¼ 	0
xi ¼ 0 and solutions

are shown for a range of foil spacings L as indicated. The beam
has zero emittance ("x;rms ¼ 0) and canonical angular momen-

tum (P� ¼ 0), no applied magnetic focusing (� ¼ 0), and no
neutralization (F � ¼ F J ¼ 0). The limiting cases of zero foil

spacing (L ¼ 0) corresponding to no electric defocusing and
infinite foils spacing (L ! 1) corresponding to vacuum propa-
gation are shown in blue and green, respectively. (b) Expanded
scale plot including values of L giving focusing. Data of
minimum rms-extent points for L leading to focusing is given
in Table I.

TABLE I. Minimum 	x and corresponding z location for select envelope solutions in Figs. 8 and 9.

Foil Focal spot

Spacing Figure 8: 	0
xi ¼ 0 Figure 9(a): 	0

xi ¼ 5 mrad Figure 9(b): 	0
xi ¼ �5 mrad

L (�m) 	x (�m) 	x=L z (mm) 	x (�m) 	x=L z (mm) 	x (�m) 	x=L z (mm)

100 188. 1.88 66.6 121. 1.20 151. 120. 1.21 22.0

75 111. 1.48 53.7 85.9 1.15 114.9 85.9 1.15 24.9

50 58.4 1.17 45.2 50.3 1.01 93.5 50.3 1.01 25.0

25 22.3 0.892 40.1 20.4 0.819 82.0 20.5 0.819 23.7

0 0 � � � 37.8 20 � � � 78.0 0 � � � 22.7
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transport with the foil spacing L set close to the critical
value to balance the magnetic focusing and the electric
defocusing forces. This strategy will minimize the number
of foils required and resulting beam energy losses and
scattering-induced emittance growth from propagating
through metallic foils with finite thickness. For non-
negligible emittance or canonical angular momentum, the
foil spacing should be consistently adjusted (including any
adjustment for emittance growth resulting from either scat-
tering or nonlinear fields). Higher beam energy Eb can help
reduce the number of foils while allowing penetration of
more foils with minimal energy losses and scattering.
However, perveanceQmust be maintained with increasing
energy to preserve the strength of the focusing (see analy-
sis that follows). Alternatively, if a small focal spot in 	x is
desired, results in Fig. 8 suggest use of a relatively minimal
foil spacing L with the initial beam entering the lens with a
significantly larger value 	x > L so that the inward inertia
gained as the beam focuses can drive 	x to smaller values
than suggested by the critical aspect ratio consistent with
any finite-beam emittance and/or canonical angular mo-
mentum. The value of the beam emittance "x;rms or canoni-

cal angular momentum P� can be important because it can
limit ultimate focusability and therefore whether there is
any advantage to using smaller foil spacing L if fabrication
limits allow. In applications where the small focal spot in
	x should converge on a target ‘‘downstream’’ of the final
foil, it will likely prove necessary to provide adequate
plasma neutralization for target locations for axial dis-
tances * L=2 downstream of the final foil. Without neu-
tralization, large defocusing space-charge forces can drive
rapid increases in 	x downstream of the last foil.

For simplicity, all results are shown for fixed foil spacing
L. When small focal spots are desired, it may be beneficial
to reduce beam energy losses and scattering by using larger
L initially, and then decrease L near the spot to improve
the aspect ratio as the beam is focused and maintain
focusing inertia for improved final spot size. This tech-
nique can reduce the number of foils required in the longer
initial stage of the focusing cycle before 	x begins reduc-
ing rapidly.

To better understand system requirements, the effect of
initial beam envelope divergence (	0

xi > 0) or convergence
(	0

xi < 0) as well as variations in beam perveance (Q)

should be evaluated. First, in Fig. 9, envelope solutions
are given for the same parameters and initial conditions
as in Fig. 8 except with the zero initial envelope angle
	0

xi ¼ 0 replaced by small diverging (	0
xi > 0) and con-

verging (	0
xi < 0) initial angles. Corresponding data for

minimum rms-extent points is given for most foil spacings
L in Table I. Figure 9(a) demonstrates that even a relatively
small initial beam divergence (	0

xi ¼ 5 mrad) can lead to

dramatically longer propagation distances in cases where
the lens is intended to focus to a small spot. This occurs
because the initial magnetic focusing force becomes

weaker as the beam expands. Because the magnetic focus-
ing term varies as �1=	x, a diverging beam extends the
propagation length where the force is weak even though
the aspect ratio 	x=L is driven into a more favorable
regime with increasing 	x. Long propagation lengths
may require too many foils to be practical. In the limiting
case with L ¼ 0, the propagation distance to focus
(see Table I) is consistent with Eq. (55) which predicts a

factor of exp½	02
xi=ð2QeffÞ�f1þ erf½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	02

xi=ð2QeffÞ
q

�g ¼ 2:06

increase for 	0
xi ¼ 5 mrad in the propagation distance to

the limiting pinch relative to the case with 	0
xi ¼ 0.

Conversely, Fig. 9(b) shows that even relatively small
initial envelope convergence (	0

xi ¼ �5 mrad) is benefi-
cial because the converging beam establishes inertia in the
right direction to reduce the propagation length where	x is
larger before the magnetic focusing force acts strongly as
	x becomes smaller. Thus, initial envelope convergence
can significantly reduce the total propagation distance and
number of foils necessary to focus the beam to a limiting
spot. In both cases of diverging and converging initial
envelopes, the final spot size is modestly reduced relative
to the case with 	0

xi ¼ 0 (see minimum rms-extent data in
Table I). This occurs because the envelope is driven down
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FIG. 9. Influence of initial envelope divergence (a) with 	0
xi ¼

5 mrad and convergence (b) with 	0
xi ¼ �5 mrad is illustrated

by repeating the envelope solutions illustrated in Fig. 8 with
	0

xi ¼ 0 with the specified values of 	0
xi � 0. Data on minimum

rms-extent points for some values of L is given in Table I.
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with enhanced ‘‘inertia.’’ For the diverging case (	0
xi > 0),

this enhancement occurs because the rapid decrease in 	x

starts from larger values of 	x after focusing eventually
turns the beam. For the converging case, the effect occurs
because the initially converging envelope contributes to the
inward inertia. For the converging case (	0

xi < 0), the
reduction in spot size is a bonus on top of the significantly
smaller propagation length to the spot. For the diverging
beam, the benefit of reduced spot size is likely to be
insufficient to offset the penalty of much longer propaga-
tion lengths required to the spot. In the limiting case with
L ¼ 0, the propagation distance to focus (see Table I) is
consistent with Eq. (55) which predicts a reduction factor

of exp½	02
xi=ð2QeffÞ�f1� erf½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	02

xi=ð2QeffÞ
q

�g ¼ 0:599 for

	0
xi ¼ �5 mrad in the propagation distance to the limiting

pinch relative to the case with 	0
xi ¼ 0.

These results show that it is critical to control initial
envelope angle 	0

xi of the beam incident on a stacked foil
lens when small focal spots are desired. A superimposed
focusing solenoid (� > 0) may prove attractive to counter-
act the effects of any (planned or unplanned) initial enve-
lope divergence because the solenoid can be tuned to
change the initial envelope angle as well as further aug-
ment the initially weak focusing strength in the lens where
	x is larger. Results also suggest that a thin-foil lens is well
suited to a two-stage focusing system where a conventional
optic forms the first stage and the thin-foil lens forms the
second stage. The first optic can reduce the beam extent for
stronger focusing, provide an initial converging envelope
angle in the foil lens to limit propagation distance to the
minimum spot in the thin-foil lens, and provide system
tunability. The target at the focal spot can be incorporated
into the structure of the foil lens.

The influence of varying the beam perveance Q is
illustrated in Fig. 10 by repeating the L ¼ 50 �m envelope
solution in Fig. 8 for several values of Q about the refer-
ence case with Q � Q0 ¼ 8:13� 10�3. Larger Q in-
creases the strength of the focusing leading to
substantially shorter propagation distance to the spot.
Notice that the minimum value of 	x at the focal spot
has insignificant variation in Q. This is because, for this
foil spacing, the change in focusing angle (and the focusing
inertia) due to the perveance variation is insufficient to
significantly alter the minimum value of 	x at the focal
point. Because Q / �=ð�3

b�
2
bÞ / I=ð�b�bÞ3 [see Eq. (42)],

increasing beam kinetic energy Eb (i.e., larger �b�b) re-
duces the beam perveance, unless accompanied by appro-
priately larger beam current I to compensate for the larger
value of �b�b with increasing energy. Although increasing
beam energy aids in reducing beam energy attenuation and
scattering in the foils as well as allowing larger foil spacing
L (i.e., improved aspect ratio) for beam focusing, higher
current is simultaneously desirable to maintain the value of
the perveance Q and thereby the strength of the focusing
for a short beam propagation distance to the focal spot.

To better characterize the likely range of variations in
envelope solutions due to possible changes in the form
factor F associated with possible evolution in the
beam radial charge profile, we repeat the solutions in
Fig. 8(b), which are calculated for a Gaussian-charge-
density beam, for an rms-equivalent, uniform-charge-
density beam. These solutions are contrasted in Fig. 11.
Because all differences are contained in the form factor
when emittance and angular momentum are negligible

("x;rms ¼ 0 ¼ P�), we employ 	x ¼ hx2i1=2? ¼ rb=2 for

rms equivalency and replace the Gaussian-beam form fac-
tor expression in Eq. (49) with the uniform-beam case
setting the aspect ratio as rb=L ¼ 2	x=L. Note that
differences between the Gaussian and uniform-beam
evolution are smaller in foil spacing cases where the
beam is transversely focused strongly, and differences
are larger when the initial beam is close to radial force
balance between magnetic focusing and electric defocus-
ing forces. This is not surprising because form factor
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FIG. 10. Influence of varied beam perveanceQ is illustrated by
repeating the envelope solution in Fig. 8(b) with L ¼ 50 �m and
Q � Q0 ¼ 8:13� 10�3 (blue) to the values of Q as labeled.
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FIG. 11. Influence of different form factor F on the envelope
evolution is illustrated by repeating the envelope solutions in
Fig. 8(b) (solid curves) for Gaussian-beam charge density with
an rms-equivalent uniform-charge-density beam. For L ¼ 0
(blue) the solutions exactly overlay.
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differences are largest close to aspect ratios where the
balance occurs (see Fig. 6). Strong focusing cases (small
foil spacing) result in the envelope evolving only a small
fraction of the focusing cycle in aspect-ratio regions
where the form factor differences are most appreciable.
However, in the near balanced cases, the full focusing
cycle evolves in the range of largest form factor differ-
ences. Furthermore, one might expect more sensitivity to
deviations in the electric defocusing term in situations
where the magnetic focusing and electric defocusing are
in near balance. In the fully self-consistent beam evolu-
tion, the form factor will likely evolve during the focus-
ing cycle due to evolution in the beam charge density. In
cases with applied focusing (� � 0) and strong space-
charge, evolution outside of self-similar form may be
relatively small because strong Debye screening of the
linear focusing force should result in a beam charge
profile which is nearly uniform in the core out to the
radial edge where the density rapidly drops to small
values [28,32]. In such situations, little evolution in the
form of F should be possible. Conversely, in cases with
no applied focusing (� ¼ 0), the form of the profile may
evolve more strongly from the initial form in response to
self-magnetic focusing and electric defocusing forces—
particularly if the initial profile is a consequence of
neutralization physics and neutralizing electrons are
blocked as the beam enters the foils. Regardless, differ-
ences in form factor from one smooth charge-density
profile to another, reasonably similar, rms-equivalent
smooth profile will likely impact evolution less than
the cases illustrated in Fig. 11 which highlight differ-
ences resulting between fixed form Gaussian and
uniform-beam form factors which are for beams with
very different radial charge-density profiles �bðrÞ (see
Fig. 3). However, simulations (see Sec. VI) suggest that
situations where pronounced halo develops may exacer-
bate form factor differences. If desired, form factors for
other smooth charge-density profiles can be calculated
explicitly using Eq. (43) in either the continuous ap-
proximation or with full z variation. Simulations or
higher level theory can be applied to model the evolution
more consistently if more accuracy in F is necessary. In
warm beam evolution with non-negligible emittance, one
might anticipate more differences than those contained in
the form factor due to the emittance term which is
neglected in the present analysis. The emittance will
self-consistently evolve in response to nonlinear forces.
Proper ordering of such effects is necessary to avoid
spurious perceptions of enhanced model accuracy by
improvements in the form factor term without account-
ing for the emittance or vice versa. The efficiency of
the envelope model as approximated with a fixed form
factor allows rapid evaluation of effects to provide in-
sight. At high levels of model detail, it is likely that full
self-consistent simulations (see Sec. VI) are most
appropriate.

VI. PARTICLE-IN-CELL SIMULATIONS

This section presents a comparison of the envelope
theory with particle-in-cell simulations using the WARP

code [47–49]. Attention is restricted primarily to simula-
tions aimed at verifying the envelope-model predictions
and the departure from those results in cases where signifi-
cant beam halo is generated, the beam pulse length is short,
and/or and the beam under study is that of a finite-width
energy slice of a much broader-energy-spectrum (and cor-
respondingly higher-total-current) beam. For illustrative
purposes, system parameters corresponding to the ex-
amples in Sec. V are employed except where noted for
purposes of simulation efficiency and/or investigating
lesser degrees of idealization. Emphasis is placed on phys-
ics and the relative importance of effects. The simulations
do not constitute a model of laboratory experiments which
may have many competing effects occurring simulta-
neously. This is part of a larger ongoing simulation cam-
paign to explore the physics of self-pinching proton and
ion beams including many additional effects: combined
beam energy and transverse velocity spreads, an initially
converging or diverging beam envelope, scattering by the
foils, effects of electrons introduced from the source or
emitted from the foils, fully electromagnetic and 3D fields,
etc. Results of this more general study will be described in
a separate paper.
We simulate only initially perfectly collimated proton

beams, with no transverse velocity and no longitudinal
velocity spread. This corresponds to a beam distribution

with zero initial envelope angle (dhx2i1=2? =dt ¼ 0 at time

t ¼ 0) and zero rms emittance ("x;rms ¼ 0 at t ¼ 0). We

employ a quasistatic and axially symmetric field approxi-
mation with infinitesimally thin, perfectly conducting foils
with no particle scattering within the foils. The simulations
follow the full self-consistent Vlasov evolution of the
distribution from the initial condition. Thus, they serve to
check the validity of assumptions made in the simplified
envelope model, including modeling the evolution in the
charge density as self-similar, averaging over the rapid z
variation of the defocusing electric field (i.e., the continu-
ous defocusing approximation of the form factor F), ne-
glect of corrections to the magnetic focusing terms
resulting from envelope convergence, and the neglect of
emittance evolution for a beam with negligible initial
emittance.
Our simulation geometry is axisymmetric cylindrical

(r–z). We use quasistatic electrostatic and magnetostatic
approximations (r �E ¼ �=
0, r� B ¼ �0J) to calcu-
late the electric and magnetic fields on a uniform r–z grid.
The quasistatic field approximation is adequate for the
relatively low beam energies of the present study; com-
parison of quasistatic and fully electromagnetic simula-
tions shows no qualitative differences even for much
higher-energy (moderately relativistic) ion beams. The
problem setup is that of an axially uniform column of
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protons, with a radial density profile that is either constant
out to a cutoff at r ¼ rb or a Gaussian, as described in
Sec. II. The simulation domain extends radially from r ¼ 0
to r ¼ 3rb ¼ 6	x. The initial particle loading in z is
uniform, and is also regular in r, with spacing uniform in
r2 for the constant-density case, or uniform in R2 out to
R ¼ rb ¼ 2	x for the Gaussian distribution, with R related
to the actual radius by the relation

R ¼ 	x

�
� 2 ln

�
�
�

r

2	x

�
2
�
1� exp

�
r2max

2	2
x

����
(62)

which renders the distribution Gaussian out to a cutoff at
rmax ¼ 3:5	x.

We consider two types of simulations. The first has a
short-length box with conducting walls at the ends to
simulate the space between two foils as part of an infinitely
long beam. The particle boundary conditions are periodic
in z and absorbing in r. The boundary conditions on the
electric field are conducting at the ends and the radial edge
of the grid, and for the magnetic field, periodic at the ends
and ‘‘conducting’’ (vector potential components zero) at
the radial edge. We refer to these simulations as ‘‘infinite
beam.’’ For infinite-beam simulations, we calculate the

rms-transverse beam extent hx2i1=2? averaged over the full

axial domain in z. This improves statistics and results in
relatively small error because axial variation in transverse
averages are typically small within one foil gap.

The second simulation type has a finite beam, (typically)
many conducting foils, and a simulation domain that is a
moving window that extends axially 4rb ¼ 8	x beyond the
ends of the initial-length beam (to ensure insensitivity to
axial boundary conditions). At the radial edge of the grid,
the field boundary conditions are conducting and the par-
ticle boundary condition is absorbing. With such an ex-
tended domain, we find no noticeable difference among
simulations with periodic, Neumann, or Dirichlet bound-
ary conditions on the potentials at the axial grid ends. No
particles reach the ends of the moving window during the
simulations. We refer to these simulations as ‘‘finite

beam.’’ For this type of simulation we calculate hx2i1=2?
averaged over the central portion of the axial extent of the
beam (1=16 of the beam length) because we find that the
beam ends evolve differently than the beam interior due to
rapid axial self-field variation at the beam ends. These
simulations have a much larger simulation domain and so
require substantially more computational time than the
infinite-beam simulations described above.

The infinite-beam simulations, being computationally
less demanding, are better suited to probe resolution issues
and are convenient for comparison with the theory (which
also assumes a long, unbunched beam), whereas the finite-
beam simulations are necessary to probe effects from finite
pulse duration.

In order to reduce simulation time, we use a current
density that is 6 times the base value employed in Sec. V,

that is with perveance (Q / I) Q ¼ 6Q0 ¼ 4:88� 10�2.
The envelope model (see Fig. 10) predicts little difference
in spot size due to the increased perveance, but a signifi-
cantly shorter propagation distance to the focal point. The
resulting savings in simulation time enables parametric
simulations to be carried out in the finite-beam case at
sufficient resolution and statistics. In all cases, we consider
a beam which initially has 	x ¼ 200 �m for Gaussian
loading, or the rms equivalent rb ¼ 400 �m for uniform
loading. Except as noted, in all cases presented there are
nr ¼ 64 radial simulation cells and the number of axial
simulation cells is chosen so that there are eight cells
between foils. Grid spacings are chosen such that the
grounded thin foils lie on z-mesh points. (This restriction
is not necessary; WARP’s embedded-boundary capability
allows conductors of arbitrary thickness to be placed
with boundaries between mesh points.) The initial number
of particles per cell, averaged over beam-containing cells
with r � 	x, is 296 for the infinite-beam simulations and
37 for the finite-beam simulations. However, the statistics
are not as dissimilar between these cases as these numbers
might suggest, because the magnetic field for the finite-
beam simulations is a response to the particles in many
more cells (over a range in z comparable to the beam
radius), versus just over the eight cells between foils for
the infinite-beam simulations. Convergence studies both
with respect to particle number (in both the infinite and
finite-beam setups) and (increased) spatial resolution in-
dicate that the quantities analyzed here are well converged
for the stated parameters. Test simulations show insensi-
tivity of results to the choice of radial grid extent, rendering
idealizations made in boundary conditions for the magnetic
field at the radial edge of the grid irrelevant.
We perform infinite-beam simulations for beams with

Gaussian radial density profiles and foil spacings L ¼
25; 50; 75, and 100 �m, as well as a ‘‘zero-spacing’’
(L ¼ 0) case with the electric-field calculation turned off.

Results for evolutions in rms x width hx2i1=2? and rms-edge

emittance "x [Eq. (47)] are shown in Fig. 12 (solid curves),
along with the corresponding theory results (dashed
curves) from the envelope model calculated in the continu-
ous defocusing approximation with consistent perveance
(i.e., Q ¼ 6Q0). Results for one uniform-density case with
foil spacing L ¼ 50 �m, and both uniform and Gaussian
cases with no foils (vacuum case; approximate due to the
radial field boundary conditions) are also shown. The
simulations and envelope-model results for the rms
x-width in Fig. 12(a) agree reasonably well, particularly
considering that the simulation has a number of complica-
tions not considered in the theory: (i) an evolving radial
density profile [hence the F form factor introduced in
Eq. (43) is nonconstant; although we expect from the
comparisons in Fig. 11 that this should be a small effect
over a range of profile shapes], (ii) a focus force that varies
in z versus being approximated by its average; and

STEVEN M. LUND, RONALD H. COHEN, AND PAVEL A. NI Phys. Rev. STAccel. Beams 16, 044202 (2013)

044202-20



(iii) finite emittance growth from zero in the simulations
due to nonlinear self-fields. We note that the two curves for
the Gaussian and uniform cases with no foils (vacuum) lie
on top of one another. The corresponding evolution of the

rms-edge emittance is shown in Fig. 12(b) for all cases in
Fig. 12(a) except the vacuum cases (which are excluded
because the beams quickly hit the simulation boundaries
which corrupts the emittance measure due to the absorbing
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FIG. 13. Particle scatter plots for an infinite-beam WARP simulation with L ¼ 25 �m foil spacing at times t ¼ (a) 19, (b) 315, and
(c) 430ps (corresponding to axial propagation lengths of 0.84, 13.9, and18.9mmthrough the foil stack). Plot (b) correspondsapproximately
to theminimum rms xwidth of the dense core of particles seen in the plots. The horizontal axis of the plots represents the distance from the
left-hand simulation boundary to the right-hand boundary (i.e., between foils). Plot (a) may appear to have axial density oscillations;
however, this is an artifact resulting from beating between the uniformly spaced initial loading of particles and the graphic resolution.
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FIG. 12. (a) rms x-envelope (hx2i1=2? ) and (b) rms-edge emittance ("x ¼ 4"x;rms) evolution for infinite-beam WARP simulations (solid
curves) with various foil spacings L as indicated. Dashed curves are predictions from the envelope model with zero emittance.
Simulations and envelope-model results are for Gaussian initial radial density profiles, except for indicated cases for simulations with
initial uniform density. Simulation results for no foils with Gaussian and uniform initial profiles lie almost on top of one another. The
L ¼ 25 �m simulation results for the uniform and Gaussian initial density profiles also are nearly coincident, and the corresponding
L ¼ 25 �m envelope-model result is close to the simulations.
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boundary conditions). Particle scatter plots (see Fig. 13)
suggest that the relatively large discrepancy in the mini-
mum envelope size in the L ¼ 0 and L ¼ 25 �m cases can
be attributed to the development of an appreciable halo; the
core of the beam does indeed compress to an xwidth that is
quite a bit smaller than the rms-envelope size. We see the
phenomenon in another way in Fig. 14, where we plot the
(charge) density versus radius near the beginning of the run
(time t ¼ 19 ps) and at a time where the core beam distri-
bution is near its minimum rms x width [t ¼ 315 ps, the
same time as the plot in Fig. 13(b)]. The shape of the
charge distribution when the core is highly compressed
changes appreciably, is distinctly non-Gaussian, and has a
significant radial tail (the halo). We remark that Fig. 14
contains plots at both the standard resolution (nr � nz ¼
64� 8) and doubled resolution (128� 16), to support our
conclusion that the profile shape evolution is not an artifact
associated with low resolution. We also note that the

minimum rms width for the corresponding uniform-density
case is about half that for the Gaussian case, and much

closer to theory; this is associated with considerably less

halo formation in the scatter plots. The envelope-model

(theory) calculations show little difference in minimum

spot size between uniform and Gaussian radial shapes,
suggesting an insensitivity to the radial shape; but that

insensitivity should not be expected in cases where a

substantial halo is formed, as the halo particles see sub-

stantially weaker fields than the main distribution and

therefore focus over a longer distance (a phenomenon
that is clearly evident in movies made from a sequence
of scatter plots). The Gaussian-beam simulations with
larger foil separations also develop substantial halo, but
the halo makes relatively less difference in those cases
because the radial core of the beam is not compressing as
much. The more significant halo in the Gaussian case
relative to the uniform-density case can likely be attributed
to the significant fraction of the beam that is in a region
where the net focusing force is increasing significantly
more slowly than linear in (or even decreasing with) radius.
The same observation is likely responsible for the larger
rms-emittance growth in the Gaussian cases: halo particles
contribute more to the emittance.
Comparison of the initially uniform and Gaussian simu-

lations suggest that the differences noted above between
the focal spot sizes in the simulation and envelope-model
results would likely be substantially reduced for a measure
of spot size that is less sensitive to halo—for example,
mean radius rather than rms x width, or only considering
the distribution function above sufficiently large threshold
(as may be characteristic of experimental diagnostics).
However, the results also suggest that, depending on the
measurement technique, the observed spot may vary sig-
nificantly with the tail structure of the initial distribution,
which in turn may vary depending on how the initial beam
is formed.
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FIG. 15. Envelope evolution for finite-length beam WARP

simulations with various initial beam lengths Lb as indicated
(color coded) and fixed L ¼ 50 �m foil separation. Solid curves
show the rms-transverse extent averaged over the middle eighth
of the axial extent of the beam (middle quarter for Lb ¼ 	x, for
better statistics). The green dashed curve gives the corresponding
result for an ‘‘infinite-beam’’ simulation with the same foil
separation. The dotted curve is for an Lb ¼ 	xi simulation
with a broad coherent energy spectrum as specified in the text.
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FIG. 14. Radial charge-density variation for infinite-beam WARP simulations with L ¼ 25 �m foil spacing (a) early in run, at
t ¼ 19 ps, and (b) at t ¼ 315 ps. Dashed curves are for resolution nr � nz ¼ 64� 8; solid curves are for nr � nz ¼ 128� 16.
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We have also performed a series of finite-beam simula-
tions with varying initial axial beam length Lb and fixed
L ¼ 50 �m foil spacing. The obtained rms-width evolu-
tions are shown in Fig. 15 (solid curves), along with, for
comparison, the corresponding infinite-beam simulation
(dashed curve). In order to minimize clutter, we do not
show the corresponding envelope-model curve for here,
but from Fig. 12(a) it can be seen that the L ¼ 50 �m
infinite-beam simulation is also an excellent proxy for the
long pulse envelope model. The results show a not-
surprising result: as the initial beam length Lb is made
shorter relative to the initial rms width 	x ¼ 	xi, the focal
distance gets longer. The departure for Lb ¼ 2	xi and
Lb ¼ 	xi is substantial. The minimum focal spot, however,
does not change much as the beam length is varied (in
contrast to the change we find with varying foil spacing).
These results are easily understood: as the beam length
decreases, the focusing magnetic field, which is sensitive to
the current integrated over an axial distance of order of the
characteristic transverse beam radius (in all cases at the
initial time, many foil spacings) decreases, while the de-
focusing electric field, which is sensitive only to the charge
density between two foils, is virtually unchanged near the
beam’s axial center. Hence, the relative balance between
magnetic focusing and electric defocusing is shifted away
from focusing. On the other hand, once the beam starts to
compress, its length becomes longer relative to its radius,
and hence the magnetic pinch force becomes closer to the
infinite-beam limit—i.e., it increases faster with decreas-
ing radius than does the electric defocusing.

As noted previously, the parameters chosen in Sec. Vare
long pulse idealizations of a recently performed near-term
test of the self-focusing concept using a TNSA produced
proton beam at the PHELIX facility [10]. The PIC simula-
tions in this section employ the same basic system parame-
ters with higher current to reduce numerical modeling time.
Laboratory laser-produced proton beams are likely to have
initial distribution properties that significantly deviate from
the idealizations made. Moreover, distribution properties
are likely to vary significantly as techniques employed
evolve (e.g., use of curved emission foils to control incident
envelope divergence).Although techniques exist to produce
relatively monochromatic proton beams with short pulse
lasers [40–44], in typical TNSA produced proton beams the
coherent beam energy spectrum is broad with particle
counts decaying nearly exponentially with energy
[10,13–16]. For the PHELIX facility, the variation of the
TNSA produced proton distribution (f) in coherent energy
for the situation outlined in Sec. V can be roughly modeled
by f / expð�Eb=E
Þ (i.e., a half-Gaussian in proton for-
ward velocity �bc) with E
 ¼ 4:23 MeV [10]. For present
purposes, the constant of proportionality in f is fixed by
requiring that the total proton current in a 1-MeV-wide
energy window about 10 MeV equals 6� 400:5 A to cor-
respond to the monoenergetic simulations analyzed above.

There are two qualitative effects that one might expect
resulting from such a TNSA-like energy spectrum: on the
one hand, the protons in the energy slice are spread in axial
velocity over the extent of that slice, which, particularly for
the short axial length beams characteristic of the actual
experiment, might be expected to substantially decrease
magnetic focusing due to axial spreading of the beam as it
propagates through the foil system. On the other hand, there
are additional protons in neighboring energy slices which
contribute to the focusing magnetic field (but, as a result of
the presence of the foils, not the electric field) at the position
of the 10 MeV slice. Less energetic protons will be more
numerous and can have a significant contribution to the
magnetic field. To illustrate the competition of these effects,
we perform an additional simulation with a beam with the
specified coherent energy distribution representing TNSA
experiments with PHELIX. The initial beam length isLb ¼
	xi, i.e., the same as for the shortest monoenergetic case
(solid red curve) shown in Fig. 15. The result in Fig. 15
(dotted red curve) shows that the focal distance is reduced
by a factor of about 3 compared to the monoenergetic case,
while theminimumrmswidth is almost the same. From this,
we conclude that the beneficial effect of neighboring energy
contributions in a more realistic TNSA distribution likely
outweighs the deleterious effect of the spread of energy
within the 10 MeV window. More detailed evaluation of
particular experiments will likely require modeling of pro-
cesses involved in producing the proton beam. An ongoing
simulation program is carrying out such simulations includ-
ing numerous simultaneous effects.

VII. CONCLUSIONS

An envelope model has been derived to efficiently ana-
lyze the evolution of an unbunched beam propagating
through a lens formed from thin, stacked metallic foils.
The model accounts for beam-generated magnetic focus-
ing forces and electric defocusing forces in the stacked foil
structure as well as forces from a possibly superimposed
applied solenoidal magnetic field for additional focusing
and thermal defocusing associated with finite-beam emit-
tance (phase-space area). PIC simulations with a lower
degree of idealization were applied which confirm the
envelope model and illustrate how results can deviate in
strong focusing situations where some initial distributions
with radial tails in the density profile can generate strong
halo, and when the axial pulse length becomes sufficiently
short to result in attenuation of magnetic focusing strength,
and when coherent energy spread becomes large. Analytic
analysis and simulations show that provided large halo is
not generated due to the form of the initial distribution, the
envelope model should be relatively insensitive to the
radial structure of the transverse charge-density profile of
the beam when interpreted in an rms-equivalent sense. The
envelope model was applied to obtain a simple criterion
for the required foil spacing to have the beam-generated
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magnetic focusing force be larger than the beam-generated
electric defocusing force—which is a necessary condition
to allow passive focusing. The strength of the focusing was
also characterized in terms of a beam perveance parameter.
Results showed that foil spacings on order of the desired
transverse rms-beam extent are acceptable for focusing
either for beam collimation/transport or pinching a high-
intensity beam to a small transverse beam spot. This is an
encouraging result because it allows minimal beam propa-
gation distance through the foils to reduce materials and
undesired beam energy losses and scattering. It was found
that it is critical to control any initial envelope divergence
in applications where a small beam spot is desired in short
propagation lengths. Illustrative examples based on the
envelope model show that long pulse idealizations of
laser-produced proton beams with modest parameters can
lead to strong pinch focusing. Simulations confirm the
basic effect under less idealized conditions with short pulse
length and a broad (exponential) energy spectrum, suggest-
ing that proof-of-principle experiments are possible if
initial beam envelope divergence can be limited.
Successful demonstrations can help motivate further ex-
periments for heavy ion beams for applications such as the
demanding focusing requirements for the X-target in heavy
ion fusion [6]. Follow-up studies are clarifying the influ-
ence on focusing properties due to finite scattering within
the foils [17] and combined effects under likely laboratory
conditions in near-term applications. Proof-of-principle
proton focusing experiments have recently been carried
out and will be detailed in a future report.
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APPENDIX A: APPROXIMATE ELECTRIC-FIELD
SOLUTION FOR LARGE ASPECT RATIOS

Denote the characteristic transverse scale of the beam
charge density �bðrÞ as r?. Assume that the foils are
closely spaced relative to r? and introduce a small parame-
ter 
 ¼ L=r? 
 1. Anticipate that the solution to the
Poisson equation (16) is characterized by axial scale
lengths in z being small compared to radial scale lengths
in r by �ð
Þ. Introduce a scaled variable R ¼ 
r, so that

scale lengths in R and z are comparable. Note that the
radial scale length of �bðrÞ is r? ¼ L=
 and denote

�bðrÞ ¼ ~�bðRÞ: (A1)

Then the axisymmetric beam Poisson equation (16) can be
expressed as


2
1

R
@

@R

�
R

@

@R

�
�g þ

@2�g

@z2
¼ � ~�bðRÞ


0
(A2)

with �gðR; z ¼ �L=2Þ ¼ 0. We construct a solution to

Eq. (A2) in a power series in 
2 as

�gðR; zÞ ¼ X1
n¼0


2n�nðR; zÞ: (A3)

Inserting Eq. (A3) in Eq. (A2) obtains to leading
order in 
,

@2

@z2
�0ðR; zÞ ¼ � ~�bðRÞ


0
; (A4)

subject to �0ðR; z ¼ �L=2Þ ¼ 0, and for higher orders
in 
,

@2

@z2
�nðR; zÞ ¼ � 1

R
@

@R

�
R

@

@R

�
�n�1ðR; zÞ

� �r2
R�n�1 (A5)

for n � 1 subject to �nðR; z ¼ �L=2Þ ¼ 0. The unique
solution to Eq. (A4) is

�0ðR; zÞ ¼ L2 ~�bðRÞ
8
0

�
1� 4

z2

L2

�
; (A6)

and the unique solution to Eq. (A5) is

�nðR;zÞ¼�
Z z

�L=2
d~z
Z z

�L=2
d~~zr2

R�n�1ðR;~~zÞ

þzþL=2

L

Z L=2

�L=2
dz
Z z

�L=2
d~zr2

R�n�1ðR;~~zÞ:

(A7)

Successive orders of the expansion for �g given by

Eq. (A3) and with the �n given by Eqs. (A6) and (A7)
are well behaved and �ð
2Þ smaller than the next-lowest
order term for smooth �bðrÞ. Using Eq. (A1), the approxi-
mate large aspect-ratio solution for �g in Eq. (A6) is the

leading-order expansion �g ’ �0.

We note that there is an alternative way to see that
Eq. (A6) is the leading-order solution in the limit of small
foil spacing: we can use the method of manufactured
sources to generate a z-dependent correction ~� to � such
that our �0 is the exact solution to Poisson’s equation. It is
easily verified that ~� is Oð
2Þ smaller than �.
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APPENDIX B: LARMOR-FRAME
TRANSFORMATION AND SYSTEM CANONICAL

ANGULAR MOMENTUM AND EMITTANCE

Here, we present a formulation which enables applica-
tion of the envelope model in Sec. IV to situations where
there is an applied solenoidal field (Bz0 � 0) which results
in a macroscopic rotation of the beam about the z axis. In
this case, the formulation presented in Sec. IV, which is
valid in laboratory-frame variables as directly expressed
when Bz0 ¼ 0, still applies when interpreted ‘‘Larmor-
frame’’ variables in a frame of reference rotating about
the z axis. This generalization requires that the laboratory-
frame emittance in Eq. (34) be replaced as specified in
Eq. (36). In cases where the beam canonical angular mo-
mentum is nonzero (which commonly occurs when the
beam is produced in an applied solenoidal field; see
Appendix C), this can complicate the proper form of the
emittance to employ. In this Appendix, we summarize
steps involved in the Larmor transformation, prove that
the system canonical angular momentum is invariant, and
show how the canonical angular momentum and Larmor-
frame emittance are related to familiar laboratory-frame
quantities. Formulas for the canonical angular momentum
and beam emittance which are applicable to common
situations in beam transport are derived in Appendix C.
More details on these topics can be found in Appendix A of
Ref. [36] and Refs. [28,50].

First, the Larmor transform to a rotating (tilde variables)
frame is given by[28,36]

~x ¼ x cos ~c ðzÞ þ y sin ~c ðzÞ;
~y ¼ �x sin ~c ðzÞ þ y cos ~c ðzÞ (B1)

with

~c ðzÞ ¼ � q

2�b�bmc

Z z

zi

d~zBz0ð~zÞ: (B2)

This transformation can be applied to show that the equa-
tion of motion (30) in x–y laboratory-frame variables
becomes

~x 00
? þ �~x? � ð1�F JÞ q

m�bc
2

@�v

@~x?

’ �ð1�F �Þ q

m�b�
2
bc

2

@�g

@~x?
(B3)

in ~x–~y Larmor-frame variables with � defined in Eq. (32).
Here, we have assumed that both �v and �g are functions

only of r and have employed the fact that the Larmor

transform (B1) preserves radial distance, i.e., r ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2 þ ~y2

p
. Equation (31) is Eq. (B3) with the

tildes dropped (Larmor-frame variables are implicit
in Sec. IV when Bz0 � 0).

The canonical angular momentum of the beam is calcu-
lated by averaging the single-particle canonical angular

momentum p� ¼ ~x~y0 � ~y~x0 over the beam distribution to
obtain

P� � h~x~y0 � ~y~x0i?
¼ hxy0 � yx0i? þ qBz0

2m�b�bc
hx2 þ y2i?: (B4)

Here, in the second expression for P�, the Larmor trans-
formation (B1) and its z derivative has been applied to
express P� in laboratory-frame variables. Because this is
the form of the system angular momentum one would
employ in the laboratory frame, we do not use tildes in
the symbol for P�. Differentiating the second expression
for P� in Eq. (B4) with respect to z, applying the
laboratory-frame equation of motion (30), and the applied
field model in Eq. (1) for Ba shows that

d

dz
P�¼ q

m�bc
2
ð1�F JÞ

��
x
@�v

@y

�
?
�
�
y
@�v

@x

�
?

�

� q

m�b�
2
bc

2
ð1�F �Þ

��
x
@�g

@y

�
?
�
�
y
@�g

@x

�
?

�
¼0:

(B5)

The second line follows immediately because �j with

j ¼ v, g is a function of r in the axisymmetric system.
Thus, P� ¼ const regardless of the functional form of the
applied solenoidal field Bz0ðzÞ insofar as the system is
axisymmetric. See Appendix C for a derivation of
acceleration-induced changes in P�.
The Larmor-frame rms emittance is explicitly

~" ~x;rms � ½h~x2i?h~x02i? � h~x~x0i2?�1=2: (B6)

Equation (34) is simply Eq. (B6) with the tildes dropped
for notational convenience and correspondence to familiar
forms in the absence of a solenoidal magnetic field
(i.e., Bz0 ¼ 0 and x? ¼ ~x?). Use of the Larmor trans-
formation (B1) and its z derivative shows that Eq. (B6)
can be expressed in the laboratory frame as

~" 2
~x;rms ¼ "2x;rms � 1

4hr2�0i2? þ 1
4P

2
�: (B7)

Here, � ¼ tan�1ðy; xÞ, and
"x;rms � ½hx2i?hx02i? � hxx0i2?�1=2 (B8)

denotes the usual, laboratory-frame rms emittance [not to
be confused with Eq. (34) which is Eq. (B6) with the tildes
dropped]. It is useful in solenoidal focusing systems to
denote a beam radial rms emittance by

"2r;rms � "2x;rms � 1
4hr2�0i2?: (B9)

Because P� ¼ const, if ~"~x;rms ¼ const then Eq. (B7) im-

plies that "r;rms ¼ const. Some straightforward manipula-

tions show that

hr2�0i? ¼ hrhr�0ipi?; (B10)

where
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h� � �ip �
R
d3p � � � fbR
d3pfb

(B11)

denotes a restricted momentum (fluid model type) average.
Note that�bchr�0ip ¼ V�, where V� denotes the transverse

azimuthal component of the fluid flow velocity, which can
vary in r for the axisymmetric beam. In this context, the
term / hr2�0i2? subtracted from "2x;rms in Eq. (B9) can be

understood as appropriate to remove the azimuthal ‘‘fluid’’
flow of the beam from the transverse phase-space area
measure when the beam is macroscopically rotating about
the z axis due to the presence of a solenoidal magnetic field
(Bz0 � 0) and/or finite system canonical angular momen-
tum (P� � 0). If Bz0 ¼ 0 and P� ¼ 0, then ~"~x;rms ¼
"r;rms ¼ "x;rms and the envelope formulation in Sec. IVB

can be applied with Eq. (34) with the emittance simply
interpreted in the laboratory frame. (This is the case for the
illustrative example in Sec. V.) However, if Bz0 � 0 and/or
P� ¼ 0 the emittance should be replaced with the form in
Eq. (36) for correct correspondence to the actual phase-
space area. This distinction can be particularly important
for beams formed in an axial magnetic field (i.e., source
located where Bz0 � 0).

APPENDIX C: ESTIMATES OF BEAMEMITTANCE
AND CANONICAL ANGULAR MOMENTUM

It is useful to have explicit formulas for the Larmor-
frame rms emittance ~"~x;rms [Eq. (B6)] and the beam

canonical angular momentum P� [Eq. (B4)] which are
carefully defined in Appendix B and occur in the statistical
envelope equations derived in Sec. IV. Here we provide
formulas for these quantities which are applicable to
typical laboratory situations and are expressed in
terms of commonly measured quantities defined in the
laboratory frame.

First, if the axisymmetric beam is incident on the foil
lens from an axisymmetric accelerator or transport system
where the beam is injected from a source not immersed in
an applied axial magnetic field (Bz0 ¼ 0), then one expects
zero beam canonical angular momentum P� ¼ 0.
Conversely, if the beam is born off a source which is
immersed in an axial magnetic field (Bz0 � 0) and one
takes the reasonable boundary condition that the beam is
not macroscopically rotating at the emission plane, then
Eq. (B4) gives

P� ¼ qBz0

m�b�bc
hx2i?

��������z¼zi

: (C1)

Here, z ¼ zi denotes the axial location of the source. For
initial beams with Gaussian- and uniform-charge-density
profiles [see Eq. (6)], this gives

P� ¼
8><
>:

Bz0	
2
x

½B��
�����z¼zi

; Gaussian;

Bz0r
2
b

4½B��
�����z¼zi

; uniform:
(C2)

Here, ½B�� ¼ m�b�bc=q is the particle rigidity. Because
P� ¼ const, this initial value of P� applies for all z for a
coasting beam with ð�b�bÞ ¼ const. If the beam is accel-
erating in the transport lattice upstream of the foil lens with
ð�b�bÞ � const varying in z, then adding the appropriate
damping term �½ð�b�bÞ0=ð�b�bÞ�~x0 to the left-hand side
of the Larmor-frame equation of motion (31) [28] and

paralleling the analysis in Appendix B to calculate dP�

dz

[see Eq. (B5)] shows that

d

dz
P� ¼ �ð�b�bÞ0

ð�b�bÞ P�: (C3)

Equation (C3) can be integrated with respect to z to show
for the accelerating beam that

�b�bP� ¼ �b�bP�jz¼zi : (C4)

This result is analogous to the conservation of normalized
emittance (see below and Appendix A of Ref. [32]) but is
more stringent since it does not require linear dynamics
for validity. If the beam is accelerated from a surface
immersed in a magnetic field at z ¼ zi where Bz0 � 0,
Eqs. (C1) and (C4) show that

P� ¼ 1

m�b�bc
½qBz0hx2i?�z¼zi (C5)

for the nonaccelerating beam in the foil lens. This result
can be applied to a beam produced by a short pulse laser
illuminated foil immediately ‘‘upstream’’ of a thin-foil lens
immersed in a solenoidal field with Bz0 � 0. In this situ-
ation, jBz0ðz ¼ ziÞj will likely be large unless the emitting
foil is placed at the null of a cusp-type field which would
also likely lead to reduced field strength in the lens.
Next, we analyze the definition in Eq. (B6) for the

Larmor-frame emittance ~"~x;rms. Because the radial extent

of the axisymmetric beam is not altered by the Larmor

transformation (B1), we denote 	x ¼ h~xi1=2? regardless

of the distribution (i.e., need not be Gaussian). Then 	0
x ¼

h~x~x0i1=2? =h~x2i1=2? and the definition of ~"~x;rms can be equiv-

alently expressed as

~" 2
~x;rms ¼ 	2

xhð~x0 � 	0
xÞ2i?: (C6)

Following the notation in Ref. [32], a local kinetic tem-
perature ~Tx can be defined in the Larmor frame as

~T x ¼ m�b�
2
bc

2hð~x0 � h~x0ipÞ2ip: (C7)

Here, h� � �ip is the restricted momentum average defined in

Eq. (B11) and the choice in �b factors is motivated in
Refs. [32,37]. Note that ~Tx can vary with r in the axisym-
metric beam and ~x0 � h~x0ip is a measure of the difference in

the local particle angle from the average (fluid flow) angle
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of all particles in the beam distribution. A spatially average

temperature ~Tx is then naturally defined by

~Tx

m�b�
2
bc

2
�
R
d2x ~TxnbR
d2xnb

¼ hð~x0 � h~x0ipÞ2i?: (C8)

Here, nb �
R
d3pfb denotes the beam density, and

hh� � �ipi? ¼ h� � �i? has been employed. We approximate

h~x0ip ’ 	0
x

~x

	x

; (C9)

which effectively replaces the local coherent angle h~x0ip of
the distribution by the form appropriate for an rms-
equivalent Kapchinskij-Vladimirskij (KV) beam distribu-
tion (see Refs. [28,32]). Then it is straightforward to show
using Eqs. (C8) and (C9) that

~Tx

m�b�
2
bc

2
’ hð~x0 � 	0

xÞ2i?: (C10)

Using this result, Eq. (C6) is approximated as

~" 2
x;rms ’ 	2

x
~Tx

m�b�
2
bc

2
: (C11)

Equation (C11) can be applied with the spatially average

temperature ~Tx as defined in Eq. (C8) to estimate the
emittance for an arbitrary distribution (Gaussian, uniform,
or any other). If the beam is not macroscopically rotating

due to an applied magnetic field, then ~Tx can be simply
calculated in the laboratory frame (just drop all tildes). If
there is acceleration, then arguments presented in
Appendix A of Ref. [32] can be applied to show that if
‘‘normalized emittance’’ conservation is assumed
(meaning forces acting on the beam are approximated as
linear), then the value of emittance at z is related to its
initial value by

�b�b~"~x;rms ¼ �b�b~"~x;rmsjz¼zi : (C12)

APPENDIX D: DERIVATION OF EQ. (55)

Denote 	x ¼ hx2i1=2? . Here, as in Appendix C, the

charge-density profile of the distribution need not be
Gaussian and 	x is merely employed for notational con-
venience. Following methods presented in Ref. [36], a
conserved envelope Hamiltonian can be derived for
Eq. (53) to show that

H ¼ 1
2	

02
x þQeff ln	x ¼ const: (D1)

Equation (D1) can be set equal to its initial value at z ¼ zi
and solved for 	0

x to obtain

	0
x ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	02

xi � 2Qeff ln

�
	x

	xi

�s
: (D2)

We first integrate Eq. (D2) from an initial condition with
	0

xi � 0 (converging beam case) which ensures that the

minus solution in Eq. (D2) holds for all z to the 	x ¼ 0
focal point. This obtains

z� zi ¼
ffiffiffiffiffiffiffiffiffiffiffi
�

2Qeff

s
exp

�
	02

xi

2Qeff

�
	xi

(
erf

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	02

xi

2Qeff

� ln

�
	x

	xi

�s #

� erf

 ffiffiffiffiffiffiffiffiffiffiffi
	02

xi

2Qeff

s !)
; (D3)

for 	x > 0. Here, erfðzÞ � 2ffiffiffi
�

p R
z
0 dte

�t2 is the error func-

tion [35]. Evaluating Eq. (D3) at the focal point z ¼ zf
where 	x ! 0 and employing limz!1erfðzÞ ¼ 1 gives
Eq. (55) with sgnð	0

xiÞ ¼ �1.
Next, we integrate Eq. (D2) from an initial condition

with 	0
xi > 0 (diverging beam case) by first considering an

intermediate axial coordinate z ¼ zt where	
0
xðz ¼ ztÞ ¼ 0

corresponding to where the trajectory to the focal spot is at
an inflection point (i.e., 	0

x ¼ 0 at z ¼ zt) where the beam
is transitioning from diverging to converging. At z ¼ zt,
Eq. (D2) gives

	xðz ¼ ztÞ ¼ 	xi exp

�
	02

xi

2Qeff

�
: (D4)

Up to the inflection point 	0
x > 0, the plus root in Eq. (D2)

applies. Analogous steps leading to Eqs. (D3) and (55) in
the case with 	0

xi � 0 together with an application of
Eq. (D4) then give

zt � zi ¼
ffiffiffiffiffiffiffiffiffiffiffi
�

2Qeff

s
exp

�
	02

xi

2Qeff

�
	xierf

� ffiffiffiffiffiffiffiffiffiffiffi
	02

xi

2Qeff

s �
(D5)

for the distance of the diverging interval where 	0
x � 0.

The subsequent converging interval from the inflection
point to the focal pinch has 	0

x � 0 and can then be
obtained from Eq. (D3) in the already derived case with
	0

xi � 0 by substituting zi ! zt, 	xi ! 	xðz ¼ ztÞ ¼
	xi exp½	02

xi=ð2QeffÞ�, and 	0
xi ! 0 to show that

zf � zt ¼
ffiffiffiffiffiffiffiffiffiffiffi
�

2Qeff

s
exp

�
	02

xi

2Qeff

�
	xi: (D6)

Adding Eqs. (D5) and (D6) gives Eq. (55) with
sgnð	0

xiÞ ¼ þ1 to complete the derivation.
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