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A systematic analysis of linear optics optimization using various independent methods has been

performed. Three independent techniques, namely quadrupole variation, linear optics from closed orbits,

and turn-by-turn measurement, have been studied at the Swiss Light Source. Furthermore, the perfor-

mances are compared from various aspects including a direct comparison of the corrected optics. The

limitations of the three independent methods are also presented.

DOI: 10.1103/PhysRevSTAB.16.012802 PACS numbers: 41.85.�p, 29.20.db, 29.27.Eg

I. INTRODUCTION

The experimental determination of linear optics is a
fundamental prerequisite to achieving a high performance
storage ring. We have therefore performed a systematic
study of linear optics optimization using various indepen-
dent methods. The study is motivated by several goals:
(1) to confirm the linear optics correction, (2) to establish
precise control of the linear optics, which is the basis of
both nonlinear optics manipulation and betatron coupling
correction, and (3) to reveal the limitations of the various
techniques for future accelerator research and develop-
ment. The first goal is only achieved through a systematic
comparison of results from the multiple methods.

The Swiss Light Source (SLS) is a 3rd generation light
source in its 10th year of operation, providing light of high
brilliance to a current 20 beam lines, 18 of which are
dedicated to experimental users, with the remainder re-
served for beam diagnostics. Its storage ring is equipped
with a modern digital beam position monitor (BPM) sys-
tem capable of measurements not only of the closed orbit
but also as a function of turns. In addition, an optics
measurement based on tune changes in response to varia-
tions in quadrupole gradient has been implemented, and
now acts as the standard optics setup procedure. The SLS
thus offers an ideal platform to perform a comparison of
linear optics measurements and correction methods.

The optics measurement via tune response directly
probes the average beta function over quadrupole magnets.
The method is well known and documented in numerous
literatures, for instance Ref. [1]. It requires quadrupole
magnets to be powered independently as in most light
sources. A single diagnostic tool, e.g. a tune monitor, is
used to perform the measurement. The optics correction
is intrinsically robust since the location and number of

measurement points are identical to those of the knobs
used in the correction, i.e., the quadrupole magnets.
Nevertheless, despite the simple principle, the measure-
ment procedure and data analysis must be undertaken with
considerable care, as discussed later.
Linear optics from closed orbits (LOCO) [2] has been

employed in many light sources and storage rings [3]. As
the name suggests, the linear optics is inferred from the
closed-orbit response to an excitation of dipole correctors
in the ring. A large data set is obtained from the product of
corrector and BPM numbers in both horizontal and vertical
planes. The measured orbit response is fitted to that obtained
from an optics model that includes quadrupole errors, which
are the principal contributions to the orbit response distor-
tion. Not only the quadrupole errors, but also the gain cali-
bration constants of the correctors and BPMs, together with
their tilts, are found due to the large amount of data. Skew
quadrupole corrections that compensate the off-diagonal
components of the response matrix are simultaneously de-
termined for the betatron coupling correction. The unknown
quantities appear as free parameters in the fitting procedure.
A partial orbit response, where only a limited set of

correctors are analyzed to enable a more immediate mea-
surement, may also be used to infer the linear optics [4].
However, this requires precise knowledge of the BPM
calibration constants in advance since the partial response
does not provide sufficient sensitivity for the determination
of its errors. Since the orbit response measurement at the
SLS can be performed within a reasonable time frame
(about 20 minutes), no optics correction based on the
partial orbit response is deemed necessary. Rather, the
fitting algorithm of Ref. [4] is directly compared with
LOCO using the full orbit response.
The linear optics can also be inferred from turn-by-turn

(TBT) beam position data [5] where a betatron oscillation is
excited by a single kick. A significant advantage of this
approach is the speed with which measurements can be
performed. Data for a few hundred or thousand turns may
be amassedwithout varyingmachine components other than
the kicker. A betatron oscillation may also be excited by
resonant dipolar excitation near the betatron frequency [6].
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Another advantage of TBT measurement is that it addition-
ally allows us to probe the nonlinear optics as well [7,8].

The dispersion function, in general, is measured by
varying the beam momentum and recording the corre-
sponding orbit change with BPMs. The methods presented
are thus intrinsically coupled through their use of a com-
mon set of diagnostics. For example, the optics correction
based on the average beta measurement uses not only a
tune monitor, but also the BPMs, in cases where the
dispersion correction is included. To remove as many
dependencies between the methods as possible, the disper-
sion correction is excluded in this study.

The methodology of the three independent methods is
presented and their results compared. The SLS storage ring
is briefly described in Sec. II, with emphasis on the pa-
rameters and diagnostics relevant to this study. The optics
measurements and corrections are presented in Sec. III.
The performances of the three methods are discussed with
experimental results and simulations in Sec. IV. Finally, the
conclusions drawn are summarized in Sec. V.

II. SLS STORAGE RING AND SUBSYSTEM

The main parameters of the SLS storage ring, in par-
ticular those related to the optics measurement and correc-
tion, are listed in Table I. For the purpose of this study, the
nominal user operation optics are measured and corrected
with insertion devices deactivated. The entire complement
of 177 independently powered quadrupoles at the SLS are
used in the measurement and correction procedure [9]. The
BPM system can be engaged in two different operating
modes, namely closed-orbit mode and TBT mode. The
measurement errors for the two modes are <1 �m and
�20 �m, respectively. The corresponding beam condition
for TBT mode is described in Sec. III C. The SLS BPM
system is described in more detail in Ref. [10].

III. OPTICS MEASUREMENTS
AND CORRECTIONS

In all three methods described below, the quadrupole
corrections are computed by applying the well-known
singular value decomposition (SVD) technique: First we
measure the observables, for example the orbit responses in
LOCO. A sensitivity of the observables to each quadrupole
error is computed using an optics model. Then possible
corrections are found as

~C ¼ S�1 ~MT; (1)

where ~C is a vector of possible quadrupole corrections, S�1

is a pseudoinverse of the sensitivity matrix, and ~MT is a
transposed vector describing the deviation from the ideal
model. The correction procedure is iterated until the de-
viation of observables is minimized. In each iteration step,
the betatron tunes are adjusted to the nominal tune values.
The tune correction required typically reaches a negligible
value by the end of the iteration process. In the presence of
measurement errors, small singular values need to be ex-
cluded by applying a singular value cut in order to ensure
stability of the optics correction. Section IV discusses the
determination of the optimum cuts for each method.

A. Quadrupole variation (QV)

The average beta function over a quadrupole magnet can
be measured from the response of the betatron tune to a
small variation in quadrupole strength. The measurement
can be carried out with the nominal filling pattern and
beam current. However, a measurement utilizing a short
bunch train, for instance 100 bunches, results in a lower
measurement error. This may be because the pulse length
of the kicker magnet that excites the betatron oscillation is
longer than the revolution period and exhibits a short flat-
top although the tune measurement should be valid for any
coherent linear oscillation. The QV measurement is there-
fore normally performed using a short bunch train with the
beam current of 50� 100 mA.
Since the fractional part of the horizontal tune is near to

the half integer value, the tune response cannot be approxi-
mated by a linear function of the quadrupole variation.
Consequently, the average beta function is computed as

h�i ¼
�
�
�
�
�
�
�
�

2

�KL

cos½2�ðQþ �QÞ� � cos2�Q

sin2�Q

�
�
�
�
�
�
�
�

; (2)

where h�i is the beta function averaged over the quadru-
pole effective length, Q is the betatron tune, �KL is the
change in integrated quadrupole gradient, and �Q is the
corresponding response in the betatron tune.
The measurement is performed by varying the gradient

of each quadruple in turn and recording the resulting
horizontal and vertical tunes. The range of quadrupole
current is determined, based on an optics model, to limit
the tune shift to within 0.02 in either the horizontal or
vertical plane. The tune shift in the other plane is then
smaller. When a linearized equation is employed instead of
Eq. (2), the approximation error can reach �10% in the
horizontal plane at a tune shift of 0.02, while being negli-
gible in the vertical plane.
A rather elaborate measurement procedure is required in

order to minimize both the systematic and statistical errors.
First, the transfer function of quadrupole magnets is care-
fully described taking saturation effects into account. In
addition, the quadrupole magnets are cycled before the
measurement and the gradient is always increased so as

TABLE I. SLS storage ring parameters.

Parameter Value

Beam energy 2.4 GeV

Circumference 288 m

Lattice 12 TBA

Number of BPMs 73

Number of correctors 73

Betatron tune (H/V) 20:435=8:737
Harmonic number of rf 480
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not to deviate from the calibrated transfer function.
Furthermore, by restoring tune values to their original set
points after each tune response measurement, drifts in tune
due to hysteresis effects are averted, allowing the optics to be
kept constant.

Second, the tune monitor realizes sufficient resolution
by interpolating the fast-Fourier-transform spectrum, and
the betatron tunes are measured at several points along
increasing quadrupole gradients. The number of turns in
the analysis is 1024. Occasionally, the detection of the tune
spectrum fails, e.g., by mistakenly attributing the tune to a
peak in close proximity to the true value. Such occurrence,
however, can be easily recognized (due to an obvious
inconsistency among the several measurements) and re-
moved from the subsequent analysis.

Third, the measured effective length of quadrupoles is
properly implemented into the optics model and used when
computing the average beta. Nevertheless, a systematic
error remains due to the correspondence between the ef-
fective length and the hard-edge approximation. The sys-
tematic error is evaluated, from a comparison of the
computed average beta with measured edge profile (soft
edge), to be negligible.

Figure 1 shows the residual beta-beat (difference in beta
function with respect to the ideal model) of the best optics
correction achieved to date, with values of 4.0% rms and
3.2% rms in the horizontal and vertical planes, respec-
tively. The average beta-beat, however, is seen to be offset
from the origin despite the fact that the betatron tunes were
reset to their nominal values before each measurement.
The offset was examined from various aspects. For in-
stance, the beta-beat was plotted for each quadrupole
family, showing a negative offset for all of them.

To determine the quadrupole corrections, an m-by-n
sensitivity matrix is first prepared from the optics model,
where m is the total number of quadruples (177) acting as

correction knobs, and n ¼ 2m is the total number of hori-
zontal and vertical beta function observables (354). We
apply the SVD matrix inversion with a high singular value
cut of �0:02 to remove any dependency on the observed
average beta-beat offset (further discussion in Sec. IV). A
further reduction in the residual beta-beat is, however,
restricted by our inability to fully understand the observed
offset. Nevertheless, the elaborate measurement procedure
gives a statistical error of<1% rms (Fig. 2). The statistical
error is further discussed in Sec. IV.

B. Linear optics from closed orbits (LOCO)

At the SLS, the correction of the betatron coupling is
based on the off-diagonal orbit response matrix [11]. This
study extends the correction to the linear optics.
The nominal filling pattern, a bunch train with 390

bunches, and nominal beam current of 400 mA is em-
ployed in LOCO measurements because BPMs are opti-
mized to realize the best possible resolution for the
nominal beam condition. Furthermore, stable orbit re-
sponse measurement requires a thermal equilibrium state
of the machine. The corrector kick for the orbit response
measurement is typically 50 �rad, where the maximum
orbit response is �0:5 mm. Although the sextupole mag-
nets are switched on during the measurement, changes to
the orbit remain in a linear regime. At the same time, they
are sufficiently large to allow errors in the measurement to
be ignored: the statistical measurement error expected
from the BPM resolution is in the order of 0:01 m=rad
while the maximum orbit response is approximately
10 m=rad in the SLS.
The LOCO algorithm allows one to configure Eq. (1)

differently, i.e., including more parameters in the sensitiv-
ity matrix, and hence in the correction vector [2]. The
measured orbit response is fitted with the following
parameters: quadrupole corrections (177), BPM and
corrector calibrations and tilts (2*2*73 and 2*73), the
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FIG. 1. Residual beta-beat after optics correction with QV. The
rms value of the residual beta-beat is 4.0% and 3.2% in the
horizontal and vertical planes, respectively. The average beta-
beat, indicated by the open (red) circle, is offset by �2:6% and
�2:1% in the horizontal and vertical planes, respectively.

0 1 2 3 4 5
0

20

40

60

80

100

N
um

be
r 

of
 q

ua
dr

up
ol

es

Meausurement error (%)

 Horizontal
 Vertical

FIG. 2. Statistical error in the average beta measurement of
Fig. 1: red bars for the horizontal plane, blue for the vertical. The
statistical error is evaluated from several tune measurements
along increasing quadrupole gradients.

COMPARISON OF LINEAR OPTICS MEASUREMENTAND . . . Phys. Rev. ST Accel. Beams 16, 012802 (2013)

012802-3



momentum shifts due to the additional corrector dipole
field at the dispersive section (2*73), and skew quadrupole
components at each sextupole (24 or 120). The number of
selected skew quadrupole knobs depends on the objective
of the fit: 24 are used for the coupling correction and 120
when constructing an error model.

When the LOCO method was first applied at the SLS,
important calibration errors in the BPMs and correctors
were revealed, subsequently initiating their recalibration. It
is noted that, in the cases where only the beta function is to
be corrected, the BPM and corrector tilts, and the skew
quadrupole components are not necessarily included in the
fit unless the tilts and/or the betatron coupling are large.

The application of an appropriate SVD cut of 0.001 (see
Sec. IV) circumvented the need for a vigorous gradient
correction such as that reported in Ref. [3].

An iteration of the LOCO optics correction procedure
achieved the rms deviation of the orbit response from the
ideal model of 0.034 and 0:13 m=rad for the horizontal and
vertical planes, respectively. They are computed after apply-
ing the BPMand corrector calibrations to themeasured orbit
response, but not quadrupole corrections. Inclusion of the
quadruple corrections, on the other hand, results in greatly

improved values that are close to the measurement error. A
further iteration was, however, observed to increase the
deviation, rather than reduce it. Figure 3 shows the variation
of the deviations with the number of iterations, togetherwith
the beta-beat reconstructed from the fitted quadrupole cor-
rections, which corresponds to a ‘‘calibrated model’’ [3].
As is evident from Fig. 3, the deviation could be suc-

cessfully corrected after three iterations. The residual orbit
response deviation is, however, an order of magnitude
larger than the expected measurement error in the vertical
plane. The observation that the reconstructed vertical beta-
beat is increased by a factor of (at least) 4, from the third to
fourth iteration, suggests significant differences between
the optics model and the machine, which become evident
when the beta-beat is corrected to the 2% rms level. This is
further discussed in Sec. IV.
To confirm the LOCO results, the reconstructed beta-beat

fromLOCO is compared to the results obtained by the fitting
algorithm in Ref. [4]. LOCO reproduces the measured orbit
response through the determination of quadrupole errors,
while the algorithm of Ref. [4] manipulates the beta func-
tions and phases. The brute force approach of Ref. [4] was
applied,wherein the beta functions andphases are iteratively
updated from the ideal model until the measured response is
finally reproduced. The comparison is shown in Fig. 4.
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FIG. 3. Deviations of orbit response and reconstructed beta-
beat vs number of correction iterations. The deviation of orbit
response is computed in two ways: the deviations with respect to
the ideal orbit response after LOCO fitting with quadrupole
corrections excluded (black), and included (red). The left axis
marks for the deviation of orbit response while the right axis
indicates the beta-beat (blue) reconstructed by adding the fitted
quadrupole corrections to the ideal optics model.
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FIG. 4. Reconstructed beta-beat with LOCO and the fitting
algorithm from Ref. [4]. Black circles are from LOCO, red
crosses from the algorithm of Ref. [4] with BPM gain correction
and blue crosses without correction.
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The fitting of the beta functions and phases is exam-
ined in two ways: (i) with raw data, and (ii) with the
inclusion of BPM calibration errors as determined from
LOCO. Since the BPM gain recalibration was incorpo-
rated into the control system only in cases of significant
error, i.e. >5%, residual calibration errors in the order of
a few percent are expected to enter in the measurement.
This, however, is not relevant to LOCO where all fitting
parameters are simultaneously fitted. In contrast, knowl-
edge of the BPM gain calibration is crucial to the fitting
of the beta functions and phases. The two methods show
good agreement, at least in cases where the BPM cali-
bration is not an ingredient, thereby validating LOCO’s
results.

C. Turn-by-turn (TBT) measurement

The TBT measurement at the SLS requires electron
beams to be injected into a short bunch train, typically
utilizing 100 bunches, with a total current of �50 mA.
This is because of the same reason as for the QV mea-
surement. The typical number of turns in the TBT mea-
surement is �1000.

There are a number of ways in which the linear optics
can be inferred from the TBT data. For instance, the beta
function can be found from the oscillation amplitude, with
the precise BPM calibration required for this measurement
provided by LOCO.1

In order to ensure that the TBT measurement is
independent of LOCO, the phase advances between
neighboring BPMs are measured in terms of BPM
calibration independent observables. A minimization
of the phase-beat corresponds to a minimization of the
beta-beat [12]. The quadrupole corrections are com-
puted from Eq. (1) with a singular value cut of 0.01
(see Sec. IV).

The initial optics measurements using TBT BPM data
disclosed a serious mis-synchronization of the BPM trig-
gers, which was subsequently solved by installing delay
cables that accounted for the time of flight of the electron
beam around the ring. Figure 5 shows phase-beat measure-
ments before and after the cable installation. The large
artifacts that were initially present in the betatron phase
measurements were eliminated once the BPM triggers
were properly synchronized.

Another undesirable effect of the TBT BPM data
acquisition is the overlap (or mixing) of signals from

individual turns. With the present BPM configuration,
approximately 20% of each signal is displaced into that
of the neighboring turns. The global trigger timing can be
adjusted so that at least an equal fraction of signal is
displaced into each of the two neighboring turns (pre-
vious, future). In this way, the displaced proportion of the
signals may cancel in the phase measurement. Assuming
the validity of a linear sum, a BPM signal for turn n,
which also contains some signal component from neigh-
boring turns, can be represented by

ð1�2snÞAn sin2�Qnþsnþ1Anþ1 sin½2�Qðnþ1Þ�
þsn�1An�1 sin½2�Qðn�1Þ�
¼½ð1�2snÞAnþsnþ1Anþ1 cos2�Q

þsn�1An�1 cos2�Q�sin2�Qn

þðsnþ1Anþ1 sin2�Q�sn�1An�1 sin2�QÞcos2�Qn;

(3)

where A is the oscillation amplitude, s is the ratio of mixed
signals, and Q is the betatron tune. The initial phase is
assumed to be zero for simplicity. The amplitude, A, re-
mains approximately constant over a number of turns,
unless the chromaticity is very high. We note that the
second term disappears when the ratio of mixed signals
in neighboring previous/future signals are the same,
sn�1 ¼ snþ1, and therefore the phase carried in sin2�Qn
can be retrieved. Another approach might be to correct the
turn-by-turn BPM data by applying a filter which decon-
volves the mixture [13]. However, once the mixture is
equalized, a filter applied to turn n also has a mirror
symmetry about this turn, such that the betatron phase is
not varied. Provided measurements are confined to the
betatron phase only, the equalization process is all that is
required to compensate for the overlap in signals. Note that
the betatron amplitude must be properly corrected by the
deconvolution.
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FIG. 5. Phase-beat measurements before and after the cable
installation. Black/red points show the phase-beat measurement
before/after the cable installation.

1The same hardware (rf front-end, digitizers, digital process-
ing chain, etc.) is used for TBT and closed-orbit mode measure-
ments, which even includes the use of the same geometrical
scaling factors and the same gain settings for the individual
channels on the rf front-end. What is different in the two modes
are the digital filter settings and data reduction filters on the
digital down-converters, which leads to a lower bandwidth but a
higher resolution of the BPM. The BPM calibration itself is left
unchanged in the two different operating modes.
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The SUSSIX [14] algorithm is used to analyze TBT
data. However, this may not be the optimum approach
for determining the betatron phase since its phase accuracy
scales proportionally to the inverse of the number of turns,
1=N. On the other hand, alternative algorithms, which in
principle are able to determine the phase with an accuracy
scale of 1=N2 or even 1=N3, are also limited to 1=N in the
presence of noise [15]. As shown in Fig. 6, the statistical
error of the phase measurement at the SLS is �0:001 rms
in units of 2� when an SVD data cleaning [16] is applied.

An iteration of TBToptics correction achieved a residual
rms phase-beat of 0.0015 and 0.0036 in units of 2� in the
horizontal and vertical planes, respectively. The residual
phase-beat is shown in Fig. 7. In the horizontal plane it is
gratifyingly close to the statistical error of the phase mea-
surement. The asymmetry in the phase-beat achieved im-
plies that overlaps in signals between turns persists in the
vertical plane, given that the second term in Eq. (3) may
not be negligible for a fractional tune of 0.74. Otherwise a

difference between the optics model and the machine
presents as previously suggested by LOCO results.

IV. COMPARISON

A comparison is made of the performance of the three
methods from various aspects.
We first examine the capability of the different methods

to identify a single, specified quadrupole error intention-
ally introduced into the machine. Measurements for each
method were undertaken both with and without inclusion
of the quadrupole error. The quadrupole corrections corre-
sponding to the introduced error are shown in Fig. 8.
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Figure 8 also shows the predictions from a numerical
simulation, wherein error-free fake data are generated from
the optics model incorporating the introduced error. Good
agreement is seen with the experimental results, which
further endorses the application of the singular value cuts

for the removal of the adverse effects of the measurement
errors. These cuts were also applied in the iterative correc-
tion procedure described in Sec. III. Their values were
selected as follows.
The optimum cut for QV is known empirically. It is

�0:02 of the maximum singular value that results in a
successful optics correction in the presence of the ob-
served average beta-beat offset. The corrections deter-
mined from TBT data tend to be aggravated for cuts
below 0.01. The singular value cut in LOCO is experi-
mentally determined to simultaneously minimize the ef-
fect of measurement noise and the degeneracy issue [3].
Since the number of quadrupoles exceeds that of the
BPMs, correctors, and betatron waves, the neighboring
quadrupoles, which are a few meters apart, may therefore
serve as an equivalent knob. The SVD algorithm then acts
to distribute the quadrupole corrections over a given knob.
Figure 9 shows the fitted quadrupole corrections for vari-
ous SVD cuts.
Beam position measurements can be provided to

LOCO and TBT only at the physical locations of the
BPMs, which inevitably leads to a degeneracy issue.
However, the correction in QV, on the other hand, can
be equally determined with the average betas measured at
the quadrupoles to be corrected by the very same quadru-
poles. This is particularly apparent when corrections are
computed in the absence of a singular value cut for an
error-free data set, generated from an optics model, as is
evident in Fig. 10. In an ideal QV measurement, the
single quadrupole error can be perfectly identified. Only
quadrupole corrections are used as fitting parameters in
LOCO. The SVD algorithm would otherwise additionally
distribute the quadrupole correction to the BPM and
corrector calibrations in contradicting to the ideal values
set in the simulation data.
The statistical error is next examined by repeating the

measurements under the same conditions. Table II sum-
marizes the statistical errors evaluated from the four
measurements.
The quadrupole corrections are computed from the four

measurements for each method, and the corresponding
fluctuations are shown in the table. These corrections are
introduced to the ideal optics model, and the fluctuations in
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FIG. 9. Fitted quadrupole corrections from LOCO for various
SVD cuts. The quadrupole correction, without the intentionally
introduced error, is subtracted. A response from the neighboring
quadrupoles is observed. The identification is improved by
lowering the cut from 0.002 to 0.001 while a further reduction to
0.0005 results in no improvement but unwanted quadrupole
corrections.
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FIG. 10. Single error identification with simulated data. No
singular value cut is applied.

TABLE II. Statistical errors evaluated from repeated measurements and SVD cuts. The measurement errors for the three different
methods are incommensurable because they are the rms fluctuation of the average beta normalized by the model value in units of % for
QV, the orbit response in units of m=rad for LOCO, and the phase advance between BPMs in units of 2� for TBT. Single TBT
measurement corresponds to an average of four measurements, profiting from the fast data acquisition.

Measurement error, rms Quadrupole strength, rms [m�2] Beta-beat, rms [%] SVD cut

QV 1:4=0:8 1:8� 10�4 0:56=0:32 �0:02
LOCO 0:01=0:006 5:2� 10�4 0:19=0:089 0.001

TBT 0:0016=0:0014 8:4� 10�4 1:0=0:79 0.01
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the resulting beta-beat are then computed. These numbers
correspond to the limitations in the beta-beat correction
due to the statistical measurement error.

It is seen that the measurement errors are consistent with
the expected values either from the single measurement or
the resolution of the diagnostics. The statistical error of
beta-beat in LOCO, which comprises the largest data set, is
smallest among these three methods. Particularly interest-
ing is the smaller fluctuation in the quadrupole correction

in QV when compared to that in LOCO. However, this
effect originates at a relatively high singular value cut that
regulates the absolute correction values.
The identification of single quadrupole error remains

uncertain, especially in QV and TBT where a higher
SVD cut is imposed, as seen in Fig. 8. In evaluating the
limitation in beta-beat correction, however, account should
be taken of the iterations applied in the correction. The
performance of the three methods, when iterated, are si-
mulated for various measurement errors following the
procedure described in Sec. III. The initial quadrupole
errors as well as the measurement errors are determined
using random numbers. The quadrupole corrections are
then computed with the cut values listed in Table II. The
results of the simulation are shown in Fig. 11.
The beta-beat can be corrected to the 1% level in QVand

TBT with the measurement error listed in Table II despite
its poor single error identification capability. The results
from LOCO show a residual beta-beat that is well below
1% at the measurement error of �0:01 m=rad.
The residual beta-beat with an error-free measurement is

determined from the degeneracy issue together with the
finite cut value (Fig. 11). It is noted that the optimization of
the singular value cut is dependent on the measurement
error. Since this dependency has not been accounted for,
the performance results at the higher measurement errors
displayed in Fig. 11 are consequently underestimated.
Nevertheless, the sensitivity of the residual beta-beat to
the measurement error for the different methods may be
qualitatively compared. The method utilizing the larger
data set is naturally less sensitive to the measurement error.
The raw TBT data volume is large, but the quadrupole
corrections are based on a subset of only 2*73 phase
advances between BPMs.
Continuation of the optics correction iteration after con-

vergence results in fluctuations in the experimental mea-
surements that are expected to be within the statistical
error. In the event of the fluctuation, and/or the residual
deviation from the ideal model, being significantly greater
than the statistical error, the correction is deemed to be
limited by systematic error(s). The analyses presented here
demonstrate that QV is limited by the observed offset,
while the LOCO and TBT results are each limited by the
remaining systematic error, particularly in the vertical
plane. In the LOCO case, the calibrated model obtained
may underestimate the beta-beat, when taking its minimum
value (Fig. 3).
Finally, the best corrected optics with LOCO and TBT

were measured with QV. Figure 12 shows the residual beta-
beat for these measurements together with the measure-
ment and correction from QV alone. The offset is sub-
tracted for the comparison. From the QV point of view,
LOCO and QV both result in a similar optics correction
quality. TBT generated some local beta-beats which were
not observed in the phase-beat.
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FIG. 11. Residual beta-beat at the end of iteration vs measure-
ment error (simulation) for (a) QV, (b) LOCO, and (c) TBT.
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V. CONCLUSION

A comparison of linear optics measurements and cor-
rection methods, namely QV, LOCO, and TBT, has been
performed at the SLS. The limitations of each of these
techniques were clarified. Although the QV analysis in-
cludes a beta-beat offset of 2% or 3% that is not well
understood, the statistical error in the elaborate procedure
of �1% corresponds to the achievable beta-beat of � 1%.
In LOCO, the limitation due to the measurement noise is
largely overcome by a large data set. In this respect, the

LOCO method has a potential to achieve a residual

beta-beat at the 0.1% rms level. The phase accuracy of

the TBT method sets a beta-beat limit of �1% rms. In

addition, the phase measurements may still be disturbed by

the overlap in signal between turns.

When the correction iteration is continued after conver-

gence, the measurement results should fluctuate within

the statistical error. If the fluctuation and/or the residual

deviation from the ideal model is far above the statistical

error, the correction is presumed to be limited by
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FIG. 12. A comparison of corrected optics. QV measurements for the optics corrected by QV (top), LOCO (middle), and TBT
(bottom). With the offset subtracted, the horizontal and vertical beta-beats in rms are, respectively, 3.1% and 2.3% in QV, 3.2% and
2.5% in LOCO, and 5.1% and 4.8% in TBT.

COMPARISON OF LINEAR OPTICS MEASUREMENTAND . . . Phys. Rev. ST Accel. Beams 16, 012802 (2013)

012802-9



systematic error(s). In the analyses presented, all methods

show limitations arising from systematic errors when the

beta-beat is corrected down to a few % level. In the case of

LOCO, the calibrated model may underestimate the beta-

beat, when its minimum value is taken.
A direct comparison between QV and LOCO showed

consistent residual beta-beats, verifying the validity of the
standard linear optics correction procedure. TBT was
found to generate local beta-beats which were not observed
in the phase-beat. It is, however, noted that a new BPM
system that has a modified filter to suppress the overlap in
signal between turns, has been developed at ESRF [17].
TBT thus remains an attractive procedure, because of its
immediate measurement capabilities and its potential for a
complete online optics characterization.
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