
Single-knob beam line for transverse emittance partitioning

C. Xiao and O.K. Kester

Institut für Angewandte Physik, Goethe Universität, D-60483 Frankfurt am Main, Germany

L. Groening, H. Leibrock, M. Maier, and P. Rottländer

GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany
(Received 10 December 2012; revised manuscript received 25 March 2013; published 11 April 2013)

Flat beams feature unequal emittances in the horizontal and vertical phase space. Such beams were

created successfully in electron machines by applying effective stand-alone solenoid fringe fields in the

electron gun. Extension of this method to ion beams was proposed conceptually. The present paper is on

the decoupling capabilities of an ion beam emittance transfer line. The proposed beam line provides a

single-knob tool to partition the horizontal and vertical rms emittances, while keeping the product of the

two emittances constant as well as the transverse rms Twiss parameters (�x;y and �x;y) in both planes. It is

shown that this single knob is the solenoid field strength.

DOI: 10.1103/PhysRevSTAB.16.044201 PACS numbers: 41.75.Ak, 41.85.Ct, 41.85.Ja

I. INTRODUCTION

The modification of projected beam emittances under
preservation of the full six-dimensional emittance became
a matter of interest for many accelerator applications. First
experiments were proposed and conducted in [1,2] at elec-
tron machines about a decade ago. The issue is of special
interest for increasing the performance of x-ray free
electron lasers and advanced approaches to emittance re-
partitioning are under conceptual and experimental inves-
tigation [3–8]. Flat hadron beams could facilitate the
process of multiturn injection into circular machines,
which imposes different requirements on the horizontal
and vertical emittance of the incoming beam. Recently, it
was proposed to use flat beams in hadron-hadron collisions
to provide higher luminosity by mitigating beam-beam
effects [9,10]. The mass resolution of spectrometers is
increased significantly if the beam is flat perpendicular to
the direction of the spectrometers bend. A corresponding
setup behind an electron-cyclotron-resonance source is
proposed in [11].

From first principles beams are created round without
any coupling among planes. Their rms emittances as well
as their eigen-emittances are equal in the two transverse
planes. Thus, any transverse round-to-flat transformation
requires a change of the beam eigen-emittances by a non-
symplectic transformation [12]. Such a transformation can
be performed by placing a charge state stripper inside an
axial magnetic field region as proposed in [13]. Inside such
a solenoid stripper, transverse interplane correlations are
created nonsymplectically. Afterwards they are removed

symplectically by a decoupling section including skew
quadrupoles. It must be mentioned that the use of charge
state strippers (outside from solenoids) is state of the art
at several ion machines that provide highly charged ions
[14–16].
It is emphasized that the paper is on the application of

coupled beam dynamics aiming for increased performance
of an accelerator chain. It is not on coupled beam dynamics
theory itself and references are given whenever needed.
The paper starts with a reintroduction of the required terms
of coupled beam dynamics. Afterwards the beam line for
transverse emittance transfer is presented. The fourth sec-
tion is on modeling the nonsymplectic process of charge
state stripping inside a solenoid followed by the treatment
of the symplectic decoupling section. The decoupling and
matching capabilities of the setup are remarkably flexible
and the impact and discussion of these findings are treated
in dedicated sections. The paper puts some emphasis on the
detailed description of the beam line and beam parameters
since its decoupling and matching features were found
within the preparation of the experimental proof of princi-
ple of emittance transfer by means of tracking simulations.

II. BASIC TERMS

The four-dimensional symmetric beam matrix

C ¼

hxxi hxx0i hxyi hxy0i
hx0xi hx0x0i hx0yi hx0y0i
hyxi hyx0i hyyi hyy0i
hy0xi hy0x0i hy0yi hy0y0i

2
666664

3
777775 (1)

contains ten unique elements, four of which describe the
coupling. If at least one of the elements of the off-diagonal
submatrix is nonzero, the beam is x-y coupled. The four-
dimensional rms emittance "4d is the square root of the
determinant of C, and the projected beam rms emittances
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"x and "y are the square roots of the determinants of the

on-diagonal submatrices, i.e., phase space area divided by
�. Diagonalization of the beam matrix yields the eigen-
emittances "1 and "2,

�C ¼ MCMT ¼

"1 0 0 0

0 "1 0 0

0 0 "2 0

0 0 0 "2

2
666664

3
777775; (2)

with

"1 ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�tr½ðCJÞ2� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr2½ðCJÞ2� � 16 detðCÞ

qr
; (3)

"2 ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�tr½ðCJÞ2� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr2½ðCJÞ2� � 16 detðCÞ

qr
; (4)

as shown in Appendix A. The four-dimensional matrix J is
the skew-symmetric matrix with nonzero entries on the
block diagonal off form. Any symplectic transformationM
obeys

MTJM ¼ J; J ¼

0 1 0 0

�1 0 0 0

0 0 0 1

0 0 �1 0

2
666664

3
777775: (5)

Eigen-emittances are invariant under symplectic
transformations and the eigen-emittances are equal to the
rms emittances if and only if interplane correlations are
zero.

III. EMITTANCE TRANSFER BEAM LINE

The planned emittance transfer experiment (EMTEX)
beam line for the demonstration of transverse rms emit-
tance transfer is shown in Fig. 1. The EMTEX section
comprises two quadrupole doublets, a solenoid with strip-
per foil inside, a quadrupole triplet, a skew quadrupole
triplet, another quadrupole triplet, a current transformer,
and a transverse emittance measurement unit. Its total
length is about 13 m. Centering of the beam can be done

through a grid a few meters in front of the first doublet, the
grid of the emittance measurement setup, and finally by
observing the foil on-line, i.e., the light emission from the
impacting beam.
In order to mitigate four-dimensional rms emittance

growth from scattering during the stripping process, the
beam sizes on the stripper foil should be kept as small as
possible. Two quadrupole doublets separated by a drift
space in front of the solenoid do the required matching.
A low intensity beam of Dþ

6 [17,18], previously acceler-

ated to 11:4 MeV=u at 108 MHz and stripped to 3Dþ
2 in a

22 �g=cm2 carbon foil placed at the center of a solenoid
will be used, and the total relative momentum spread of the
beam is less than �5� 10�4 as verified by Schottky
spectra in the synchrotron served by our linac. The maxi-
mum longitudinal magnetic field is 1.0 T. This nonsym-
plectic transformation creates x-y coupling between the
transverse planes. The nonsymplecticity is from omission
of parts of the full system comprising the stripping process.
It includes the incoming beam particle nuclei, their resid-
ual electrons, and the nuclei and electrons of the stripping
foil atoms. However, for the beam dynamics just the
stripped beam ions are kept in the system. The stripping
atoms and the stripped-off electrons are removed artifi-
cially from the system. This removal is nonsymplectic.
A quadrupole triplet and a skew quadrupole triplet

separated by a drift space are employed to remove these
correlations symplectically. The section from the solenoid
exit to the skew triplet exit will be called decoupling
section in the following. A final quadrupole triplet is
used for matching to the existing beam line followed by
a beam current transformer and an emittance measurement
unit. The full beam line is presented quantitatively in
Appendix B.

IV. STRIPPING INSIDE A SOLENOID

Stripping inside a solenoid is fundamentally different
from stripping between two solenoids due to the longitu-
dinal magnetic field component and the fringe fields. In
case of pure transverse field components (dipoles, quadru-
poles, n-poles), there is equivalence between stripping in-
side this magnet and stripping between two such magnets
of half lengths.
Let C0 denote the second moment matrix at the entrance

of the solenoid. If the beam has equal horizontal and
vertical rms emittances and no interplane correlations,
the beam matrix can be simplified to (in the case here,
�x;y ¼ 0)

C0 ¼

"� 0 0 0

0 "
� 0 0

0 0 "� 0

0 0 0 "
�

2
6666664

3
7777775: (6)

FIG. 1. Layout of the EMTEX section.

C. XIAO et al. Phys. Rev. ST Accel. Beams 16, 044201 (2013)

044201-2



Assuming a very short solenoid, its transfer matrix can be
divided into two parts:

Rin ¼

1 0 0 0

0 1 kin 0

0 0 1 0

�kin 0 0 1

2
666664

3
777775;

Rout ¼

1 0 0 0

0 1 �kout 0

0 0 1 0

kout 0 0 1

2
666664

3
777775:

(7)

If the beam rigidity does not change inside the solenoid, kin
is equal to kout, and kin ¼ kout ¼ k. The first part describes
the entrance fringe field and the second part is the exit
fringe field. In here the focusing strength of the solenoid is

k ¼ B

2ðB�Þ : (8)

B is the on-axis magnetic field strength and B� is the beam
rigidity. The beam matrix C1 after the entrance fringe field
k is found as

C1 ¼ RinC1R
T
in

¼

"� 0 0 �k"�

0 "
� þ k2"� k"� 0

0 k"� "� 0

�k"� 0 0 "
� þ k2"�

2
6666664

3
7777775: (9)

The off-diagonal submatrices describe the correlations and
the values of hxyi and hx0y0i are zero. In order to change the
eigen-emittances, a nonsymplectic transformation has to
be integrated into the round-to-flat transformation section.
The nonsymplectic transformation is accomplished for
instance by changing the beam rigidity B� in between
the fringe fields from ðB�Þin to ðB�Þout through charge state
stripping. Defining

�q :¼ ðB�Þin
ðB�Þout ; (10)

the exit fringe field transfer matrix changes to (kin ¼ k,
kout ¼ �qk)

R0
out ¼

1 0 0 0

0 1 ��qk 0

0 0 1 0

�qk 0 0 1

2
666664

3
777775: (11)

The focusing strength k of the solenoid is calculated from
the unstripped charge state. The elements of the beam
matrix C0

1 directly after the stripper foil inside of the
solenoid but still before the exit fringe field are

C0
1 ¼

"� 0 0 �k"�

0 "
� þ k2"�þ �’2 k"� 0

0 k"� "� 0

�k"� 0 0 "
� þ k2"�þ�’2

2
6666664

3
7777775 (12)

with stripping scattering effects on the angular spread
being included. The parameter �’2 is the scattering
amount during the stripping process [19], and the stripper
foil itself is modeled by increasing the spread of the
angular distribution through scattering. After the stripper
foil the beam passes through the exit fringe field with
reduced beam rigidity and the beam matrix C0

2 after the
exit fringe field becomes

C0
2 ¼ R0

outC
0
1R

0T
out ¼

"nRn ak"n�nJn

�ak"n�nJn "nRn

" #
; (13)

where a :¼ �q� 1 and

"n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"�

�
"

�
þ a2k2"�þ�’2

�s
; �n ¼ �"

"n
; (14)

introducing the 2� 2 submatrices Rn and Jn:

Rn ¼
�n 0

0 1
�n

" #
; Jn ¼

0 1

�1 0

" #
: (15)

The amount of eigen-emittance transfer scales with the
longitudinal magnetic field strength and the beam rms sizes
on the stripper. Interplane correlations are created and the
rms emittances and eigen-emittances after the solenoid
with stripper foil read

"x;y ¼ "n; "1;2 ¼ "nð1� ak�nÞ: (16)

The parameter t is introduced to quantify the interplane
coupling. If t defined as

t ¼ "x"y
"1"2

� 1 � 0 (17)
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is equal to zero, there are no interplane correlations and
the beam is fully decoupled. Kim [20] introduced the
beam angular momentum 2� ¼ hxy0 � x0yi and for
an angular momentum dominated beam one finds
t ¼ �2="4d. After the solenoid exit fringe field, the t value
can be calculated as

t ¼ a2k2"�
"
� þ�’2

(18)

and the four-dimensional rms emittance is

"4d ¼ "1"2 ¼ "2 þ "��’2: (19)

Obtaining this result we neglected the finite solenoid
length, i.e., its central pure longitudinal magnetic field.
Tracking simulations using three-dimensional magnetic
field maps of finite solenoids confirmed that this omission
is justified [21,22]. The four-dimensional rms emittance
increase is proportional to the beam sizes on the stripper
foil. It is purely from scattering in the foil; it is not caused
by the shift of beam rigidity inside the longitudinal mag-
netic field.

V. DECOUPLING SECTION

The simplest skew decoupling section only contains
three skew quadrupoles with appropriate betatron phase
advances in each plane [23,24]. Let Rq be the 4� 4matrix

corresponding to a certain arrangement of quadrupoles and
drift spaces and assume that this channel is represented by
an identity matrix in the x direction and has an additional
90� phase advance in the y direction as in [20]

Rq ¼ In On

On Tn

" #
: (20)

Here the 2� 2 submatrices On, Tn, and In are defined as

On ¼
0 0

0 0

" #
; Tn ¼

0 u

� 1
u 0

" #
; In ¼

1 0

0 1

" #
:

(21)

If the quadrupoles are tilted by 45�, the 4� 4 transfer
matrix can be written as

�R ¼ RrRqR
T
r ¼ 1

2

Tnþ Tn�
Tn� Tnþ

" #
; (22)

where

Rr ¼
ffiffiffi
2

p
2

In In

�In In

" #
; Tn� ¼ Tn � In: (23)

The beam matrix C0
3 after the decoupling section is

C0
3 ¼ �RC0

2
�RT ¼ �þ�nþ 	�n�

	�n� ���nþ

" #
; (24)

and the 2� 2 submatrices �n� are defined through

�n� ¼ u 0

0 � 1
u

" #
; (25)

with

�� ¼ "n
2

�
�n

u
þ u

�n

� 2ak�n

�
; (26)

and

	 ¼ "n
2

�
��n

u
þ u

�n

�
: (27)

Assuming that this beam matrix is diagonal, its x-y com-
ponent vanishes:

	�n� ¼ On (28)

solved by

u ¼ �n: (29)

This result was found earlier in [20] for instance. However,
the major steps have been repeated here since they will be
referred to later. Suppose that the decoupling transfer matrix
�R is able to decouple the two transverse planes ofC0

2.We still
do not know how this transfer beam line looks in detail, but
anyway we calculate the final rms emittances obtaining

"x;y ¼ "n
2

�
�n

u
þ u

�n

� 2ak�n

�
: (30)

This idealized example serves illustrating the principle, and
it may be accomplished with just three skew quadrupoles.
For a given solenoid strength k0, referring to the unstripped
beam, the corresponding quadrupole gradients of the decou-
pling section are determined using a numerical routine, such
that finally the rms emittances are equal to the eigen-
emittances. If these optimized gradients are applied to re-
move interplane correlations produced by a different sole-
noid strength k1, the resulting rms emittances and eigen-
emittances at the exit of the decoupling section are calcu-
lated to be

"x;y ¼ "nðk1Þ
2

�
�nðk1Þ
�nðk0Þ þ

�nðk0Þ
�nðk1Þ � 2ak1�nðk1Þ

�
(31)

and

"1;2 ¼ "nðk1Þ½1� ak1�nðk1Þ� (32)

with the parameter t:

t ¼ a4"2�2

ð"� þ�’2Þð"� þ a2k20"�þ �’2Þ
ðk21 � k20Þ2

4
: (33)

In the sameway the rmsTwiss parameters of a beam coupled
by k1 but decoupled by �Rðk0Þ are found from
Eq. (24) as

~�x ¼ ~�y ¼ 0; ~�x ¼ ~�y ¼ �nðk0Þ; (34)

showing that the rms Twiss parameters after decoupling
section do not depend on the coupling solenoid strength k1
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if the decoupling section was set assuming a coupling
strength k0.

The EMTEX beam line uses more elements than a single
skew triplet because of finite apertures and gradients of a
real experiment. Its decoupling section comprises a quad-
rupole triplet and a skew quadrupole triplet separated by a
drift. The quadrupole gradients are optimized numerically
from a numerical routine [13] to remove the interplane
correlations thus minimizing the horizontal (for instance)
rms emittances to the lower of the eigen-emittances.

Figure 2 illustrates the transverse emittance transfer and
the multiparticle beam dynamics simulations have been
done using the TRACK code [25]. The relevant parameters
of the simulations are summarized in Appendix B. In the
first step we assume that the and the skew quadrupole
triplet are turned off. This process is an ordinary stripping
process and the eigen-emittances are equal to the rms
emittances at the entrance and exit of this section. It
reflects today’s situation of providing highly charged ions
from linacs. Because of the stripping growth of eigen-
emittances and rms emittances is unavoidable. It is the
reference scenario to which the transverse rms emittance
transfer scenario is to be compared.

In the latter case, the solenoid and the skew quadrupoles
triplet are turnedon.Once the beamenters the entrance fringe
field of the solenoid, the eigen-emittances start to split gradu-
ally. After stripping, the exit fringe field of the solenoid is

passed by the beam with reduced beam rigidity, thus over-
compensating the previous eigen-emittance separation; the
eigen-emittances diverge inside the solenoid and are pre-
served afterwards. Along the decoupling skew quadrupole
triplet the rms emittances are made equal to the separated
eigen-emittances. Compared to the reference scenario, the
final horizontal rms emittance is reduced significantly.
Therefore, this emittance transfer experiment is there-

fore fundamentally different from an emittance exchange
experiment. Emittance transfer is nonsymplectic and the
amount of transfer can be controlled by the solenoid field
strength and the beam size on the stripping foil. Behind the
decoupling section another regular quadrupole triplet is
required to rematch the beam for further transport.

VI. DECOUPLING CAPABILITYANALYSIS

EMTEX will use a beam of molecules from
Dþ

6 with the initial beam parameters � ¼ 0, � ¼
2:5 mm=mrad, and " ¼ 0:51 mmmrad at the entrance of
the solenoid. The stripping scattering amount �’ is
0.226 mrad [19] and the decoupling transfer matrix is
determined for 1.0 T of solenoid field. The eigen-
emittances and rms emittances at the exit of the solenoid
calculated using Eq. (16) and those obtained from tracking
through three-dimensional field maps are compared in
Fig. 3. The beam is strongly coupled.
For the simplest decoupling transfer matrix, the decou-

pling section is composed of a skew quadrupole triplet,
explicitly from Eq. (22) (in units of mm and mrad):

�Rsimplest¼

þ0:500 þ0:891 �0:500 þ0:891

�0:281 þ0:500 �0:281 �0:500

�0:500 þ0:891 þ0:500 þ0:891

�0:281 �0:500 �0:281 þ0:500

2
666664

3
777775: (35)

FIG. 3. Eigen-emittances and rms emittances calculated by the
analytical method based on the short solenoid transfer matrix of
Eq. (16) and by multiparticle tracking through three-dimensional
field maps.

FIG. 2. Evolution of the rms emittances and eigen-emittances
along the EMTEX beam lines for two cases: in the first case
(reference, gray and black lines) the solenoid and the skew quadru-
poles are off, i.e., no nonsymplectic action nor coupling. Eigen-
emittances and rms emittances are always equal and they change
just during the stripping from angular scattering. In the second case
(red and blue lines) the solenoid field is 1.0 Tand its fringes cause
nonsymplectic actions that change the eigen-emittances. Eigen-
emittances and rms emittances separate and both are increased
during stripping. The skew quadrupoles are turned on as well and
remove the coupling previously produced inside of the solenoid.
Since skew quadrupoles are symplectic, they do not change the
eigen-emittances. After this decoupling the rms emittances are
equal to the nonsymplectically changed eigen-emittances.
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The EMTEX decoupling section comprises a quadrupole
triplet and a skew quadrupole triplet separated by a drift.
Therefore, its decoupling transfer matrix has a more com-
plex structure, explicitly (in units of mm and mrad)

�REMTEX¼

þ0:386 �0:548 �0:240 �0:647

þ1:304 �0:535 �0:111 �2:348

þ0:673 þ0:126 �0:161 þ1:301

þ0:389 þ0:805 �0:495 þ0:846

2
666664

3
777775; (36)

being different from the form of Eq. (22). The final eigen-
emittances and rms emittances at the exit of the skew
quadrupole triplet calculated using Eq. (22) and those
obtained from tracking through the EMTEX beam line
are compared in Fig. 4. For the simple decoupling section
the calculation is based on the transfer matrix method of
Eq. (22). For the EMTEX decoupling section multiparticle
tracking through the external three-dimensional field maps
(for the solenoid) and the external one-dimensional field
profile (for the quadrupole and skew quadrupole) were
adopted.

The remarkable result is that both decoupling matrices
work effectively for a wide range of longitudinal magnetic
field values, i.e., the beam is well decoupled for a wide
range of longitudinal magnetic fields around the field the
quadrupoles have been optimized for. Additionally, in both
cases the decoupling performance is independent from the
sign of k1 as suggested by Eq. (33) and weakly depended
on (k1-k0). We currently do not have a complete analytical
understanding of this weak dependence except for the
simple decoupling matrix Eq. (22). However, we still aim
for understanding why the dependence is so weak even for

the EMTEX decoupling beam line being more complex
with respect to (wrt) Eq. (22). To exclude that this is casual
for this one beam line, the beam line has been modified by
prolonging or shortening drifts and quadrupole field
lengths. For all modifications (all using a regular quadru-
pole triplet followed by a skew quadrupole triplet),
the same behavior of decoupling performance was
observed.
However, this behavior simplifies the decoupling signif-

icantly as readoption of gradients to the solenoid field can
be skipped within a reasonable range of solenoid fields. It
provides a single-knob tool to partition the horizontal and
vertical beam rms emittances. The behavior of t calculated
analytically by Eq. (22) and by tracking through EMTEX
is illustrated in Fig. 5, where the stripping scattering
amount �’ is 0.226 mrad and the longitudinal magnetic
field is varied. At EMTEX k0 corresponds to a solenoid
field of 1.0 T and accordingly t has a minimum for that
value. The beam is well decoupled for a wide range of
solenoid fields for both the analytical calculation and for
tracking through the EMTEX beam line.
The dependence of t on the solenoid field as obtained

from tracking has been fitted with a 4th order polynomial
as motivated by Eq. (33) and the fit is plotted as well in
Fig. 5. This result might suggest a general 4th order de-
pendence of the decoupling performance of any beam line
on the coupling-driving solenoid field. The analytical in-
vestigation of this suggestion is ongoing. During the ex-
perimental proof of eigen-emittance tayloring with
effective fringe fields by Piot et al. [5], the authors used
the beam size to control the amount of eigen-emittance
change. EMTEX will use the solenoid field strength in-
stead. Using the beam size, the decoupling gradients must
be readopted to the specific beam size.

FIG. 4. Eigen-emittances and rms emittances calculated by the
analytical method based on the decoupling matrix of Eq. (22)
and by multiparticle tracking through the EMTEX beam line.
Although the longitudinal magnetic field is varied, the decou-
pling gradients are kept constant at the values determined to
decouple the beam coupled by a longitudinal magnetic field of
1.0 T.

FIG. 5. The parameter t calculated analytically and by multi-
particle tracking simulation. Although the longitudinal magnetic
field is varied, the decoupling gradients are kept constant at the
values determined to decouple the beam coupled by a longitu-
dinal magnetic field of 1.0 T.
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Within the preparation of experimental investigation of
the decoupling at EMTEX, machine-related error studies
wrt quadrupole gradients and rolls were done. As shown in
[22], just rolls have a notable but negligible effect on the
decoupling.

VII. MATCHING CAPABILITYANALYSIS

Another convenient feature of EMTEX, which
can be explained for the generic case of decoupling accord-
ing to Eq. (22), seems to manifest as a general rule in
numerical matrix as well as in tracking calculations. Its
generality we cannot explain for the time being: the shape
of the transverse beta functions after the decoupling
section does not practically depend on the solenoid field
strength. In other words, the two transverse rms ellipses
after decoupling are just changed in size through the
solenoid field; their orientation and shape remains unaf-
fected by the solenoid strength. This matching capability of
EMTEX is illustrated in Figs. 6 and 7.

This feature has some analogy to an achromatic
section. Inside an achromat the dispersion functions D
and D0 are nonzero and the envelope shapes depend on
the amount of momentum spread. Behind an achromat D
and D0 are zero and envelopes do not depend (to first
order) any longer on the momentum spread. As mentioned
before, we do not fully understand yet this analogy and its
complete investigation shall be beyond the scope of this
paper.

VIII. CONCLUSION AND OUTLOOK

A beam line for demonstration of round-to-flat trans-
formation of an initially uncoupled ion beam was pre-
sented. It comprises two doublets for matching the
required beam parameters on a stripping foil being placed
in the center of a solenoid. The net effect on the beam is a
nonsymplectic transformation creating interplane cou-

FIG. 6. Horizontal and vertical beta functions of the beam
along the EMTEX beam line for different solenoid field
strengths. The gradients of all quadrupoles (regular and skew)
are constant. The shape of the horizontal and vertical beta
function does depend on the solenoid field strength just between
the solenoid entrance and the exit of the last skew quadrupole,
i.e., along the part of the beam line where interplane coupling is
nonzero. Behind the last skew quadrupole all coupling is re-
moved and from this position on the shape of the beta function is
invariant under solenoid field strength variation.

FIG. 7. The transverse emittance portraits at the exit of
the beam line for different solenoid field strengths. The gradients
of the quadrupoles and skew quadrupoles are constant. The
rmsTwiss parameters do not depend on the solenoid field strength.
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pling, being removed afterwards along a beam line from
one regular quadrupole triplet and one skew quadrupole
triplet. Angular scattering during stripping was included.
The beam line decoupling performance was found to be
very stable wrt the magnetic field strength of the solenoid,
i.e., the same decoupling gradients can be applied for a
wide range of solenoid fields without relevant reduction of
the decoupling performance. After the beam is decoupled
its rms Twiss parameters �x, �x, �y, �y do not practically

depend on the solenoid field strength that created the
coupling. Although the results were illustrated using spe-
cific beam parameters, they apply for any other set of beam
parameters transported through the proposed kind of beam
line. For the time being we can explain the result for a
generic case but not the generality of which it has been
observed.
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APPENDIX A: EIGEN-EMITTANCE FORMULA

Based on linear algebra basics, one has

detðA1A2Þ ¼ detðA1Þ detðA2Þ; (A1)

detðAT
1 Þ ¼ detðA1Þ; (A2)

trðA1A2A3Þ ¼ trðA3A1A2Þ ¼ trðA2A3A1Þ: (A3)

AssumingM is a symplectic transformation, and "1 and "2
are the eigen-emittances. We use

detð �CÞ ¼ detðMCMTÞ ¼ detðMÞ detðCÞ detðMTÞ (A4)

and

detðMÞ ¼ detðMTÞ ¼ 1 (A5)

to obtain

detðCÞ ¼ ð"1"2Þ2: (A6)

It is straightforward that

tr½ð �CJÞ2� ¼ trðMCMTJ �MCMTJÞ
¼ trðMC �MTJM � CMTJÞ
¼ trðMC � J � CMTJÞ
¼ trðMTJM � CJCÞ
¼ tr½ðJCÞ2� ¼ tr½ðCJÞ2� (A7)

and

tr½ðCJÞ2� ¼ tr½ð �CJÞ2� ¼ �2ð"21 þ "22Þ (A8)

resulting finally in

"1 ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�tr½ðCJÞ2� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr2½ðCJÞ2� � 16 detðCÞ

qr
; (A9)

"2 ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�tr½ðCJÞ2� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr2½ðCJÞ2� � 16 detðCÞ

qr
: (A10)

APPENDIX B: BEAM LINE PARAMETERS

ADþ
6 beam of 11:4 MeV=u is stripped in a foil to a 3Dþ

2

beam. The total relative momentum spread is less than
�5� 10�4. The parameters of the beam line are listed in
Table I. Positive gradient means horizontal focusing and a
skew refers to a regular quadrupole rotated clockwise by

TABLE I. The lattice of the EMTEX beam line.

Element Effective length [mm] Gradient [T=m]

Drift 240.5

Quad 319 þ7:276

Drift 203

Quad 319 �7:726

Drift 4000

Quad 354 �0:187

Drift 167.5

Quad 354 þ3:287

Drift 500

Drift 300

Half sol 100 þ1:00 T

Foil 0 22 �g=cm2, �’ ¼ 0:226 mrad

Half sol 100 þ1:00 T

Drift 300

Drift 200

Quad 319 þ10:464

Drift 201

Quad 319 �9:431

Drift 201

Quad 319 þ8:421

Drift 500

Skew quad 200 þ5:110

Drift 20

Skew quad 400 �2:229

Drift 20

Skew quad 200 þ8:861

Drift 500

Quad 200 �7:016

Drift 20

Quad 400 þ7:429

Drift 20

Quad 200 �7:806

Drift 1289
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45� around the beam direction. The decoupling section
starts at the exit of the solenoid and ends behind the last
skew quadrupole. The beam parameters at the entrance and
exit of the beam line are listed in Table II.
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