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The development of models and the ‘‘Virtual Detector for Synchrotron Radiation’’ (VDSR) code that

accurately describe the production of synchrotron radiation are described. These models and code are

valid in the classical and linear (single-scattering) quantum regimes and are capable of describing

radiation produced from laser-plasma accelerators (LPAs) through a variety of mechanisms including

betatron radiation, undulator radiation, and Thomson/Compton scattering. Previous models of classical

synchrotron radiation, such as those typically used for undulator radiation, are inadequate in describing

the radiation spectra from electrons undergoing small numbers of oscillations. This is due to an improper

treatment of a mathematical evaluation at the end points of an integration that leads to an unphysical

plateau in the radiation spectrum at high frequencies, the magnitude of which increases as the number of

oscillation periods decreases. This is important for betatron radiation from LPAs, in which the betatron

strength parameter is large but the number of betatron periods is small. The code VDSR allows the radiation

to be calculated in this regime by full integration over each electron trajectory, including end-point effects,

and this code is used to calculate betatron radiation for cases of experimental interest. Radiation from

Thomson scattering and Compton scattering is also studied with VDSR. For Thomson scattering, radiation

reaction is included by using the Sokolov method for the calculation of the electron dynamics. For

Compton scattering, quantum recoil effects are considered in VDSR by using Monte Carlo methods. The

quantum calculation has been benchmarked with the classical calculation in a classical regime.

DOI: 10.1103/PhysRevSTAB.16.030701 PACS numbers: 41.75.Jv, 41.60.Ap, 52.38.Kd

I. INTRODUCTION

In recent years, laser plasma based electron accelerators
(LPAs) have achieved significant progress due to controlled
injection and guiding technologies [1–4]. Many kinds of
electron injection schemes are demonstrated in experi-
ments, such as ionization injection [5–10], colliding pulse
injection [11–13], and density profile controlled injection
[14–18]. Electrons injected in a specific phase of a wake-
field make possible a final high quality beam (narrow en-
ergy spread and narrow divergence). Laser guiding by
relativistic self-guiding or plasma channel allows propaga-
tion far longer than the diffraction length [3]. Electrons can
then be accelerated to the dephasing length. These two
technologies have resulted in GeV high quality electron
beams being demonstrated in several groups [19–21].

One of the promising applications of such stable high
quality beams from LPAs is an incoherent radiation source

in the ultraviolet and x-ray regime for which there are

several mechanisms. Electrons accelerated in the wakefield

produce betatron radiation if their trajectories are off axis

[22]. Experiments have shown the emitted betatron radia-

tion photons can be at the tens of keV level [23]. The LPA

accelerated electron beams can also be sent to a magnetic-

based undulator to set up a synchrotron radiation source.

Several groups have already carried out these experiments

and nm level wavelength radiation was demonstrated

[24,25]. Another short laser pulse (or, alternatively, a re-

flected pulse by a plasma mirror) can be used to produce

high energy photons by scattering with the LPA electron

beams [26–28]. Dependent on the beam energy, both

Thomson or Compton scattering processes can occur.

Besides working as a radiation source, the radiation can

also be used as a diagnostic for the beam itself [29–31].

Because of the unique character of the electron beam in

LPA, the beam size and internal structure inside the plasma

are important and cannot be directly detected by normal

diagnosis techniques. Betatron radiation gives a way to

deduce this information.
Theoretical studies on these radiation mechanisms have

been carried out formany years [22,32,33]. However, due to
the unique character of the LPA and the accelerated beams
(e.g., for betatron radiation, a large strength parameter a�
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and small betatron oscillation number N�), conventional

analytical results cannot be used directly. Furthermore, real
world effects, such as the synchrotron strength parameter
varying as a function of space and time (such as the case of
realistic laser pulse profiles in Thomson scattering or ac-
celeration effects in betatron radiation) make analytical
calculations intractable. Numerical calculations are needed
and they have been used recently to calculate the radiation
spectrum. Previous numerical methods include photon-
recording based calculation within particle-in-cell (PIC)
simulations to obtain the betatron radiation spectrum
[34–36], as well as a postprocessing code to obtain the
radiation spectrum [37,38].

Previous formulations and numerical calculations of
synchrotron radiation in the classical regime are inade-
quate to describe the radiation spectrum produced by elec-
trons undergoing a small number of oscillations, as is the
case in experiments on betatron radiation from LPAs. This
inadequacy is the result of an improper treatment of a
mathematical evaluation at the end points of the integra-
tion. This results in an unphysically large amount of radia-
tion presented in the spectrum at high frequencies. We
show that by properly including end-point effects, the
radiation spectrum can be accurately calculated.

In this paper, we describe the development of models
and the code ’’Virtual Detector for Synchrotron Radiation’’
(VDSR) to accurately calculate the synchrotron radiation
from LPAs for a variety of physical processes, including
undulator radiation, betatron radiation, and Thomson/
Compton scattering. These models and code are valid in
the classical regime and in the quantum (linear, single-
scattering regime) including the effects of radiation reac-
tion and quantum recoil. Comparisons between the
conventional analytical results and VDSR calculation have
been made and the inadequacy of the analytic formulas are
pointed out. The VDSR code is used to calculate betatron
radiation using electron trajectories obtained from PIC
simulations, and to calculate the radiation from beam-laser
Thomson scattering and Compton scattering. For the last
case, a benchmark of the quantum calculation is made by
comparing the results with a classical calculation.

This paper is organized as follows. In Sec. II, the inade-
quacy of the conventional formulas describing synchrotron
radiation in the classical regime for a small number of
particle oscillations is examined. By properly including
end-point effects, the radiation spectrum can be accurately
calculated. This is quantified by numerical calculations us-
ing the VDSR code. In Sec. III, several examples of synchro-
tron radiation calculations are presented, including betatron
radiation from LPAs with 100 MeV level electron beams,
Thomson scattering fromLPAswith 300MeV level electron
beams, and Compton scattering from LPAs with 10 GeV
level electron beams. Included is a benchmarking of the
Compton models in VDSR via a comparison to the
Thomsonmodels in the classical regime. Section IVpresents

a summary and conclusion. This paper includes two appen-
dices. The first presents the conventional analytical formu-
lation of synchrotron radiation in the classical regime and the
second presents details on the VDSR code.

II. INADEQUACY OF CONVENTIONAL
FORMULAS

The conventional formulas that describe synchrotron
radiation from a highly relativistic electron in the classical
limit are summarized in Appendix A. These formulas are
traditionally used to describe radiation from undulator
magnets [32], betatron radiation from plasma focusing
channels [22], and Thomson scattering when interacting
with a counterstreaming laser pulse [33]. Analytical for-
mulas presented were derived under several assumptions,
including �2

z0 � 1, �2 � 1, and ð1þ a2S=2Þ=�2
z0 � 1,

along with the assumption that the amplitude aS of the
force giving rise to the synchrotron motion is constant,
where �z0 ¼ vz0=c is the initial axial velocity of the

electron, �z0 ¼ ð1� �2
z0Þ�1=2, and � is the angle of obser-

vation with respect to the z axis.
As is shown below, we find that the conventional for-

mulas are only valid in the limit where the electron under-
goes a large number of synchrotron oscillations, NS � 1.
For undulator radiation, this is typically well satisfied,
since undulator magnetics are usually composed of a large
number of periods, Nu � 100. However, for betatron ra-
diation in a LPA, this condition (N� � 1) may not be

satisfied, and for the parameters of many experiments of
interest the number of betatron periods is small, N� < 10.

In the limit N� < 10, the conventional formulas predict an

unphysically large amount of radiation at high frequencies.
To accurately model the radiation from a small number of
oscillation periods, it is necessary that the end-point con-
tributions to the classical radiation integrals be properly
included, as discussed below.
To correctly describe synchrotron radiation for a small

number of oscillation periods, we return to the most gen-
eral form of the radiation spectrum d2I=d!d�, which is
the energy radiated per frequency, !, per solid angle, �.
From classical electromagnetic theory, the far field radia-
tion spectrum of a charged particle is [39]

d2I

d!d�
¼ e2

4�2c

��������
Z 1

�1
Rðt; ~rÞdt

��������
2

; (1)

¼ e2

4�2c

��������
Z 1

�1
~n�½ð ~n� ~�Þ� _~��

ð1� ~�� ~nÞ2 ei!½t� ~n� ~rðtÞ=c�dt
��������

2

;

(2)

where ~n is the unit vector pointing to the detector pixel, ~�
and ~r are the normalized velocity and spatial coordinates of
the particle.
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We now assume that the radiation we are interested in is
only produced in the time interval t1 < t < t1 þ T, during

which the acceleration is nonzero,
_~� � 0. Outside of this

interval, we assume the acceleration is zero. In this case we
can replace the limits of integration in the above expression
with t1 and t1 þ T. Note that, since we typically assume an
initially highly relativistic electron with initial velocity �z0

prior to entering the interaction region t1 < t < t1 þ T, this
formulation intrinsically neglects the radiation produced
by acceleration required to bring the electron up to its
initial velocity �z0. However, we can assume that this

initial acceleration prior to t1 is adiabatically slow such
that the radiation from t < t1 is small and lies in a fre-
quency region outside the one of interest. Hence, we

assume
Rt1�1 Rðt; ~rÞdtþ R1

t1þT Rðt; ~rÞdt ¼ 0.

Using the relation

~n� ½ð ~n� ~�Þ � _~��
ð1� ~� � ~nÞ2

¼ d

dt

�
~n� ð ~n� ~�Þ
1� ~� � ~n

�
; (3)

and integrating by parts yields

d2I

d!d�
¼ e2

4�2c

�������� ~n� ð ~n� ~�Þ
1� ~� � ~n ei!½t� ~n� ~rðtÞ=c�jt1þT

t1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
term 1: R1

�i!
Z t1þT

t1

~n� ð ~n� ~�Þei!½t� ~n� ~rðtÞ=c�dt
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

term 2: R2

��������
2¼ e2

4�2c
jR1 þ R2j2: (4)

When the end-point term R1 is neglected, the resulting
expression yields the conventional synchrotron radiation
formulas discussed in Appendix A (for the idealized cases
in which the integral in R2 can be performed analytically).
For a large number of oscillation periods N� � 1, the

second term (R2) in Eq. (4), which is an integration along
the particle trajectory, is usually the main contribution to
the radiation spectrum. The first term (R1) in Eq. (4) is
usually omitted for a long oscillation trajectory, such as in
the calculation for the undulator radiation, and this is
typically a good approximation.

The end-point term R1, however, is important for the
calculation of betatron radiation from the electrons oscil-
lating inside a laser wakefield, in which the number of
oscillation periods (N� ¼ L=��) is often small (� 1–10).
If this term is omitted, there will be always a flattop region
on the high frequency part of the spectrum. This is easy to
see by the mathematical calculation of the (unphysical)
radiation from a nonaccelerated particle during the time
interval from t1 to t1 þ T. For simplicity, let us consider the
radiation from a particle which has a constant velocity

of ~� and an initial position of ~r0. One finds R2 ¼
�i!

Rt1þT
t1 ~n� ð ~n� ~�Þei!½t� ~n� ~rðtÞ=c�dt ¼ �R1, and

jR1j2 ¼ 2�2sin2�½1� cosðk!!Þ�=ð1� � cos�Þ2, where �

is the angle between ~n and ~� and k! ¼ Tð1� � cos�Þ. As
we see, if the first term R1 is omitted, the spectrum will
always have a flat region with a frequency oscillation of
�! ¼ 2�=k! ¼ 2�=Tð1� � cos�Þ. The amplitude of
this term is negligible in the region of the main radiation
frequency when N� � 1. However, for experiments on

betatron radiation from a LPA, the effective radiation
length of the particle is usually small such that N� �
1–10. In this case, the end-point term R1 should be in-
cluded, which is omitted in the conventional theoretical
formulation.

To quantitatively examine the contribution of the terms
R1 and R2, we utilize the code VDSR that we have recently

developed. The code VDSR is a parallel C++ code that can
calculate the incoherent synchrotron radiation from elec-
tron beams for a wide variety of mechanisms, including
undulator radiation, betatron radiation, and Thomson scat-
tering. In VDSR, charged particle trajectories can be calcu-
lated by fourth-order Runge-Kutta method or be input from
other files such as the output of particle-in-cell simulations.
The radiation spectrum is then calculated for each electron
by evaluating the expression Eq. (4) numerically, including
both terms R1 and R2. From Whittaker-Shannon-Nyquist
sampling theory we know to get the high frequency radia-
tion (!r), the trajectories should at least have a resolution
with a time step of �t < 1=!r, where !r is the maximum
radiated photon frequency. For a radiated photon of keV
energy level, this means the trajectory step should less than
0.2 nm. Since the betatron radiation is typically emitted
over cm scale, the integration steps should be 107 level.
This is a significantly large computational cost. Fortunately
in our case, the trajectories of the particles are relatively
smooth within a relatively long scale time (such as a laser
period or undulator period) which is much larger than the
wavelength of the radiated photons. Over such a scale time,
it is reasonable to think of the acceleration force as a
constant and the particles as undergoing a uniform accel-
eration. The trajectories are then interpolated over this time
step. Then the sampling frequency is infinitely small in
principle, so the calculation can be carried out for keV to
MeVand beyond photon radiation. The detailed integration
and the limitations of this method have been described by
Thomas [38] recently. The code VDSR adopts similar meth-
ods for the single particle radiation calculation. Further
discussion on the code VDSR is given in Appendix B.
Figure 1 shows the on-axis radiation spectrum obtained

from the code VDSR for a single electron undergoing ideal-
ized betatron motion. The strength parameter of the
betatron oscillation is held constant at a� ¼ 2:087

and acceleration is neglected. Calculation results with or
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without the term R1 for different N� are shown. The

asymptotic curve from Eq. (52) in Ref. [22] is also shown,
which is equivalent to Eq. (A10) of Appendix A. As we see
the asymptotic result fits the numerical results well when
N� is large and term 1 is included. All the spectra contain

comb-like peaks and continuous or oscillating parts be-
tween peaks. The peaks are corresponding to the resonant
and harmonic frequency of the betatron radiation The fine
oscillations in each spectrum basically come from two
parts: the end-points effect and numerical noise. They
show different envelope profiles. The oscillations induced
by end-points effect show a plateau envelope profile inde-
pendent of frequency (see the yellow dashed lines). The
numerical oscillation envelope decreases with frequency
(see the white dashed line). All the calculated spectra in
Fig. 1 are normalized by the maximum value to compare
with the asymptotic line, which shows that including term 1
can reduce the high frequency oscillation a lot (not com-
pletely, due to numerical integration noise). To get rid of
numerical noise, a higher accurate integration method
(such as Fresnel integration, more computationally costly)
should be used instead of the current Taylor expansion
method (see the discussion in Appendix B and Ref. [38]).

Since the oscillation frequency in the plateau region
(neglecting R1) is much higher than the radiation frequency
separation, the results for the radiation from a beam of
electrons will deviate from the real value much worse than
the single electron case due to the incoherent addition of
the radiation from the collection of beam electrons. Hence,
in the spectrum, the ratio of the plateau value to the
radiation peak value in the beam case is much higher
than the single electron case. The high energy part of the
beam radiation spectrum will not be correctly calculated

due to the omission of term 1 (R1). On the contrary, if we
include this term, the calculated spectrum is more accurate
and is limited by the accuracy of the numerical integration.
The real signal at the detector also includes the radiation
beyond the time region of t1 and t1 þ T. However, a
detector typically has a frequency window beyond which
the radiated photons cannot be detected well. So the ne-
glect of the radiation in those time regions is reasonable
once we are sure that the radiation lies outside the relevant
frequency region of the detector.

III. EXAMPLES OF VDSR CALCULATIONS

In this section we will give some examples of using the
VDSR code. The simulation geometry is shown in Fig. 2.

Three kinds of radiation have been calculated, i.e., radia-
tion from betatron oscillation in a LPA, radiation from
Thomson scattering, and radiation from Compton scatter-
ing by a short intense laser beam. Incoherent radiation
from electron beam interacting with an undulator magnet
can also be calculated once the external magnetic fields of
the undulator are specified.

A. Betatron radiation from a LPA

When the electrons make betatron oscillations in the
wakefield, they emit radiation. This can provide a source
of broadband x rays based on a LPA [22,23]. The radiation
intensity distribution in the code VDSR is calculated accord-
ing to the following equation:

d2I

d!d�
¼ e2

4�2c

X
j

jR1j þ R2jj2; (5)

where j represents different electrons. VDSR reads the
electron trajectories from PIC simulations and then calcu-
lates the radiation from every electron according to their
trajectories and sums them incoherently.

FIG. 2. Schematic view of VDSR calculations for betatron
radiation, undulator radiation, Thomson and Compton scattering.

HFP

HFP

FIG. 1. Calculated radiation spectrum showing the effects of
N� and the term R1 in Eq. (4). The betatron strength parameter

here is a� ¼ 2:0874. The yellow dashed lines show the envelope

of high frequency oscillation plateau (HFP) induced by end-
points effect. The white dashed line shows the envelope of the
oscillations induced by numerical integration noise.
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The radiation spectrum has been simulated for a collid-
ing pulse injection case [13]. The selected electron trajec-
tories are coming from a particle-in-cell simulation using
the (VORPAL) code [40]. The driving laser parameters are
a0 ¼ eA=mec

2 ¼ 2:0, LFWHM ¼ 39:7 fs, and WFWHM ¼
14:13 �m. The plasma is composed of preionized elec-
trons with a density of 1:7� 1018 cm�3. The injection is
caused by a colliding pulse whose intensity is a1 ¼ 0:3 and
duration is LFWHM ’ 10 fs. 1000 particles are used to
represent the 1 pC accelerated electron beam. The statisti-
cal information of these particles is shown in Figs. 3(c) and
3(d), in which the spread of the transverse position and
longitudinal momenta are shown.

Figures 3(a) and 3(b) show the radiation distribution of
the traced electrons. The radiation is calculated for a total
acceleration length of about 1.12 mm. The electron beam
center energy there is about 100 MeV and the transverse
radius size is about rb ’ 0:6 �m. An analytical estimate of
the radiation frequency can be obtained by thinking of
the wakefield as a hollow bubble structure, in which
case the betatron strength parameter is a� ¼ �rbk� ¼
�

ffiffiffiffiffiffi
2�

p
rb=�p ’ 1:0, where the average value of h�i ¼ 100

has been used. According to betatron radiation theory the
peak radiation frequency on axis should be at @!c ¼
2�2

@!�=ð1þ �2�2 þ a2�=2Þ [22]. If we use h�i ¼ 100

and @!� ¼ @!p=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2< �>

p ’ 0:003 47 eV, the radiation

peak is at @!c ’ 45 eV when � ¼ 0. As we can see, this
value is close to the on-axis peak photon energy in our
simulation [see Fig. 3(a) at � ¼ 0]. The simulation, how-
ever, shows the full radiation spectrum and angular depen-
dence, which the theory does not. The angularly integrated
spectrum shows the radiation peak is at the photon energy
of about 90 eV. This means the higher energy radiation is

not exactly on axis. However, most of the radiation is still
within 10 mrad� 1=h�i.
The code has also been used as a diagnostic method to

detect the beam transverse size inside the wakefield [29].
By using some experimental results such as final electron
charge, energy spread, and betatron radiation spectrum, we
set different beam sizes in the code and get the radiation on
a faraway x-ray CCD camera. The raw radiation calcula-
tion has been convolved with experimental factors such as
detector filters. Betatron oscillation length and transverse
field are specified in the VDSR code based on the experi-
mental and PIC simulation results. The final processed
spectrum is then used to fit the diagnostic results in experi-
ments. A large range of beam sizes was tested by the code
to get the best fit. The beam emittance is then determined
by using the beam radius inferred from the radiation spec-
trum and divergence from the magnetic spectrometer.
The final deduced transverse beam size is 0:1 �m for an
electron beam of 463 MeV in a plasma with density
of 5� 1018=cm3, which cannot be detected by normal
diagnostic methods. Further work on beam diagnosis by
using undulator radiation analysis is in progress.

B. Thomson scattering of LPA beam with a laser pulse

Thomson or Compton scattering by interaction of a LPA
beam with a short intense laser pulse is another way to
generate an ultrashort ultrahigh energy radiation source.
Generally, Thomson scattering applies to photon emission
with energies sufficiently below �mec

2, such that the recoil
of the electron can be neglected. Compton scattering ap-
plies to photon emission with energies near and beyond
�mec

2, such that the recoil of the electron is significant.
Femtosecond or attosecond x-ray or �-ray radiation could
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FIG. 3. (a) Radiated photon energy and angular distributions. (b) Angularly integrated radiation spectrum distribution. (c) Evolution
of the root mean square (rms) spread of the transverse position. (d) Evolution of the rms spread of the longitudinal momenta of the
traced electrons.
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be obtained by this method. In the VDSR code, electron
dynamics in a short laser pulse has been calculated by
solving the Sokolov equation [41] to include the radiation
reaction effects. A tightly focused laser pulse has also been
implemented for describing the laser field, which includes
high order modifications to the paraxial approximation [42].

Here we present Thomson scattering cases calculated
using VDSR. The electron beam initially has an energy of
300 MeV, and charge is 160 pC. The beam is an ideal beam
with zero transverse emittance at the beginning. Both the
energy spread and beam rms radius are changed in different
simulations. A laser pulse with 1 J energy and FWHM
length of 13 ps is focused to a rms size of 25 �m. A laser
pulse with wavelength of 1 �m propagates oppositely
to the electron beam (colliding angle is 180�). The two
beams collide at the laser focus position except in Figs. 4(g)
and 4(h), in which the colliding position is 4.968 mm away
from the focus position. In the simulation we use 2400
simulation particles to represent the beam, the calculation
convergence has been proved by using higher number of
simulation particles. The time step for the trajectory calcu-
lation is �t ¼ 0:02T0 ’ 0:066 fs, where T0 is the laser
period.

The spectrum distribution in the energy-angle space is
shown in Figs. 4(a)–4(f) and 4(h). A typical radiation inten-
sity distribution on the virtual CCD camera 4.7 m down-
stream from the laser focus is shown in Fig. 4(g). In the
simulation we find totally about 4:5� 108 photons are
projected to the virtual CCD. As we see the central energy
of the emitted photons varies along with the interaction
parameters. The rms energy spread of the emitted photons
is 0.0165 MeV. When the electron beam has a small radius
(�1�m) and low energy spread (0.2%), the frequency at the
radiation peak is about 1.55 MeV [see Figs. 4(a) and 4(b)],
which is close to the theoretical prediction Er¼4�2Ep=

ð1þ�2�2þa2L=2Þ’1:544MeV, where Ep ’ 1:24 eV is

the laser photon energy and aL ¼ eA=mc2 ’ 0:4628 is the
normalized laser vector potential at the collision position.

Increasing the beam energy spread changes both the
central frequency and frequency spread. For example,
when the beam energy spread increases from 0.2% to
2%, the central radiation photon energy is at 1.565 MeV
and the FWHM spectrum width in � ¼ 0 direction is
0.11 MeV. When the beam radius increases from rb ¼
1:0 �m to rb ¼ 10 �m, the central photon energy has
changed to 1.5975 MeV and energy spread 0.145 MeV.
When the colliding position has been changed to 4.968 mm
away from the laser focus, the central radiation energy is
increased to about 1.7 MeV, which is consistent with the
value of Er with aL ¼ 0. This is because of the lower laser
intensity at the colliding region. The figures also show
the radiation is more concentrated in the forward
direction in the electron motion plane [�¼ 0o, see
Figs. 4(b), 4(d), 4(f), and 4(h)] than in the perpendicular
plane [� ¼ 90�, see Figs. 4(a), 4(c), and 4(e)].

C. Compton scattering of LPA beam with a laser pulse

If the electron beam energy is higher, the radiated pho-
ton energy increases further. When the photon energy in
the electron rest frame is close to the electron rest energy,
the quantum recoil effects for the scattering process
(Compton scattering) should be considered, which cannot
be included in the classical formula. VDSR uses the
Monte Carlo method to deal with the quantum scattering
process. The method to simulate this process is described
in Appendix B. Here we give two examples. The first one is
for parameters where the classical theory applies. We use
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FIG. 4. Radiation distribution (photons=sr=0:1%BW) in angle-
energy space in the plane perpendicular to the laser polarization
direction � ¼ 90� [(a),(c),(e)] and in the plane parallel to the
laser polarization direction � ¼ 0� [(b),(d),(f),(h)]. (g) Typical
radiation intensity distribution on a CCD camera which is 4.7 m
far away from the radiation source. Here no filter and corre-
sponding effects of the virtual CCD are considered. Only raw
radiation data is shown. Beam parameters for (a) and (b) are
rb ¼ 1:0 �m and energy spread is 0.2%, for (c) and (d) are rb ¼
1:0 �m and energy spread is 2%, and for (e), (f), (g), and (h) are
rb ¼ 10:0 �m and energy spread is 2%. The beam-laser colli-
sion point is at the laser focus for simulations of (a)–(f), and it is
4.968 mm in front of the focus for simulations of (g) and (h).
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this case to benchmark the quantum calculation part of
VDSR. Later we turn to the quantum regime and benchmark

our codes with existing theories.
For the first case, a beam with energy of 100 MeV and

5% energy spread is collided with a laser pulse whose
normalized intensity is a ¼ 0:1, wavelength is �0 ¼
800 nm, duration is T ¼ 30T0 (T0 ¼ �0=c), and the width
at the focus is w ¼ 100�0. The laser is linearly polarized
and the electric field is in the direction of � ¼ 0�. The
classical calculation of the photon distribution is shown in
Fig. 5 for the emitted photons in the plane of� ¼ 0� (pink
solid line) and � ¼ 90� (light blue dotted line), respec-
tively. For the quantum calculation, we collect the photon
emission angle in two bins. The first one is�5� <�< 5�,
the emission intensity distribution is shown in Fig. 5 by the
light blue solid line. As we see it is close to the classical
calculation result. The quantum calculation has a much
larger noise due to the low photon emission number. The
second set of photon emission angles is 85� <�< 95�
(represented by the gray line) and it is compared with the
classical calculation result (� ¼ 90�). Similar results are
given by the two calculation methods except the higher
noise level in the quantum calculation. The averaged val-
ues agree very well between the quantum calculation
(black solid line) and the classical calculation (green dotted
line). Both of the two simulations use the same simulation
particle number N ¼ 10 000. The time step of the classical
calculation is dt ¼ 0:01T0. However, for the quantum
calculation it is dt ¼ 1:0 which is only needed to resolve
the laser envelope. The total simulation time for the clas-
sical calculation is about 4000 CPU hours; the quantum run
only costs a few CPU minutes.

In the second case, we calculate the Compton scattering
spectrum of a 10 GeV electron beam interaction with a

laser pulse of a ¼ 0:1, �0 ¼ 1:0 �m, L ¼ 30T0, and w ¼
100�0. The beam has a total charge of 1 pC, energy spread
of 0.1%, and initially zero transverse emittance
( ~p? ¼ 0:0). The rms beam radius is 1 �m. The centers
of the beam and laser collide with each other at the laser
focus. The quantum calculated radiated intensity distribu-
tions along with the photon energy is shown in Fig. 6(a).
The different lines use a different number of simulation
particles and different amplification factors (detailed in
Appendix B). As we can see in a large simulation parame-
ter range, the simulations give similar results except the
noise level. The spectrum has a very sharp cut in the high
frequency region, and the frequency at the peak is around
1.92 GeV, which agrees well with the quantum theoretical
calculation [4�2Ep=ð1þ�2�2þ4�2Ep=EeÞ’1:92GeV].
Increasing simulation particle number and the amplifica-
tion number can give better simulation statistics [see the
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FIG. 6. (a) Radiation intensity distribution using quantum cal-
culations (Monte Carlo method). Here X¼½ðpþkÞ2�ðmecÞ2�=
ðmecÞ2’0:23, quantum recoil effect is important. Different mac-
roparticle numbers from 50 to 200 K and amplification factors
from 0.333 to 10.0 are used to make the calculations. The blue
dotted line shows a too much larger f number can result in
multiscattering artificially, and a broadened spectrum is seen.
(b) Spectrum calculated by classical method. Both the radiation
spectra including radiation reaction effect (red line) or without
(black line) are shown. The only difference between them is the
slight peak position shift.
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FIG. 5. Comparison between classical Thomson scattering cal-
culations (C) and quantum Compton scattering calculations (Q).
The signal is integrated in the � direction. Here X ¼ ½ðpþ kÞ2 �
ðmecÞ2�=ðmecÞ2 ’ 0:002 � 1, quantum recoil effect is negli-
gible and the classical calculation is applicable. In the quantum
calculation an integration range for � has been used. The
averaged line means the average for the � ¼ 0� and � ¼ 90�.
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red solid curve in Fig. 6(a)]. Too large of an amplification
number will result in multiple scattering for a single simu-
lation particle, and broaden the final radiation spectrum.
These simulation parameter effects on the resulting spec-
trum are discussed in detail in Appendix B. A classical
calculation for a single electron scattering with the same
laser pulse is also checked. The spectrum is shown in
Fig. 6(b). As we see it gives a significantly different result.
Both the frequency at the peak and the intensity are differ-
ent. In the classical calculation, the radiation spectrum is
centered at the frequency of 2.37 GeV, which is close to the
classical theoretical prediction.We also check the radiation
damping (reaction) effect on the radiation spectrum (red
line). This makes the peak frequency redshift a little bit but
peak energy is still far higher than the quantum results. The
difference for the emitted photon redshift in the two kinds
of calculation models is due to single photon quantum
recoil effect, which is not included in a classical theory.
Usually radiation reaction is important when a single elec-
tron emits lots of low energy photons, however, quantum
recoil is important even if a single photon is emitted by an
electron once the photon energy is high enough. In such a
case only the quantum calculation can give correct model-
ing of the photon emission.

IV. SUMMARYAND CONCLUSIONS

We have presented the development of models and the
code VDSR that accurately describe synchrotron radiation
produced by a variety of methods, including betatron ra-
diation, undulator radiation, and Thomson/Compton scat-
tering. These models are valid in the classical regime and
in the linear quantum (single-scattering) regime, including
radiation reaction and recoil effects. The code VDSR cal-
culates the synchrotron radiation using the trajectories of a
collection of electrons in a beam, and these trajectories can
either be calculated internally by VDSR based on electron
motion in prescribed laser, plasma, and magnetic fields, or
the trajectories can be imported from the output of a PIC
simulation.

Previous formulations of synchrotron radiation in the
classical regime are inadequate in describing the radiation
emitted by a small number of oscillation periods.
Specifically, previous models neglect the end-point term
R1 in Eq. (4), as does the conventional analytic formulas
describing classical synchrotron radiation presented in
Appendix A. With the end-point term R1 neglected in
Eq. (4), an unphysical plateau appears in the radiation
spectrum at high frequencies, and the magnitude of this
plateau increases as the number of oscillation periods NS

decreases. By properly including the end-point term R1, as
is done in VDSR, this plateau can be eliminated. This is
particularly important for modeling betatron radiation, in
which the betatron strength parameter is large a� > 1 and

the number of betatron periods is small N� � 1–10.

Various examples of the radiation spectra calculated
from VDSR were presented, including betatron radiation
from 100 MeV level electron beams, Thomson scattering
from 300 MeV level electron beams, and Compton scat-
tering from 10 GeV level electron beam. The quantum
models in VDSR were benchmarked by comparison to
calculations in the classical regime. The effect of simula-
tion parameters, such as the simulation particle number and
amplification factor, on the final calculated radiation spec-
trum were discussed. It was shown that by increasing both
of these two parameters, a correct and lower noise spec-
trum can be obtained. Future development of the VDSR will
include nonlinear Compton scattering and the modeling of
other nonlinear QED phenomena.
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APPENDIX A: CONVENTIONAL THEORY OF
SYNCHROTRON RADIATION

In the classical limit in which the radiation reaction
recoil of the electron can be neglected, the synchrotron
radiation spectrum can be calculated using the standard
methods of classical electromagnetic theory. In particular,
the energy spectrum of the radiation emitted by a single

electron on an arbitrary orbit ~rðtÞ and ~�ðtÞ can be calcu-
lated from the Lienard-Wiechert potentials [39],

d2I

d!d�
¼ e2!2

4�2c

��������
Z T=2

�T=2
dt½ ~n� ð ~n� ~�Þ�

� exp½i!ðt� ~n � ~r=cÞ�
��������

2

: (A1)

Note that this expression has neglected the end-point
contributions that arise from the integration by parts used
in deriving this expression. This integral can be performed
analytically for the case in which the amplitude aS of the
force giving rise to the synchrotron motion is constant, e.g.,
aS coskSz for the case of undulator magnet, where aS is the
normalized vector potential of the magnetic field and kS is
the undulator period. In this case, the orbit of the electron
can be written in a form similar to ~x ’ ðaS=kS�z0Þ sinkSct
and ~z ’ ��zct� ða2S=8kS�2

z0Þ sin2kSct, where the electron

is initially assumed to be traveling along the z axis with

normalized velocity �z0; �z0 ¼ ð1� �2
z0Þ�1=2, and ��z is

the average axial velocity inside the medium causing the
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synchrotron motion (e.g., inside the undulator). Here the
energy loss of the electron as it radiates is neglected. With
orbits of this form, the radiation spectrum can be calculated
with conventional techniques [22,32,33]. In the limits
�2
z0 � 1, �2 � 1, and ð1þ a2S=2Þ=�2

z0 � 1, the radiation

spectrum can be written as

d2I

d@!d�
¼X1

n¼1

	f�
2
z0N

2
Sð!2=!2

nÞ
ð1þa2Sþ�2

z0�
2Þ2 Rnð!;!nÞ

�½a2SĈ2
xþ4�2

z0�
2Ĉ2

z�4aS�z0�ĈxĈzcos��;
(A2)

where

Ĉ x ¼
X1

m¼�1
Jmð	zÞ½Jnþ2m�1ð	xÞ þ Jnþ2mþ1ð	xÞ�; (A3)

Ĉ z ¼
X1

m¼�1
Jmð	zÞJnþ2mð	xÞ; (A4)

	z ¼ nð!=!nÞa2S=4
ð1þ a2S=2þ �2

z0�
2Þ ; (A5)

	x ¼ 2nð!=!nÞaS�z0� cos�

ð1þ a2S=2þ �2
z0�

2Þ ; (A6)

and

Rn ¼ sin2½�nNSð!=!n � 1Þ�
½�nNSð!=!n � 1Þ�2 (A7)

is the resonance function, where ! ¼ ck is the radiation
frequency, !n ¼ ckn is the resonant frequency for the nth
harmonic, n is the harmonic number, as is the synchrotron
strength parameter, NS ¼ kSL=2� is the number of beta-
tron periods that the electron undergoes, L ¼ cT is the
interaction length, Jm are Bessel functions, and 	f ¼
e2=@c ’ 1=137 is the fine structure constant. Here � is
the observation angle with respect to the electron propa-
gation axis and � is the azimuthal observation angle.

The above formulas are general expressions that can be
used to describe synchrotron radiation produced by a vari-
ety of processes, such as with undulator magnets, betatron
radiation from plasma focusing channels, and Thomson
scattering from the interaction with a counterpropagation
laser pulse. To describe undulator radiation, betatron ra-
diation, or Thomson scattering, one needs to identify the
proper synchrotron wave number kS, synchrotron strength
parameter aS, and resonant frequency !S, as discussed at
the end of this Appendix.

1. Resonance function

The resonance function Rnð!;!nÞ determines many
properties of the radiation spectrum. Provided the number
of synchrotron periods is large, NS � 1, radiation is emit-
ted in a series of harmonics and is confined in a narrow

bandwidth about the resonant frequency (! ¼ !n) of each
harmonic. The intrinsic frequency width �!n of the spec-
trum Rn about !n is given by �!n=!n ¼ 1=nNS.
Furthermore, Rnð!;!nÞ ! �!n�ð!�!nÞ as NS ! 1.
For a single harmonic n, the angular width ��I about the
axis of a cone containing radiation with frequencies in a
small bandwidth �! about !n is given by

��2I ’
�
1þa2S=2

�2
z0

�
�
�
�!n=!n for�!	�!n;
�!=!n for�!
�!n:

(A8)

2. On-axis radiation

Of particular interest is the radiation emitted along the
axis, � ¼ 0, where only the odd harmonics are finite, i.e.,
the even harmonics vanish. Setting � ¼ 0 in the above
expressions gives, for the nth odd harmonic, 	x ¼ 0, 	z ¼
	n, and

d2Inð0Þ
d@!d�

¼	f

�
!

!n

�
2 �2

z0N
2
Sn

2a2S
ð1þa2S=2Þ2

Rnð!;!nÞ

�½Jðn�1Þ=2ð	nÞ�Jðnþ1Þ=2ð	nÞ�2; (A9)

where 	n ¼ nð!=!nÞða2S=4Þ=ð1þ a2S=2Þ.

3. Asymptotic behavior

For values of a2S � 1, the emitted radiation will be

narrowly peaked about the fundamental resonant fre-
quency, !1 (n ¼ 1). As aS approaches unity, emitted ra-
diation will appear at harmonics of the resonant frequency
as well,!n ¼ n!1. When aS � 1, high harmonic (n � 1)
radiation is generated and the resulting synchrotron radia-
tion spectrum consists of many closely spaced harmonics.
Finite variations in the parameter aS and/or the electron
beam parameters can broaden the line width and cause the
spectrum to overlap. Hence, in the asymptotic limit, i.e.,
aS � 1, the gross spectrum appears broadband, and a
continuum of radiation is generated which extends out to
a critical frequency, !c, beyond which the radiation inten-
sity diminishes.
Asymptotic properties of the radiation spectrum for

a2S � 1 and for large harmonic numbers, n � 1, can be

obtained with standard methods. In particular, the asymp-
totic spectrum along the axis � ¼ 0 is given by

d2Ið0Þ=d@!d� ’ ð6=�2Þ	fNS�
2
z0


2K2
2=3ð
Þ; (A10)

where 
 ¼ !=!c and !c ’ ð3a3S=4Þ!1 is the critical fre-

quency, which corresponds to a critical harmonic number
of nc ¼ 3a3S=4. The function Yð
Þ ¼ 
2K2

2=3ð
Þ is maxi-

mum at 
 ¼ 1=2 and decreases rapidly for 
 > 1. Half the
total power is radiated at frequencies!<!c=2 and half at
!>!c=2.
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4. Undulator radiation

For an electron traveling along the axis of an idealized
undulator magnet with a normalized vector potential of the
form eA?=mec

2 ¼ K coskuz, the synchrotron strength pa-
rameter is the undulator strength aS ¼ K and the resonant
frequency is

!n ¼
2�2

z0ncku
ð1þ K2=2þ �2

z0�
2Þ : (A11)

5. Betatron radiation

For an electron traveling along the axis of an idealized
plasma focusing channel (e.g., a plasma wakefield in which
the accelerating field is neglected) with a radial focusing
force that is a linear function of radius Er � B� � r, the
synchrotron strength parameter is the betatron strength
parameter aS ¼ a� and the resonant frequency is

!n ¼
2�2

z0nck�

ð1þ a2�=2þ �2
z0�

2Þ : (A12)

Here a� ¼ �z0k�r�, where r� is the amplitude of the

betatron oscillation (transverse electron orbit amplitude)
and k� is the wave number of the betatron oscillation,

which is dependent on the strength of the radial focusing
force, k2�r� Er � B�. In the blowout (cavitation or bub-

ble) regime, the focusing force is maximum and k� ¼
kp=ð2�z0Þ1=2, where kp ¼ ð4�nee2=mec

2Þ1=2 is the plasma

wave number with ne the ambient electron plasma density.

6. Thomson scattering

Consider an electron traveling along the z axis interact-
ing with a counterpropagating, linearly polarized laser
pulse with a normalized vector potential of the form
eA?=mec

2 ¼ a0 cosk0ðzþ ctÞ. In this case the synchro-
tron strength parameter is the laser strength parameter
aS ¼ a0 and the resonant frequency is

!n ¼ 4�2
z0n!0

ð1þ a20=2þ �2
z0�

2Þ : (A13)

Here !0 ¼ ck0 is the laser frequency. The laser strength
parameter a0 is related to the laser intensity IL and

wavelength �0 of a linearly polarized laser pulse by a0 ’
8:5� 10�10 �½�m�ðIL½W=cm2�Þ1=2.

APPENDIX B: INTRODUCTION TO VDSR CODE

In this section, we describe the program structure and
radiation calculation methods in the VDSR code.

The Virtual Detector for Synchrotron Radiation (VDSR)
code is a parallel C++ code. It runs on the NERSCmachine
and uses thousands of processes well. It can be used as a
PIC postprocess code for VORPAL [40] and VLPL [43] in a
seamless transition style by using a script file combining

the normal PIC run and postprocess VDSR run. The pro-
gram framework is a parallel C++ code. To accurately
simulate radiation from beams containing many particles,
the code is parallelized to run on supercomputers such as
NERSC and to efficiently use thousands of processors.
Radiation calculation methods are implemented for classi-
cal and quantum radiation calculation, including radiation
reaction.
The program flowchart is shown in Fig. 7. As one can

see, except the global frame of the code (the initialization
and final output parts), there are two different parts for
classical and quantum calculation. However, since the code
is object oriented the main structure of the code is uniform.
Only the functions of the related classes are different when
different models are used. The code mainly consists of the
Beam, Particle, Detector, Pixel, and Field classes. Just as
the meaning of the class names, each of the classes de-
scribes a single object. In the quantum calculation, a new
class named Photon is additionally used to describe the
radiated photons. The Domain and Control classes deal
with the initialization, parallelization, and code efficiency
diagnosis. Finally the photon information is projected to
the detector object in the form of a radiation intensity
distribution d2I=d!d�. The output of the code includes
field, beam, and radiation information. Spatial and tempo-
ral evolution of the field can be output, single particle and
beam distribution in spatial and temporal space can be
outputted. The radiation is outputted for each pixel (deter-
mined by �, �) in the detector. The output files use a
hierarchical data format (HDF5 library is used), which
makes the post visualization and data process very conve-
nient. The calculation model is specified in the input file,
and all the particles use the same model to calculate the
radiation. Work is in progress to allow the code to decide
the calculation model for each particle automatically ac-
cording to the interaction parameters.
Parallelization is made based on the particle tags. This

means all the processes have the same virtual detector and
only process the particles’ trajectories and radiation as-
signed to them. This allows efficient parallelization be-
cause usually the particle number is very large and the
detector information is relatively small. The final radiation
of all the electrons is then incoherently accumulated to one
detector and output. The Detector information specified in
the input file includes the detector’s spatial position, pixel
number and distribution, detector frequency region and
resolution.
For classical calculations, radiation is calculated by

integration of Eq. (4). This requires knowledge of the
electrons’ trajectories. Trajectories in specified fields
(which may include analytic laser and/or plasma fields)
can be calculated by VDSR using a fourth-order Runge-
Kutta method. In this case, the user specifies the fields and
the initial phase space of the beam. Alternatively, trajecto-
ries may be read from a PIC code (such as VORPAL and
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VLPL). In these PIC codes, electron trajectories are output

by a history function, which outputs the phase space infor-
mation of a user-specified list of particles at every simula-
tion step. For cases with high intensity fields where
radiation reactions are important and cannot be neglected,
only the first method can be used as the output trajectories
from these PIC codes do not presently include the radiation
reaction term.

The radiation from a single particle within a single
time step is calculated using essentially the same methods
used by Thomas [38]. Interpolations have been performed
both for velocities and positions as shown in Fig. 7. The
end-point effects have been used by adding the modified
step integration term, which has been discussed

in detail in Sec. II. The neglected terms [
Rt1�1Rðt; ~rÞdtþR1

t1þTRðt; ~rÞdt] can be accounted in the code by selecting a

velocity damping at the beginning and at the end within a
short time period to make the particle be at rest beyond the
simulation time region [44]. Different damping forms can
affect the final spectrum when the radiation length is rela-
tively small. For the integration along the particle trajectory,
as shown inRef. [38], the single step integration for particle j
at time step k has the form:

Ij;k ¼ ei2�!ðtk� ~n�~rj;kÞ
Z dt=2

�dt=2
ei2�!ð1� ~n� ~a1Þtð ~�j;k þ ~b1tÞ

� ei2�!ð� ~n� ~a2t2Þdt; (B1)

where ~a1, ~a2, ~b1 are the coefficients of the interpolated
positions and velocities as shown in Fig. 7. This integration
can be changed to the form of standard Fresnel integrals;
however, this needs much more computational cost. In
VDSR, the integration has used two methods, the more

accurate Fresnel integration and the Taylor expansion on
the exponential function and truncate at order dt2:

ei2�!ð� ~n� ~a2t2Þ ’ 1� i2�!~n � ~a2t2. The latter reduces simu-
lation time greatly and is sufficiently accurate once
!~n � ~a2t2 � 1, which is almost always satisfied in our
simulation cases.
In the quantum radiation calculation part, currently the

code can only process laser scattering interactions. The
particles’ trajectories are calculated according to their
momentum. The momentum evolution is calculated based
on momentum conservation during the particle-photon
scattering process. This means if the electron has not
been scattered by a photon, it will drift without any mo-
mentum change even if it is inside a laser pulse. Since our
scattering cross section is based on single photon-electron
scattering, only linear Compton scattering can be calcu-
lated in our model. Our method is essentially the same as
the methods used by Sun et al. [45]. Detailed information
can be found in Ref. [45] and references therein. Here we
describe the calculation process and the effects of simula-
tion particle number and amplification factor, which have
not been discussed in detail in Ref. [45]. As shown in

Fig. 7, we first calculate the photon density [npð~r; ~k; tÞ] at

FIG. 7. A schematic view of the VDSR programing flowchart.
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the particle’s position (~r) from the local laser intensity. The

laser pulse has the form of ~EðtÞ / exp½�ðz� ctÞ2=L2��
sin½�ð~r; tÞ�. The photon vector potential satisfies the dis-
tribution f/ exp½�ðk�k0Þ2=�2

k�, where �2
k ¼ 4=L2 and

k0¼!0=c is the central wave number. The direction of ~k is
determined by the local spatial gradient of the laser phase,
r�. The total scattering cross section is calculated by

�t¼2�r2e
1

X

��
1� 4

X
� 8

X2

�
lnð1þXÞþ1

2
þ 8

X
� 1

2ð1þXÞ2
�
;

(B2)

where X ¼ ½ðpþ kÞ2 � ðmecÞ2�=ðmecÞ2 is a Lorentz in-
variant which describes the recoil effect. When X � 1,
the recoil effect can be neglected, and �t ’ 8�r2e=3 is the
classical Thomson scattering cross section. Here p ¼
ðEe=c; ~pÞ, k ¼ ðEp=c; @ ~kÞ are the standard four vector of

particles and photons, respectively. When X is small, it is
better to use the asymptotic formula of �t to calculate
the cross section, otherwise the error due to the limited
machine precision of the computer will cause errors.
The scattering possibility is calculated by Ps ¼
�tcð1� ~� � ~k=j ~kjÞnpdtQwf, where ~� is the normalized

velocity of the simulation particle, Qw is the weight of
the simulation particle (the number of the real particles
represented by a simulation particle, Qw ¼ Ne=Ns), and f
is an amplification factor to increase the sampling case. As
we will discuss later, both Qw and f affect the simulation
results. A random number Pr which is uniformly distrib-
uted in [0,1] is used to compare with Ps and to determine
whether scattering happens (Pr 	 Ps) or not (Pr > Ps). If
no scattering happens, the particle makes a drift according
to its current velocity and goes to the next time step. If the
scattering case happens, a photon will be sampled accord-
ing to the local laser field information. Both the particle’s
and photon’s four vector are transformed to the scattering
frame, in which the particle is at rest and the photon has a

vector potential of ~k ¼ kz ~ez. Then, the scattered photon’s
momentum will be sampled according to the differential
cross section as shown in Ref. [45] by the Monte Carlo
method. After that, the scattered electron momenta are

calculated according to the momentum conservation law.
Later the four vectors of the scattered photon and particle
are transformed back to the lab frame. The photon then will
be recorded in a photon list and be judged whether to be
projected to the virtual detector or not later. The particles’
new position will be calculated according to their mo-
menta. Since the total cross section has been multiplied
by an amplification factor f, the intensity of the projected
photon on the virtual detector should be divided by f.
The effects of the simulation particle number (Npsim) and

amplification factor (f) effects on Compton scattering
calculation are shown in Table I. In the table, a series of
simulations using different simulation number and ampli-
fication factor are listed. The total radiated photon energy
(Erad), number of total radiated photons in the simulation
(Nphrad), average radiated photon number per simulation

particle (Nphrad=Npsim), and per real particle numbers are

shown (Nphrad=Npreal). The last is also calculated by a

classical formula and is about Nphrad=Npreal ’ 	N�K� ’
0:0066 (see Ref. [22]). The reason to use the amplification
factor f is just to increase the efficiency of the code and the
number of scattering events, which will give a better
accuracy for the Monte Carlo sampling to fit the scattering
distribution when it is not practical to run the physical
electron number, or when suppression of statistical fluc-
tuation is desired. Since in our study case, the average
fraction of real electrons which scatter is about 0.0066
(from classical estimation), if we use the real scattering
cross section for the real number of particles, as we can see
most of the simulation time is waste without any photon
emission. In simulations one can use a simulation particle
to represent many real particles, which can increase the
simulation particle’s cross section. In the case of Fig. 6(a),
if we use 0.1 million simulation particles to represent 1 pC
charge of electrons (Qw ’ 62:5), the average radiation
photon number per electron has been increased from
0.004 668 to 0.291 76, which is about 62.5 times (see
simulation 6 in Table I). However, in some cases, this is
still not enough to sufficiently increase the scattering
possibility. To get a highly efficient simulation, amplifica-
tion factor can be used to increase the scattering fraction

TABLE I. Simulation particle number (Npsim) and amplification factor (f) effects on Compton scattering calculation. The beam and
laser parameters are the same as the ones in Fig. 6(a).

Simulation Npsim [K] f Erad [TeV] Nphrad Nphrad=Npsim Nphrad=Npreal

1 10 0.333 21.7570 9720 0.97200 0.001552

2 20 0.2 23.1877 5971 0.29855 0.000955

3 20 1.0 20.9141 29006 1.45030 0.004640

4 50 0.5 22.6553 14686 0.29372 0.002350

5 100 0.333 24.1978 10207 0.10207 0.001633

6 100 1.0 22.6179 29176 0.29176 0.004668

7 100 10.0 19.1185 291001 2.91001 0.046560

8 200 2.0 22.1310 57230 0.28616 0.009157
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(compare simulations 7 and 6 in Table I, the Nphrad=Npreal

has been increased about 10 times when f is 10 times
larger). However, the amplification factor f should not be
too much larger to result in an artificial multiscattering for
a single particle. If that happens the emitted spectrum will
be broadened due to the multiscattering for a single parti-
cle. The scattered particles lose some energy after the first
scatter, and the second emitted photon energy from this
particle will be smaller than the first case. This does not
represent the real physics picture since the multiscattering
is due to the artificial amplification factor. These effects are
shown in simulation 7 in Table I, and the corresponding
spectrum is shown in Fig. 6(a) by the blue dotted line.

From the expression of the scattering possibility, we see
that the particle weight Qw affects the simulation results.
On one hand, too few simulation particles makes correct
representation of the beam in phase space difficult. On the
other hand, it will also increase the single simulation
particle’s scattering possibility and may result in multi-
scattering, which is shown in simulation 3 in Table I (com-
pare with simulation 6). The radiation spectrum is similar
to the blue dotted line in Fig. 6(a) with a broadened line.
Increasing the simulation particle number certainly will
increase the simulation cost. As we can see from Table I,
increasing the particle number does not increase the final
emitted simulation photons if f keeps the same, which
means the statistic character of the spectrum cannot be
improved by increasing the simulation number. This is
because of the cancellation between the increase of the
particle number and reduction of the scattering cross sec-
tion. In fact, only the amplification factor affects the num-
ber of the scatterings. In the simulation, an appropriate
particle number with an appropriate amplification factor
can give reasonable results and optimal simulation cost. As
shown in Table I, there is a large parameter region to get
similar results. Usually increasing particle number and
amplification factor simultaneously can lower the spec-
trum noise and keep the average scattering number less
than one [see the red line in Fig. 6(a) and the corresponding
simulation 8 in Table I].
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