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Free-electron lasers have been designed to operate over virtually the entire electromagnetic spectrum

from microwaves through x rays and in a variety of configurations including amplifiers and oscillators.

Oscillators typically operate in the low-gain regime where the full spectral width is ð�!=!Þ � 1=Nw and

the efficiency � � 1=ð2:4NwÞ. Further, since a low-gain oscillator saturates when the gain compensates

for losses in the resonator G ¼ L=ð1� LÞ, this implies that the losses must be relatively small and the

cavity Q must be relatively large. This imposes problems for high power oscillators because the high Q

can result in mirror loading above the damage threshold, and in short-wavelength oscillators because

sufficiently low loss resonators may not be possible at x-ray wavelengths. In contrast, regenerative

amplifier FELs (RAFELs) employ high-gain wigglers that reach exponential gain and can operate with

high loss (i.e., low Q) resonators. As such, RAFELs may be able to function at either high power levels or

short wavelengths. In this paper, we describe a three-dimensional, time-dependent simulation of a RAFEL

operating at a 2:2-�m wavelength, and show that its behavior differs substantially from that of low-gain

oscillators, and is closer to that of self-amplified spontaneous radiation FELs in regard to spectral

linewidth and extraction efficiency.
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I. INTRODUCTION

Free-electron lasers [1] have been designed to operate
over virtually the entire electromagnetic spectrum from
microwaves through x rays and in a variety of configura-
tions including amplifiers and oscillators. Free-electron
laser (FEL) amplifiers have been operated as master oscil-
lator power amplifiers (MOPAs) and in self-amplified
spontaneous radiation (SASE) mode when no convenient
seed laser (i.e. master oscillator) exists. Oscillators are
typically operated in the regime where the gain in the
wiggler is low, where ‘‘low’’ here implies that the wiggler
is not long enough for the radiation growth to reach the
exponential gain regime. An oscillator reaches saturation
when the single-pass gain, G, is balanced by the loss, L,
and this occurs when G ¼ L=ð1� LÞ or alternately L ¼
G=ð1þGÞ. This implies that the loss, which is typically
dominated by the fraction of the radiation that is coupled
out of the resonator but also includes losses due to absorp-
tion in the resonator optics, can impose difficulties if the
mirror absorption causes excessive heating in the mirror,
which could lead to mirror distortion. This is particularly
the case for short-wavelength x-ray FEL oscillators, which
have a low-gain and available x-ray mirror technology is

pushed to its limits to produce mirrors with sufficiently low
loss. Another approach to oscillator design is to use a high-
gain wiggler where the radiation grows exponentially on a
single pass through the wiggler. Because the gain is high,
the permissible resonator loss can be relatively high;
hence, a large fraction of the power can be coupled out
of the resonator. This type of oscillator has been referred to
as a regenerative amplifier FEL (RAFEL), and the concept
has been experimentally demonstrated at the Los Alamos
National Laboratory [2]. A RAFEL may also be thought of
as a low-Q oscillator and has advantages both for (1) high
power designs since the mirror loading can be kept below
mirror damage thresholds, and (2) for vacuum untraviolet
(VUV) and x-ray oscillators.
In this paper, we present a three-dimensional, time-

dependent simulation of a 2:2-�m RAFEL using the
MEDUSA/OPC simulation code(s) and use the results to

discuss the properties of RAFELs, and how RAFELs differ
from low-gain oscillators. One difference is that, as shown
in Madey’s theorem, a low-gain oscillator exhibits no gain
directly on the resonance. In contrast, the growth rate in the
exponential gain regime has a peak on-resonance, and this
is reflected in the wavelengths excited in a RAFEL. A
second difference is the overall efficiency. The saturation
efficiency, �, of a low-gain oscillator is � � 1=2:4Nw,
where Nw is the number of periods in the wiggler. Since
the radiation exponentiates in each pass through the wig-
gler in the RAFEL, the efficiency is given by that found in
the high-gain Compton regime where � � �, where � is
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the Pierce parameter. A third difference is in the linewidth,
which scales inversely with Nw in a low-gain oscillator but
which is given by the linewidth of the exponential interac-
tion in the high-gain Compton regime. A fourth difference
is in the longitudinal and transverse mode structure, which
is determined largely by the resonator properties in a low-
gain oscillator. In a RAFEL, by contrast, the exponential
gain leads to saturation in a very small number of passes
through the resonator and the mode structure is largely
governed by the interaction in the wiggler. A fifth differ-
ence is in the effect of slippage. Slippage in a low-gain
oscillator scales with Nw. However, the high-gain in a
RAFEL results in a reduction in the group velocity such
that slippage scales with Nw=3. One point of similarity that
the RAFEL shares with low-gain oscillators is the presence
of limit-cycle oscillations. Finally, we also compare the
performance of the RAFEL with that of an analogous self-
amplified spontaneous emission (SASE) FEL.

The organization of the paper is as follows. The general
numerical procedure is described in Sec. II. The simulation
results for the 2:2-�m RAFEL is discussed in Sec. II,
which is divided into sections dealing with (1) the single-
pass gain, (2) a comparison with an equivalent SASE FEL,
(3) cavity detuning, (4) the temporal evolution of the pulse,
(5) the transverse mode structure, and (6) temporal coher-
ence. A summary and discussion is given in Sec. IV. While
it is well known that the phase velocity in the exponential
gain regime is reduced, and that this results in the optical
guiding of the radiation, the group velocity is also reduced
in the exponential regime. This affects the slippage of the
radiation pulse relative to the electrons. This reduction in
the group velocity has important implications for the cavity
detuning in a RAFEL, and is discussed in Sec. III.

II. THE NUMERICAL PROCEDURE

The numerical simulation of the RAFEL is conducted
using the MEDUSA/OPC simulation environment. This envi-
ronment has been described in a previous paper [3], where
it was validated by comparison with the 14-kWoscillator at
the Thomas Jefferson National Accelerator Facility [4].
The numerical procedure involves translating between
the input/output required for MEDUSA and optics propaga-
tion code (OPC). Initially, we run MEDUSA to determine the
optical output after the first pass through the wiggler,
which then writes a file describing the complex phasor of
the optical mode. OPC is then used to propagate this field
throughout the resonator and back to the wiggler entrance.
The field at the wiggler entrance is then reduced to an
ensemble of Gaussian modes that is used as input to
MEDUSA for the next pass. This process is repeated for an

arbitrary number of passes.
MEDUSA is a three-dimensional simulation code that

includes time dependence, harmonics, and start-up from
noise [5–8]. It models helical and planar wigglers and the
optical field is represented as a superposition of Gaussian

modes. Electron trajectories are integrated using the
three-dimensional Lorentz force equations in the combined
magnetostatic and optical fields. No wiggler average orbit
analysis is used. Models for quadrupoles and dipoles are
included. The time dependence is treated in either of two
ways. First, the electron beam and the optical mode are
described by an ensemble of temporal slices where each
slice is advanced from z ! zþ�z as in steady-state simu-
lations, after which the field is allowed to slip relative to the
electrons. Second, an explicit polychromatic expansion of
the fields can be employed. These two algorithms are
equivalent [9]; however, the former is simpler to employ
and is used here. Note that the first time-dependence
algorithm can be combined with a polychromatic harmonic
representation to treat the evolution of the fundamental and
harmonics in the time domain. Finally, the shot-noise
algorithm has been successfully tested by comparison
with the SPARC self-amplified spontaneous emission
(SASE) experiment at ENEA Frascati [10].

OPC propagates the optical field using either the Fresnel

diffraction integral or the spectral method in the paraxial
approximation [11,12] using fast discrete Fourier trans-
forms (FFT). A modified Fresnel diffraction integral
[13,14] is also available and allows the use of FFTs in
combination with an expanding grid on which the optical
field is defined. This method is often used when diffraction
of the optical beam is large. Currently, OPC includes
mirrors, lenses, phase masks, and round and rectangular
diaphragms. Several optical elements can be combined to
form a more complex optical component, e.g., by combin-
ing a mirror with a hole element, extraction of radiation
from a resonator through a hole in one of the mirrors can be
modeled. Phase masks can be used to model mirror
distortions or to create nonstandard optical components
like a cylindrical lens.
In a typical resonator configuration, OPC handles the

propagation from the end of the gain medium to the first
optical element, applies the action of the optical element to
the optical field and propagates it to the next optical
element until it reaches the entrance of the gain medium.
Diagnostics can be performed at the planes where the
optical field is evaluated. Some optical elements, specifi-
cally diaphragms and mirrors, allow forking of the optical
path. For example, the reflected beam of a partial trans-
mitting output mirror forms the main intracavity optical
path, while the transmitted beam is extracted from the
resonator. When the intracavity propagation reached the
output mirror, this optical propagation can be temporarily
suspended, and the extracted beam can be propagated to a
diagnostic point for evaluation. Then the intracavity propa-
gation (main path) is resumed.
Next to MEDUSA, OPC can also interface with the FEL

gain code GENESIS 1.3 [11,12]. For example, the GENESIS/

OPC combination has been used to model a design for the

generation of temporally coherent radiation pulses in the
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VUVand beyond by a self-seeding high-gain free-electron
laser amplifier [15], and for the design and optimization of
resonators for infrared FEL oscillators [16].

III. SIMULATION OFA 2:2-�m RAFEL

The electron beam, wiggler, and resonator parameters
are summarized in Table I. Observe that the temporal
profile of the electron bunch is parabolic with a full width
of 1.2 psec, and that the wiggler is a two-plane-focusing
(i.e., parabolic pole face) design with the first and last
periods tapered up and down to model the injection and
ejection of the beam. Since we model a RAFEL where
there is exponential growth and, hence, optical guiding of
the radiation, we use a matched beam in the wiggler. The
resonator is concentric with the power coupled out through
a 5.0 mm hole in the downstream mirror, which provides
for a typical average outcoupling of about 97%. Given the
repetition rate, frep, the nominal zero-detuning cavity

length, L0 ( ¼ Mc=2frep, whereM is the number of pulses

in the resonator), is 6.852 399 04 m when M ¼ 4.
Simulations are conducted in MEDUSA assuming start-up
from noise on each pass [8]; however, the shot noise is an
important contributor only on the first several passes. In
addition, the temporal window is an important numerical
consideration, and must be chosen to be large enough to
accommodate the maximum cavity detuning length that is
consistent with pass-to-pass amplification so that the opti-
cal pulse remains within the time window for all the usable
choices of cavity length. In practice for this example, we
choose a temporal window of 4.0 psec and include 182

temporal slices, which corresponds to the inclusion of one
temporal slice every three wavelengths.

A. The single-pass gain

Since the RAFEL wiggler is long enough to achieve
exponential growth, it is instructive to determine the ex-
ponentiation (or gain) length, LG, found in a single pass
through MEDUSA and to compare that with the predictions
based upon the empirical formula developed by Ming Xie
[17]. The variation in the gain length with on-axis wiggler
field as found using MEDUSA is shown in Fig. 1, where the
minimum gain length of about 0.176 m is found for a
wiggler field of about 6.7 kG (Krms ¼ 1:06, Krms being
the rms wiggler parameter) that nominally corresponds
to the closest resonance. This compares well with the
prediction of 0.16 m from the analytic theory. Note,
however, that the well-known resonance condition � ¼
�wð1þ K2

rmsÞ=2�2 predicts a wiggler field of about
6.81 kG (Krms ¼ 1:08) at a 2:2 �m wavelength. This shift
in the resonance is due to three-dimensional effects.
Observe that since the wiggler is 2.4 m in length, this
permits a maximum of about 12–14 gain lengths within
the wiggler.
The gain length has implications over the permissible

range of Krms for which the RAFEL will operate (i.e., over
which there is pass-to-pass amplification). Since the
RAFEL will saturate when the gain balances the loss,
and the loss for the resonator is about 97%, this implies
that the RAFEL will operate as long as the gain exceeds
about 3200%–3300%. In order to identify this range more
closely, we perform multipass simulations and take the
average gain over the first ten passes. We take an average
because there are fluctuations in the gain on a pass-to-pass
basis (i.e., limit-cycle oscillations), which will be dis-
cussed in more detail below. The average gain is shown
as a function of the on-axis wiggler field under the assump-
tion of a cavity length of 8.652 381 44 m in Fig. 2. This
represents a cavity detuning with respect to the zero-
detuning length of�Lcav ¼ �8�. It is clear from the figure

TABLE I. Electron beam, wiggler, and resonator parameters.

Electron beam

Energy 55 MeV

Charge 800 pC

Bunch duration 1.2 psec (parabolic)

Repetition rate 87.5 MHz

Normalized emittance 15 mmmrad

Energy spread 0.25%

Matched beam radius 392 �m

Wiggler Two-plane-focusing

Period 2.4 cm

Magnitude 6.5–7.0 kG

Krms 1.03–1.11

Length 100�w (98 uniform)

Resonator Concentric

Wavelength 2:2 �m
Length 6.852 m

Radii of curvature 3.5 m

Rayleigh range 0.5 m

Hole Radius 5.0 mm

Outcoupling 97%
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FIG. 1. The gain length as a function of the on-axis wiggler
field.
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that the gain is relatively constant over the range of about
6.65–6.85 kG (Krms ¼ 1:054–1:085) and falls off rapidly as
the field diverges outside this range, which is consistent
with the behavior of the gain length shown in Fig. 1. The
cutoff for a gain of about 3300% occurs for field levels of
about 6.518 kG (Krms ¼ 1:03) at the low end and 6.878 kG
(Krms ¼ 1:09) at the high end, and we do not expect the
RAFEL to function outside of this range of wiggler fields.

B. Comparison with a SASE FEL

Since the RAFEL starts from shot noise and employs a
high-gain wiggler, it is instructive to compare the perform-
ance of a RAFEL with a similar SASE FEL. The perform-
ance of the RAFEL is shown in Fig. 3, where we plot the
average pulse energy (blue circles) in the steady state as a
function of the on-axis wiggler field for the same cavity
detuning (�Lcav ¼ �8�) as used for Fig. 2. The error bars
indicate the level of limit-cycle oscillations. Observe that
the RAFEL reaches its peak pulse energy for a wiggler
field of 6.678 kG (Krms ¼ 1:058) and falls to zero outside
the range predicted in Fig. 2. We also plot the equivalent

SASE saturated pulse energy (red triangles). In order to
deal with the statistical fluctuations inherent in the SASE
output, we made a large number of runs with different
random distributions describing the shot noise, and
found the average (red triangles) and standard deviations
(error bars). Note that the SASE results represent the pulse
energies over whatever length of wiggler is required to
reach saturation. It is interesting to observe that (1) the
RAFEL configuration saturates with a higher pulse energy
than the SASE configuration, (2) the fluctuations in the
RAFEL in the steady-state regime are comparable to the
statistical fluctuations found in SASE, and (3) the FWHM
of the tuning range in Krms is comparable for both the
RAFEL and SASE configurations.
The RAFEL saturates with about a 0.28 mJ pulse energy,

which corresponds to an extraction efficiency of about
0.64%. This compares well with the empirical formula
for a SASE or MOPA [17] that predicts a saturation
efficiency of about 0.76%. In contrast, the saturation
efficiency of a low-gain oscillator is predicted to be � �
1=ð2:4NwÞ � 0:43%. For the present example, therefore, if
the RAFEL behaved like a low-gain oscillator, then the
efficiency would be about 0.43%.
The spectral linewidth of the RAFEL also differs from

that of a low-gain oscillator. The full width of the spectrum
for a typical low-gain oscillator is given by �!=! ¼
1=Nw ¼ 0:01 for the example under consideration. This
can be translated into a tuning range over the wiggler field
as follows:

��������
�Bw

Bw

��������¼ 1þ K2
rms

2K2
rms

��������
�!

!

��������: (1)

This implies a full width tuning range of �Bw �
0:063 kG (�Krms ¼ 0:001), which is much narrower than
what we find in simulation. The SASE linewidth is given
by ð�!=!Þrms � � [18], where � denotes the Pierce pa-
rameter. For this example, � � 0:0097 and ð�!=!Þrms �
0:0097. Converting this to a tuning range in the wiggler
field and going from the rms width to a FWHM tuning
range, we obtain ð�Bw=BwÞFWHM � 0:022, which com-
pares well with the simulation results that give
ð�Bw=BwÞFWHM � 0:019. As a result, in regards to the
spectral linewidth, the RAFEL behaves more like a
SASE configuration than a typical low-gain oscillator.

C. Cavity detuning

Another way in which the RAFEL differs from a low-
gain oscillator is in the cavity detuning. The zero-detuning
length is defined as the synchronous length for a group
velocity, vgr, equal to the speed of light in vacuo, c,

throughout the resonator. However, vgr is reduced in a

RAFEL by the interaction in the wiggler, and results in
synchronism for cavity lengths less than the zero-detuning
length. The cavity detuning depends on the group velocity
reduction in the wiggler. In a low-gain oscillator, the group
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FIG. 2. Average gain over the first ten passes versus the
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velocity reduction is small and the slippage is one wave-
length per wiggler period; hence, the slippage distance is
lslip ¼ Nw�, where Nw is the number of periods in the

wiggler. However, the slippage per wiggler period is re-
duced in a high-gain RAFEL, or in any FEL where there is
exponential growth because the gain medium reduces both
the phase and group velocities. The reduced phase velocity
results in the optical guiding of the radiation, while the
reduced group velocity results in less slippage. It has been
shown that lslip ¼ Nw�=3 at the resonant wavelength [19].

For the example under consideration, this yields lslip �
72 �m, which is much less than the slippage length of
220 �m if the RAFEL behaved as a low-gain oscillator.

In order to estimate the effect of this on the detuning
length, we note that the zero-detuning length is found by
equating the round-trip time of the radiation through the
cavity with the spacing between electron bunches (1=frep).

If vgr is reduced as the radiation traverses a wiggler of

length Lw, then

1

frep
¼ 2Lcav � Lw

c
þ Lw

vgr

; (2)

so that

Lcav ¼ c

2frep
� Lw

2

c

vgr

�
1� vgr

c

�
: (3)

As a result, in the high-gain regime where vgr ¼
c=ð1þ 1=3�2

kÞ, this implies a shift in the cavity length of

�Lcav ¼ Lw

6�2
ð1þ K2

rmsÞ ¼ �Nw�

3
; (4)

from the expected zero-detuning length. This lower value
for the slippage is comparable to what we find in
simulation.

The detuning curve found in simulation is shown in
Fig. 4, where we plot the output pulse energy versus cavity
detuning for a wiggler field of 6.658 kG (Krms ¼ 1:055).
Here we define the cavity detuning relative to the nominal
zero-detuning length so that�Lcav ¼ Lcav � L0. As shown

in the figure, we find a full width detuning range of about
50� ¼ 110 �m and a FWHM detuning range of about
40�, which are in reasonable agreement with the estimate
based on the one-dimensional analysis of slippage.

D. Temporal evolution of the pulse

The temporal evolution of the output pulse energy is
shown for a wiggler field of 6.658 kG (Krms ¼ 1:055) in
Fig. 5, where we plot the pulse energy versus pass number
through the wiggler for the choice of several cavity detun-
ings. It is clear that significant fluctuations are found over a
large range of detunings and that both the magnitude and
period of the fluctuations decrease as the magnitude of the
detuning increases, although the magnitude of the fluctua-
tions decreases as well near the zero-detuning length.
The fluctuations seen in simulation of the RAFEL can be

rapid and irregular. There are two possible explanations for
these characteristics. One explanation is that, due to the
high gain and high outcoupling in the RAFEL, small
changes in the mode structure from pass to pass can result
in relatively large changes in the gain and, hence, the pulse
energy. These ‘‘small’’ changes can include variations in
the transverse mode structure (both in terms of the modal
decomposition and spot size) and the temporal pulse shape.
The second explanation, related to the first, is that since we
have employed hole outcoupling, these relatively small
changes in the transverse mode structure at the mirror
can give rise to large differences in the outcoupling of
the optical mode. It is not surprising, therefore, to expect
that the magnitude of the fluctuations will vary depending
on the cavity detuning. In Fig. 6, we show the variation in
the rms magnitude of the fluctuations in the outcoupled
pulse energy as a function of the cavity detuning. It is clear
from the figure that the fluctuation level is relatively con-
stant at about the 0.03 mJ level over most of the detuning
range, but with rapid declines at the ends of the detuning
range. Also, the oscillation period is of the order of a few
passes through the resonator.
Fluctuations/oscillations have been observed in

low-gain oscillators and are referred to as limit-cycle
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oscillations. The observation of limit-cycle behavior in
the low-gain FELIX FEL oscillator corresponds to an
oscillation period of [20]

�� ¼ ��slip
Lcav

�Lcav

; (5)

where �slip ( ¼ lslip=c) is the slippage time. For the case of

FELIX, Lcav � 6 m, � ¼ 40 mm, and Nw ¼ 38, and the
cavity detuning ranges over about 160 �m. As a result,
�slip � 5:1 psec and �round-trip ( ¼ 2Lcav=c) � 40 nsec is

the nominal round-trip time; hence, this implies that the
limit-cycle oscillation occurs over a period of about
3 � sec or 75 passes for a cavity detuning of �100 �m,
which is consistent with observations. In contrast, if we
apply the slippage time for the high-gain RAFEL, under
consideration

�� ¼ � Nw�

3�Lcav

Lcav

c
¼ � �round-trip

2

Nw�

3�Lcav

: (6)

As such, we expect the oscillation period to occur on the
scale of a small number of passes for the indicated cavity
detuning range. This is indeed what is observed in Fig. 5.
For example, the oscillations occur approximately every
2–4 passes for �Lcav=� ¼ �8, which is consistent with
Eq. (6). However, there is not a great deal of variation with
detuning possible when the oscillations occur on such a
fast time scale, and we must take Eqs. (5) and (6) as
approximate measures of the oscillation period. Still, the
observed oscillation period is well described by the for-
mula for the oscillation period for limit-cycle oscillations
found in low-gain oscillators when the appropriate slip-
page is taken into account. For a high-gain RAFEL, the
much lower slippage results in very short oscillation
periods.

E. The transverse mode structure

The limit-cycle oscillations in the RAFEL are correlated
with the fluctuations/oscillations in the transverse mode
structure. The transverse mode structure in a low-gain

oscillator is largely (but not completely) determined by
the mode structure in the cold cavity since the optical
guiding of the radiation in the wiggler is weak. This is
not the case in a RAFEL where the mode is guided through
the wiggler. As a result, the mode structure that forms as
the RAFEL saturates differs substantially from the cold-
cavity modes, and our choice of a Rayleigh range of 0.5 m
serves mainly to determine the radii of curvature of the
mirrors. Since the radiation is guided in the wiggler, the
spot size at thewiggler exit may be smaller than it would be
in the cold cavity, which means that the Rayleigh range of
the radiation as it exits the wiggler is smaller than it
would be in the cold cavity. This implies, in turn, that the
optical mode will expand more rapidly as it propagates to
the downstream mirror. Alternatively, decomposing the
smaller spot size at the wiggler exit in cold-cavity modes,
necessarily leads to higher order transverse modes in the
optical field. After propagating to the outcoupler, the su-
perposition of these modes determines the fraction of the
optical field coupled out through the hole, and, similarly,
after propagation to the wiggler entrance, the superposition
sets the field profile at wiggler entrance. Small variations in
the exponential growth rate, e.g., due to changing coupling
of the electrons to the optical field at the wiggler entrance,
lead to relatively larger effects on the optical guiding of the
radiation. This in turn changes the spot size at the wiggler
exit and, hence, the energy coupled out of the resonator and
the spot size at the wiggler entrance.
This is illustrated in Fig. 7 where we plot the pass-to-

pass variation in the width of the optical mode on the
downstream and upstream mirrors for Bw ¼ 6:585 kG
(Krms ¼ 1:043) and �Lcav ¼ �8�. It is clear from the
figure that both the spot size and the fluctuations of the
spot size on the upstream mirror are greater than those on
the downstream mirror due to the optical properties of the
resonator. At saturation, the location of the smallest optical
beam size moves over the axis of the wiggler and, con-
sequently, due to the change in optical magnification. The
optical field changes at both mirrors as well as the entrance
of the wiggler changes as well. The resulting oscillations in
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size of the optical beam on the mirrors can be observed in
Fig. 7.

The transverse mode structure is not only a result of
optical guiding, it is also affected by the hole outcoupling.
Consider the case of Bw ¼ 6:658 kG (Krms ¼ 1:055) and
�Lcav ¼ �18�. The cross section of the field delivered to
the wiggler entrance on pass 60 is shown in Fig. 8 where we
plot the normalized power in the x direction (i.e., the
wiggle plane). Observe that the bulk of the power is at
the edge of the optical field, but there is a spike at the center
due to the presence of high order modes. Despite the
multiple peaks in the cross section at the wiggler entrance,
the strength of the interaction in the wiggler yields a near-
Gaussian mode peaked on-axis at the wiggler exit, as
shown in Fig. 9. What has happened is that the interaction
with the electron beam, which has a diameter of about
0.784 mm, essentially amplifies and guides the central peak
shown in Fig. 8 while the power in the wings falls outside
the electron beam and is not amplified. This near-Gaussian
mode then propagates to the downstream mirror during
which it expands by about a factor of 4, as shown in
Fig. 10, where the FWHM is about 3.9 mm in width. The
FWHM of the modal superposition at the wiggler exit is
about 1.2 mm.

Ignoring the hole in the outcoupling mirror, the waist
(0.59 mm) of the fundamental cold-cavity mode is de-

signed to be about
ffiffiffi
2

p
times the matched electron beam

radius in the wiggler. The FWHM of the fundamental cold-
cavity mode at the wiggler exit and downstream mirror are
1.84 and 4.82 mm, respectively. We thus observe that the
optical mode in the RAFEL expands faster from the wig-
gler exit to the downstream mirror than the fundamental
cold-cavity mode (factor 3.25 and 2.62, respectively). That
the RAFEL mode size is still smaller at the downstream
mirror is the result of a balance between the faster expan-
sion and smaller spot size of the RAFEL optical mode at
the wiggler exit compared to the cold-cavity mode. The
smaller spot size at the wiggler exit is due to gain guiding
as described above. Both the smaller spot size at the
wiggler exit and faster expansion of the RAFEL optical

beam again indicate that, at the wiggler exit, the optical
field consists of fundamental and higher order cold-cavity
modes. Note, a fundamental Gaussian beam having a waist
at the wiggler exit with the same size as the RAFEL optical
beam would have a Rayleigh range of 1.49 m. Finally, the
cross section of the mode incident on the upstream mirror
is shown in Fig. 11. After reflection from the upstream
mirror and propagation through the resonator to the
wiggler entrance, this field results in a modal pattern
similar to that shown Fig. 8.
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F. Temporal coherence

We now turn to the formation of temporal coherence.
The evolution of the temporal pulse on the first pass
through the wiggler for Bw ¼ 6:658 kG (Krms ¼ 1:055)
is shown in Fig. 12. Since the RAFEL starts from shot
noise on the beam, the initial growth of the mode starts
from spiky noise and, just as in a SASE FEL, develops
coherence as it propagates through the wiggler. However,
the wiggler is not long enough to reach saturation on a
single pass, so that the evolution to temporal coherence
develops over multiple passes. In Fig. 12 we plot the
temporal pulse shapes found on the first pass (a) at
z ¼ 0:5 m and 1.0 m, and (b) at z ¼ 2:0 m and 2.4 m
(wiggler exit). The figure shows the full time window in
simulation, and it should be noted that the electron beam is
centered in the time window with a full (parabolic) width
of 1.2 psec. It is evident that the pulse shows many spikes at
0.5 m, but that it has coalesced into about five spikes after
1.0 m. The development of temporal coherence continues
until at the wiggler exit at 2.4 m only two spikes remain.

The multipass development of temporal coherence after
the first pass depends strongly on the cavity detuning. The
temporal pulse shapes on the 60th pass at the wiggler exit
for Bw ¼ 6:658 kG (Krms ¼ 1:055) and for cavity detun-
ings of �Lcav=� ¼ 0, �8, �18, and �43 are shown in
Figs. 13–16, respectively. As demonstrated previously, the
synchronized cavity length for a RAFEL is shorter than the
synchronized cavity length of a low-gain FEL oscillator.
Therefore, as we have used the speed of light in vacuo

instead of the actual group velocity to define the cavity
detuning, we note that�Lcav ¼ 0 actually corresponds to a
cavity length that is larger than the synchronized length for
the high-gain RAFEL. Consequently, the returning optical
pulse will lag behind the center of the electron bunch. The
pulse will be amplified as it propagates through the wig-
gler, but as shown in Fig. 13, the two spikes formed over
the first pass remain. This behavior is also found for small
detunings as shown in Fig. 14 for �Lcav=� ¼ �8.0
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If the detuning is closer to the center of the detuning
range, then the synchronism between the returning optical
pulse and the electrons is a better match, and the multiple
spikes are ‘‘washed out.’’ This is shown in Fig. 15, where
�Lcav=� ¼ �18 and we see that a broader pulse has
formed. As the cavity length is decreased further, the
optical pulse arrives increasingly near the head of the
electron bunch. In this case, there is not enough gain to
wash out the multispike character of the signal. This is
shown in Fig. 16 for �Lcav=� ¼ �43 where the total
power (or pulse energy is much reduced).

IV. SUMMARYAND DISCUSSION

In this paper, we have described a simulation procedure
for a RAFEL, and discussed the application of the proce-
dure for a specific example that employed a concentric
resonator with a hole outcoupler in the downstream mirror.
In addition to discussing the detailed performance of the
2:2-�m RAFEL, we also pointed out the differences and
similarities between the RAFEL and low-gain oscillators.
While the RAFEL can be thought of as a low-Q oscillator,
the high, exponential gain in the wiggler leads to signifi-
cant differences between the RAFEL and typical low-gain
oscillators. We discussed the extraction efficiency and the
linewidth in the RAFEL and showed how they are more
accurately specified by the efficiency and linewidth of a
SASE FEL than by the expectations for a low-gain oscil-
lator. In addition, the slippage in the RAFEL is reduced in
comparison with the slippage in a low-gain oscillator due
to the interaction in the high-gain regime, and this has a
significant impact on both the detuning of the cavity and
the period of the limit-cycle oscillations.

In view of these properties of the RAFEL, we conclude
that this configuration can be useful for systems where the
mirror technology is stressed by the properties of low-gain

FEL oscillators; specifically, for x-ray and/or high power
designs.
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