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Numerical growth of emittance in simulations of laser-wakefield acceleration
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Transverse emittance is a crucial feature of laser-wakefield accelerators, yet accurately reproducing its
value in numerical simulations remains challenging. It is shown here that, when the charge of the bunch
exceeds a few tens of picocoulombs, particle-in-cell (PIC) simulations erroneously overestimate the
emittance. This is mostly due the interaction of spurious Cherenkov radiation with the bunch, which leads
to a steady growth of emittance during the simulation. A new computational scheme is proposed, which is
free of spurious Cherenkov radiation. It can be easily implemented in existing PIC codes and leads to a

substantial reduction of the emittance growth.
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L. INTRODUCTION

Over the past ten years, laser-wakefield accelerators have
considerably evolved and are now able to produce quasimo-
noenergetic electron beams [1-3] with energy up to 1 GeV
[4]. This fast progress was made possible partly thanks to
particle-in-cell (PIC) codes [5] and to their ability to repro-
duce or predict the properties of the experimental beams
(e.g. total charge, mean energy, and energy dispersion).

Among the key properties of the beam, transverse
emittance has attracted a growing interest lately, as several
applications—including a prospective compact free elec-
tron laser [6]—require a very low emittance. Accordingly,
considerable research effort is currently invested in de-
creasing the emittance of the beam, and unprecedently
low values have indeed been measured in recent experi-
ments [7-10]. In this context, an accurate calculation of
emittance in PIC codes is essential in order to accompany
and guide further research.

PIC simulations have certainly been able to predict very
low emittances (of the order of 0.1 mm mrad) [9,11], yet
these occurrences are restricted to cases where the charge
of the bunch is very low (= 1 pC). Here we demonstrate
that, in the case of a bunch having a more typical charge
[tens of picocoulombs (pC) or more], standard PIC codes
tend to largely overestimate transverse emittance. This is
due to the emittance spuriously growing from the begin-
ning to the end of the acceleration. While numerical
heating [12] is known to produce a similar growth, we
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find that, in our case, the dominating effect is the interac-
tion of the bunch with numerical Cherenkov radiation.

Numerical Cherenkov radiation is a known effect in the
PIC community [13]. It is associated with the finite differ-
ence time domain Yee scheme [14] and with the fact that,
in this scheme, the numerical velocity of electromagnetic
waves in vacuum is lower than the speed of light. As a
result, macroparticles may travel faster than these waves
and emit unphysical high-frequency Cherenkov radiation.
Several methods have been proposed in other contexts, in
order to mitigate this effect. These methods include low-
pass filters [15—-17] and modified computational scheme
[16-19], for instance. However, none of these methods is
ideally suited to the specificities of laser-wakefield simu-
lations. We therefore propose a new computational scheme
that is easily implemented in existing PIC codes, efficiently
suppresses Cherenkov radiation, and considerably reduces
the spurious growth of emittance.

The paper is organized as follows. In Sec. II, we consider
a typical simulation of self-injection and report on the
strong unphysical radiation that surrounds the electron
bunch and the associated growth of emittance. Section III
summarizes the main characteristics of Cherenkov radia-
tion and shows that the radiation observed in the simula-
tions is indeed of this type. Section IV proposes a
computational scheme that prevents Cherenkov radiation.
Finally, in Sec. V we discuss this new scheme and show
that it leads to a reduced growth of emittance.

II. GROWING EMITTANCE IN SIMULATIONS

We begin by considering a typical simulation of laser-
wakefield acceleration. Parameters are chosen so as to
lead to the self-injection of a few hundreds of pC of
charge. More specifically, we consider a 1.5 J laser pulse
(A = 0.8 pwm) with 35 fs FWHM duration focused into a
plasma with density n = 6 X 10731, = 1.0 X 10" c¢m™3
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(where n, = 1.75 X 10?! cm™3 is the critical density at
this wavelength). The laser is focused so that its waist in
the focal plane would have been 17 um in vacuum, corre-
sponding to a, = 2 (where a is the peak value of the
normalized vector potential). Notice that, due to self-
focusing, the actual waist is slightly lower and a, is some-
what higher. The simulation was run using the fully 3D PIC
code CALDER [20], which uses the Yee scheme and an
iterative Poisson solver when solving the Maxwell equa-
tions. Calculations are performed in a moving window
using 1600 X 320 X 320 grid points, with grid spacing
Ax = 0.032 pm longitudinally and Ay = Az = 0.25 um
transversely, and using a time step cAr = 0.96Ax that is
below the Courant-Friedrichs-Lewy (CFL) limit.

As the laser pulse propagates through the plasma, self-
injection occurs, leading to continuous trapping of back-
ground electrons. At a distance of 300 wm from the point
where injection started, the electron bunch has a total
charge of about 250 pC, with a peak in the energy spectrum
around 120 MeV containing about 150 pC (see the top
panel of Fig. 1).

We observed that the emittance of the bunch steadily
increases during the acceleration (see the lower panel of
Fig. 1). In Fig. 1 and in the rest of this paper, the emittance
calculated is the normalized emittance, which is defined, in the
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FIG. 1. Top: energy spectrum after 300 um of acceleration

(from the position when injection started). The grayed area
represents the sub-bunch for which the emittance was computed.
Bottom: transverse emittance of this sub-bunch in the y
(parallel to the laser polarization) and z (orthogonal to the laser
polarization) direction, as a function of the acceleration distance.

y direction for instance, as €, = \/<y2><p§ - <ypy>2/ (mc),

where brackets denote an average over the electron
bunch and where p, = ymy. It should be noted that in
an fully evacuated plasma bubble [21,22], the transverse
fields are linear functions of the radius, and as a result,
normalized emittance should remain constant during the
acceleration. On the contrary, the growth of emittance
observed here is by no means negligible and reaches an
average slope of about 6 mm mrad per mm of acceleration.
In the same simulation, we also observed that the bunch
is surrounded by a strong high-frequency radiation.
Figure 2 is a snapshot of the bubble after 300 uwm
of acceleration and shows this radiation very clearly.
Notice that this figure is a representation of E, — ¢B,
instead of E,. The reason for this is that E, — c¢B, is
proportional to the Lorentz force felt by the electrons F,, =
—e(E, —v,B, + v,B,) = —e(E, — c¢B;). Moreover, a
plot of E, would be dominated by the strong space-charge
electric field of the bunch, whereas its effects are known to
be almost canceled by the corresponding v X B term.
Importantly, the same effects (growth of emittance and
simultaneous radiation around the bunch) also appeared in
simulations of colliding-pulse injection—although not
shown here—in which the charge of the bunch was
50 pC and the emittance increased by 2 mm mrad per
mm of acceleration. In both cases, the observed growth
of emittance has serious consequences for the interpreta-
tion of the simulation, and it is of paramount importance to
determine whether its origin is numerical or physical. Here
we show that the growth of emittance is largely due to the
observed radiation, which scatters electrons in the trans-
verse direction by the means of the Lorentz force. This
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FIG. 2. Snapshot of the transverse field E, — ¢B, in the x-y
plane, at the back of the bubble and after 300 pm of acceleration.
Shaded regions correspond to zones of high electron density (in this
case the sheath of the bubble and the accelerated bunch). While the
laser pulse is clearly apparent on the right-hand side of the figure,
one also notices higher-frequency radiation around the bunch.
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effect is indeed suggested by a close examination of the
bunch in Fig. 2, which reveals transverse oscillations of its
structure having the same spatial frequency as that of the
radiation. The same effect will be confirmed in Sec. V,
where the radiation is intentionally suppressed and the
growth of emittance is observed to be slower.

III. NUMERICAL CHERENKOV RADIATION

It seems very likely that the radiation seen around the
bunch is produced by the bunch itself, and a reasonable
mechanism for this is the numerical Cherenkov effect. In
this section, we summarize the theoretical properties of
numerical Cherenkov radiation and we show that the
radiation seen here is indeed of this type.

Cherenkov radiation [23]—whether physical or
numerical—may appear when the dispersion relation of
electromagnetic waves allows for some modes to travel
with a phase velocity lower than the speed of light
(vg < o). Inthis case, energetic charged particles traveling
close to the speed of light can excite some of those modes,
thus producing a characteristic radiation. In the case of a
charged particle traveling, e.g., along the x axis with speed
Bc (B <1), the modes that are excited are those that
satisfy the relation

Be =gy, )

where v , is the phase velocity of the mode along the x
axis. In particular, v, , = /k, for harmonic waves of the
form exp(iE' F— iwt).

For electromagnetic waves traveling in vacuum the dis-
persion relation is w® = ¢2k*, and therefore v ox > Bec.Asa
result, Eq. (1) cannot be satisfied and no Cherenkov emission
occurs. This is shown in Fig. 3 where the plot of v , and the
plane corresponding to Sc do not intersect. However, due to
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FIG. 3. Physical phase velocity along x (v ., as deduced from
w? = 2k ) as a function of k, and k, for electromagnetic modes
propagating in the x-y plane (k, = 0). The blue horizontal plane
corresponds to vy, = Bc with B=1-9X107® (which is

representative of particles having an energy of 120 MeV).

FIG. 4. Numerical phase velocity along x [vy,, as deduced
from Eq. (2)] as a function of k, and k, for electromagnetic
modes propagating in the x-y plane (k, = 0). The blue horizontal
plane corresponds to vy, = Bc with § =1 -9 X 1075 (which
is representative of particles having an energy of 120 MeV).

spatial and temporal discretization in the Yee scheme, the
actual numerical dispersion relation of these waves is

1 wAt 1 k,Ax 1 k,Ay
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+
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and thus some values of w and k may satisfy Eq. (1) in this
case. This is shown in Fig. 4 for modes propagating in the
x-y plane. The modes that are predicted to be excited by
numerical Cherenkov effect are those for which the two
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FIG. 5. Spatial Fourier transform of the field E, — c¢B, from
Fig. 2. The two red spots correspond to the laser field (k,Ax/7 =
FhierAx/7m = £0.08). The structures observed near k, = 0
correspond to the fields of the bubble (their broad extent along
ky in Fourier space corresponds to the sharp edges of the bubble in
real space). The dashed line materializes the position of the modes
satisfying Eq. (3) (with 8 = 1-9 X 107°) and thus corresponds to
the intersection of the two theoretical surfaces of Fig. 4.
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surfaces of Fig. 4 intersect. Their equation in the k,-k, plane
is thus

1 2(,8ckxAt)

sin
cEAP? 2

1 Lk Ax 1 (kAy 1 . ,(kAz
—Esm( > )-i—A—yzmn( 2 )-l—A—Zzsm (T)

3)

In order to prove that the radiation observed in Sec. II is
due to numerical Cherenkov effect, we verify that it corre-
sponds to modes satisfying Eq. (3). To this end, we perform
the spatial Fourier transform of the field £, — ¢B_ in the x-y
plane of our simulation and show the result in Fig. 5. As can
be seen, the only modes with sizeable amplitude are exactly
those that are predicted by Eq. (3) to be excited through
numerical Cherenkov effect. We conclude that this radiation
is indeed of numerical origin. We will now show that it can
be removed by using a modified numerical scheme.

IV. A PROPOSED SCHEME TO AVOID
NUMERICAL CHERENKOV RADIATION

A number of solutions have already been proposed
in order to avoid numerical Cherenkov effect, albeit in
different contexts (including for instance the case of
boosted-frame simulations of laser-wakefield acceleration
[17]). Yet, none of them is well suited to model laser-
wakefield acceleration in the laboratory frame.

For instance, some of these solutions [15-17] consist
of using digital filtering, either in space or time, in order to
damp high-frequency radiation. However, any filtering
operation in real space (as opposed to Fourier space) that
strongly damps high-frequency radiation inevitably also
affects the physics at lower frequency. The effect of such
a filter is particularly deleterious for physical phenomena
having frequencies close to those that are to be filtered.
In the case of laser-wakefield acceleration, the laser has
a relatively high frequency, which makes it impossible to
filter Cherenkov radiation without damping the laser
itself—especially if the filter has to be applied at each
time step and if the laser propagates over large distances.
A notable exception to this rule is the case of boosted-
frame simulations [24], in which the laser—as seen in a

proper relativistic frame—has a low spatial frequency [25],
which then allows aggressive filtering.

Another set of solutions consist of modifying the
discretization of the Maxwell equations, which then
modifies the dispersion relation of electromagnetic modes.
In [18,19], the numerical scheme is modified so that the
CFL condition allows one to choose cAt = Ax. In this
case, the dispersion relation is exact for modes propagating
along the x axis, and Cherenkov radiation can potentially
be suppressed. However, it was shown in [17] that using
cAt = Ax triggers the onset of spurious numerical
oscillations at the Nyquist frequency (k = 7/Ax). Again,
strong filtering is needed in this case, in order to remove
these oscillations. Along the same line of thought, another
set of numerical schemes was proposed in [16], and some
of them can prevent numerical Cherenkov radiation with-
out requiring cAt = Ax. These methods could in principle
be successfully used in laser-wakefield simulation, yet they
were only developed for isotropic grids (Ax = Ay = Az),
which limits their range of application. In this section, we
propose a variation of the schemes proposed in [16], which
is optimally adapted to simulations of laser-wakefield ac-
celeration. Importantly, the proposed scheme is applicable
to anisotropic grids and minimizes the impact of the modi-
fied dispersion relation on the propagation of the laser.

A. Description of the proposed scheme

In the proposed scheme, the fields E and B are defined
on the same lattices as in the Yee scheme. The Maxwell
equations take the following form:

D,B=-V"XE (4)
D,E = >V X B — uyc?J, (5)
where D, and v symbolize the same discretized leap
-frog operators as in the Yee scheme, i.e., for a field

F};, defined on the nodes of the computational

. +1/2
lattice, D, FI! /> =(Fit) —F;0/Arand VoFIL 5=
(Fiyx—F}; 1)/ Ax. However, V" is a modified oper-
ator that depends on a set of coefficients, and which is

defined by

Vi 1= el i = Fi) /At By (Fiey oy = Filjeg )/ Ax o+ Bry (Fiy oy o — oy )/ Ax

+ Bx,z(F?+1,j,k+1 - F?,'j,kﬂ)/Ax + Bx,z(F?ﬂ,j,kﬂ

and by similar relations along the directions y and z. The
position of the nodes that are used to calculate VF|?, | 2k
are represented in Fig. 6. In order for the operator V; to
reduce to d, in the limit Ax — 0, the following relation has
to be imposed:

a,=1-28,,—2B,.— 35, 7

—F )/ Ax+ 8 (Fly = Fly ) /Ax - (6)

Similar relations also have to be imposed in the directions
y and z.

By injecting functions of the form E, B «exp(ik - ¥ — 1)
into the discretized Maxwell equations, it is possible
to show that the numerical dispersion relation in this
scheme is
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with s, = sin(wAt/2) and s, = sin(k,Au/2) foru = x, y,
z. Selecting an appropriate scheme now reduces to the
choice of the 8 and 6 coefficients.

In order to determine the coefficients that efficiently
suppress Cherenkov radiation, we first impose that the
phase velocity of modes propagating along the x axis is
larger than ¢ [v¢,x(l€ = k,ii,) = c, for any k,, where i, is
the unit vector along x]. From Eq. (8), the phase velocity of
such modes is

> 2 At
vy (k= kyii,) = Y arcsin(CA—x syl — 48,52 ’ )

Thus, for a given Ar and Ax, vy, increases when &,
decreases (even for negative values of §,). In fact, v, , is
larger than ¢ for any k,, when 8, = &, o, where

1 Ax? . (mcAt
5X,0 ——[1 —Wsm (2Ax )] (10)

Notice, incidentally, that &, should not be chosen much
below 6, g, since CFL-type instabilities start appearing for
8, < 1/4[1 — Ax?/(cAt)?]. In the proposed algorithm, we
opt for 6, = 6.

However, implementing 6, = 0, also affects modes
having an oblique k, and makes them more prone to CFL
instabilities. Adopting proper nonzero 3 coefficients sta-
bilizes these modes and efficiently prevents CFL instabil-
ities. In the end, the proposed scheme corresponds to the
following coefficients:
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FIG. 7. Numerical phase velocity along x [vy,, as deduced
from Eq. (8)] as a function of k, and k, for electromagnetic
modes propagating in the x-y plane (k, = 0). The blue horizontal
plane corresponds to v, = Bc, and there is no intersection
between these two surfaces. Although not shown on this figure,
there is no intersection either for the other modes (k, # 0).

ﬂy,x = Bz,x = 1/8» Bz,y = ﬂy,z = 0’
Byy = Ax*/(8Ay?), Br. = Ax*/(8AZ%), (1)
8, = 6,0 6,=96,=0.

As long as cAr = Ax, this scheme is CFL stable.
Moreover, it satisfies vy, = ¢ for all modes (see Fig. 7),
thus preventing Cherenkov radiation for particles traveling
along the x direction. We emphasize that this scheme is
only efficient in the cases where relativistic particles all
travel along the same axis. This is, however, clearly the
case in simulations of laser-wakefield acceleration.

B. Spurious oscillations at the Nyquist
frequency and velocity of the laser

We point out that, in the proposed scheme, the ratio
cAt/Ax is a free parameter (on which the coefficient &,
depends). Choosing cAt/Ax = 1 leads to 8, = 0, and the
scheme reduces to that of [19]. However, as observed in
[17], this scheme develops spurious oscillations at the
Nyquist frequency, which—unless filtered—rapidly grow
to unacceptable levels. We observed that reducing cAt/Ax
in our scheme readily leads to a reduced level of oscilla-
tions. In practice, even for cAr/Ax = 0.96, these oscilla-
tions remain at a limited level instead of growing unbound,
so that no filtering is required in the simulation.

Another important point to bear in mind is that the
proposed scheme artificially increases the velocity of the
laser—in the same way as the Yee scheme artificially
reduces it. In the limit k. Ax < 1 and 1 — cAt/Ax <
1, Eq. (9) with 6, = &, reduces to

> 2 cAL\ (kipser AX\2
= + — _ | =
UqS,x(klaser)/c 1 3 (1 Ax )( 2 ) ’ (12)
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which also implies
> AL\ (kigger AX\2
vg,x(klaser)/c =1+ 2(1 - C.Aix)(%x) ’ (13)

where v, , = g,i‘: = aix (kyv ) is the group velocity of the

laser along x.
The laser speedup here is of the same order of magnitude
as the laser slowdown in the Yee scheme, since

VY (Krger) /€ = 1 = 1/3 X (1 = cAt/ Ax)(KiyoerAx/2)> and

v;{,ie(lzlaser)/c =1-(1- CAI/AX)(klaserAx/z)z- When
simulating laser-wakefield acceleration, it is important to
ensure that the numerical alteration of the laser group
velocity is negligible compared to the physical alteration
caused by the plasma. In other terms, the criterion
(1 = cAt/Ax)(kpper Ax/2)* < (n/n,) has to be satisfied.
Notice that this holds for both schemes. Not satisfying the
above criteria would lead, in the Yee scheme, to the injec-
tion of a spuriously high level of charge, while it would
lead, in the proposed scheme, to an artificially low charge
or no injection at all.

Satisfying the above criterion implies that the laser
wavelength has to be sufficiently resolved (i.e. kjye Ax
sufficiently small) but also that cAz/Ax should not be
too different from 1. There is therefore a trade-off between
cAt/Ax far from 1, which keeps numerical oscillations
low and cAt/Ax close to 1, which reduces the alteration of
the velocity of the laser.

V. SUPPRESSION OF CHERENKOV RADIATION

We implemented the scheme proposed in Sec. IV in
CALDER and ran a simulation with the same parameters
asin Sec. II. In particular, we used cAr = 0.96Ax. Figure 8
compares the field E, — c¢B, obtained in those two simu-
lations, after 300 um of acceleration. Consistently with
the analysis of Sec. IV, no Cherenkov radiation is emitted
in the case of the modified scheme. We emphasize that
this is indeed a consequence of the dispersion relation of
the proposed scheme, since no filtering was used in the
simulation. On the other hand, oscillations at the Nyquist
frequency appear behind the accelerated bunch in the case
of the modified scheme. Nonetheless, these oscillations
seem to have much less impact on the bunch than the
Cherenkov radiation does. This can be seen, in particular,
in Fig. 9, where the evolution of the transverse emittance is
plotted in both cases. Suppressing the Cherenkov radiation
allowed us to reduce the growth rate of emittance by
roughly a factor of 2. In simulations of controlled injection
where the charge of the bunch was lower (= 50 pC), we
were able to observe a reduction by a factor of 7. This
strong reduction proves that Cherenkov radiation is indeed
the main cause for the growth of emittance. It is unclear
whether the remaining growth of emittance is the conse-
quence of a physical effect (such as a partially evacuated
bubble) or of another numerical artifact.
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FIG. 8. Snapshot of the transverse field E, — c¢B, in the x-y
plane, at the back of the bubble and after 300 um of accelera-
tion. The top panel corresponds to the simulation ran with the
Yee scheme, while the bottom panel corresponds to the one run
with our modified scheme. Both snapshots correspond to the
same iteration, so that the bubble has a slight advance in the
bottom panel, due to the alteration of the velocity of the laser
mentioned in Sec. IV B.
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FIG. 9. Transverse emittance of the sub-bunch considered
in Fig. 1, in the y (parallel to the laser polarization) and z
(orthogonal to the laser polarization) direction, as a function of
the acceleration distance.
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FIG. 10. Energy spectrum after 300 um of acceleration
(from the position when injection started) for the two numerical
schemes considered here.

The impact of the numerical scheme on the group
velocity of the laser, which was mentioned in Sec. IV B,
is also clearly visible in Fig. 8, where the laser pulse has a
slight advance in the proposed scheme, as compared to the
Yee scheme. In the two simulations, the laser pulse was
initialized at the same position, but it propagated then over
about 725 pm before the snapshot from Fig. 8 was taken.
From Eq. (13) and its counterpart for the Yee scheme, the
expected difference in laser group velocity between the
two schemes is Av, /¢ = 3(1 — cAt/Ax)(kjyser Ax/2)* =
1.9 X 1073, After 725 wm of propagation, this leads to an
expected advance of 1.4 um in the proposed scheme as
compared to the Yee scheme, which is consistent with the
observations in Fig. 8.

Apart from the differences mentioned above, our
modified scheme did not affect significantly the physics
in the simulation. In particular, the energy spectra of the
electrons are very similar in the two simulations, as shown
in Fig. 10, and the total charge of the bunch differs by less
than 5% from one scheme to the other.

VI. CONCLUSION

In this paper, we showed that simulations of laser-
wakefield acceleration using standard PIC codes tend
to largely overestimate the emittance of the bunch. In
addition, we proved that this overestimation is, to a large
extent, due to numerical Cherenkov radiation interacting
with the bunch. By using a modified numerical scheme, we
were able to suppress Cherenkov radiation and substan-
tially reduce the calculated emittance.

The main implication of this work is that calculations of
emittance, with bunches of a few tens of pC and more,
require much care. The low values of emittance, that are
now reached in experiments, are indeed extremely sensi-
tive to the numerical artifacts of PIC simulations. Although
we removed an important fraction of these artifacts, more

work is needed in order to determine wether the obtained
emittance is free of numerical errors.

Another important contribution of this paper is the nu-
merical scheme that we propose. This scheme efficiently
suppresses Cherenkov radiation and yet develops only a
limited level of high-frequency numerical oscillations, as
compared to the scheme used in [17]. As a result, valid
simulations can be run with our scheme, without the need
of low-pass filters. This algorithm, or modified versions of
it, could in principle be used in other contexts where the
dispersion relation is crucial. This potentially includes
simulations of relativistic shock formation [26,27], as
well as simulations of laser-wakefield acceleration in the
boosted frame [24,28], since Cherenkov-type instabilities
can represent a serious issue in both cases.
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