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Free-electron laser (FEL) configurations in which the parameters of the electron beam vary along the

undulator become relevant when considering new aspects of existing FELs or when exploring novel

concepts. This paper describes a fully three-dimensional, analytical method suitable for studying such

systems. As an example, we consider a seeded FEL driven by a beam with varying transverse sizes. In the

context of the Vlasov-Maxwell formalism, a self-consistent equation governing the evolution of the

radiation field amplitude is derived. An approximate solution to this equation is then obtained by

employing an orthogonal expansion technique. This approach yields accurate estimates for both the

amplified power and the radiation beam size. Specific numerical results are presented for two different sets

of x-ray FEL parameters.
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I. INTRODUCTION

In recent years, there has been renewed interest in free-
electron lasers (FELs) [1], mainly because of their great
potential as tunable sources of intense, coherent radiation.
In view of the success of facilities such as FLASH [2] and
the Linac Coherent Light Source (LCLS) [3], special em-
phasis is placed nowadays on high-gain, single pass FELs,
in which the radiation is generated as a relativistic electron
beam passes once through a suitable undulator system. For
the majority of existing or planned machines of this type,
the wavelength of the output radiation lies in the UV or
x-ray region. For such short wavelength FELs, three-
dimensional (3D) effects, i.e., those due to the transverse
size and emittance of the electron beam, become signifi-
cant and must be taken into account. A comprehensive
theory of high-gain FELs, including 3D effects, has been
developed in the past and successfully applied in the design
of many FEL projects [4–6]. Strictly speaking, however,
this theory is valid only when the various parameters of the
undulator and the electron beam do not depend upon the
longitudinal position z along the undulator axis. In fact,
FEL schemes for which this simplifying assumption is not
satisfied can become important when studying new aspects
of conventional FEL designs or when considering novel
concepts. The main goal of this paper is to present a
systematic, fully 3D analytical method suitable for study-
ing such generalized FEL configurations, focusing on those
with varying electron beam parameters.

Following the standard perturbative approach, we
derive the coupled, frequency-domain, linearized Vlasov-
Maxwell equations for the amplitudes of the radiation field

and the perturbation to the distribution function of the
electron beam [7]. These relations, along with the equation
governing the evolution of the unperturbed distribution f0,
form a closed set which accurately describes the operation
of a high-gain FEL in the linear regime, up to the onset of
saturation effects. In general, existing FEL theory mostly
restricts itself to cases in which the background distribution
f0 is z independent, a typical example being that of a beam
that is matched to a focusing channel with a constant
transverse gradient. For such systems, it is possible to
represent the general solution of the initial value problem
in terms of the self-similar, guided eigenmodes of the FEL
[8]. Each of these modes is characterized by a constant
growth rate and a fixed (z invariant) mode profile, which in
turn satisfies a properly formulated eigenmode equation.
Additionally, if the variation of the electron beam parame-
ters is sufficiently slow, one can construct a generalization
of the standard guided mode theory and describe the sys-
tem in terms of a set of approximate FEL eigenmodes with
adiabatically varying growth rates and mode profiles [9].
This approach, though insightful and effective, is not the
one we choose to follow in this paper. Instead, we endeavor
to directly solve the initial value problem without making
any assumption about the degree of adiabaticity of the
system.
As an example, we consider an FEL that is driven by an

initially unmodulated electron beam with varying trans-
verse sizes. This model can represent a mismatched beam
traveling through a constant-focusing undulator or an un-
focused beam. After some manipulation of the linearized
FEL equations, we obtain a single, self-consistent equation
for the radiation field amplitude. Our strategy is to expand
this quantity in terms of a complete set of orthogonal
transverse modes. In general, the latter contain a number
of free parameters (usually one or two) that may be com-
plex valued and z dependent. The actual type of basis
modes that is to be used depends on the symmetry of the
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problem at hand. In our case, it is assumed that the system
has axial symmetry (round electron/radiation beams and
symmetric focusing) so a Gauss-Laguerre expansion is
employed. Furthermore, by specifying the single free pa-
rameter, one can choose between conventional vacuum
modes and waveguide-like guided modes [10] or set up a
self-consistent scheme in which the basis parameter
evolves in correlation with the complex coefficients of
the orthogonal expansion [11]. The latter option is typi-
cally the preferred one because it leads to highly accurate
results with a minimum number of expansion modes.
Projecting the amplitude equation onto a suitable basis of
our choice leads to an infinite set of coupled evolution
equations for the expansion coefficients. The numerical
solution of a properly truncated version of this set yields
accurate estimates of important quantities such as the FEL
gain and the radiation beam size as functions of z. Another
notable advantage of such an expansion method is that it is
equally robust and efficient for both the initial, transient
stage of the interaction and the subsequent exponential
gain region. This is not the case for an eigenmode formal-
ism (exact or approximate), which is typically much easier
to use in the high-gain regime, where a single FEL mode
usually suffices to approximate the radiation field.

This paper is organized as follows: Section II covers the
main theoretical development, including the derivation of
the equation for the amplitude of the radiation field and the
formulation of the expansion technique. In Sec. III, we
present numerical results obtained for two different sets of
x-ray FEL parameters. Several topics have been explored,
including a demonstration of gain guiding, seeding with a
non-Gaussian field, mismatch effects and the influence of
the absence of focusing upon the FEL performance. The
data are shown to be in good agreement both with simula-
tion and with the analytical prediction for the special case
of a beam with constant transverse size. The results and
conclusions are summarized in Sec. IV.

II. THEORY

A. Equation for the amplitude of the radiation field

To begin with, let us assume that the FEL radiation is
generated as a relativistic, bunched electron beam moves
along the z direction through a planar, parabolic-pole-face
undulator. The vector potential Au of the undulator field is
given by

Au ¼ x̂Aux þ ŷAuy

¼ �B0 cosðkuzÞ
ku

½x̂ coshð �kuxÞ coshð �kuyÞ
� ŷ sinhð �kuxÞ sinhð �kuyÞ�; (1)

where ku ¼ 2�=�u is the undulator wave number, �ku ¼
ku=

ffiffiffi
2

p
, and B0 is the peak on-axis field. In our case, it is

assumed that the undulator poles are shaped in such a way

that an equal degree of natural focusing is available in both
transverse directions. Whenever necessary, additional ex-
ternal focusing is to be provided by thin-lens quadrupoles
inserted between the undulator segments in a FODO pat-
tern (i.e., a sequence of equally spaced quadrupoles with
focusing strengths of equal magnitude and alternating
sign). Moreover, the electric field Er of the radiation is
taken to be linearly polarized in the x direction, i.e. Er ¼
Erx̂, where Er can be expressed as

Er ¼ 1

2

Z 1

�1
d�E�ðx; zÞei�krðz�ctÞ: (2)

Here, x ¼ ðx; yÞ is the transverse position, c is the speed of
light, E� is the Fourier amplitude of the radiation field, � ¼
!=!r is the scaled frequency, and kr ¼ !r=c is the reso-
nant wave number. The latter quantity is defined by kr ¼
2�2

0ku=ð1þ K2=2Þ, where �0 � 1 is the average electron

Lorentz factor and K ¼ eB0=ðkum0cÞ is the familiar un-
dulator parameter—e and m0 are the electron charge and
mass. It is assumed that E� is a slowly varying function of
z, i.e., that it changes little over an undulator period �u. It is
useful to point out that Er being real implies that E�� ¼
E�
�. Since the emission of radiation occurs primarily near

the resonant frequency !r, we anticipate that E� will be
appreciably different from zero only within a very narrow
region around � ¼ �1 (excluding higher harmonics). We
also note that this analysis does not include space charge
effects.
The interaction between the electron beam and the

radiation it emits in the presence of the undulator can be
studied in a rigorous and self-consistent manner through
the Vlasov-Maxwell equations for the combined system.
When the random fluctuations arising from the discrete-
ness of the electrons can be disregarded, the beam can be
described in terms of a smooth, ensemble-averaged distri-
bution function f ¼ fð�;�;x;p; zÞ. Here, �¼ðkuþkrÞz�
!rtþ½krK2=ð8ku�2

0Þ�sinð2kuzÞ is the electron phase,

� ¼ ð�� �0Þ=�0 is the relative energy deviation, and p ¼
dx=dz. For the startup and the exponential gain regimes of
the FEL process, a perturbation formalism is applicable,
according to which the distribution function can be ex-
pressed as f ¼ f0 þ f1, where f0 is the background dis-
tribution of the beam and f1 represents the perturbation
due to the coherent modulations. We will only concern
ourselves with cases where f0 is � independent, which is a
good approximation for a sufficiently long electron
bunch. In the context of this approach, the dynamics of
the FEL interaction is governed by the following set of
linearized, frequency-domain Vlasov-Maxwell equations
(for � > 0):

@f�
@z

þ p
@f�
@x

� k2�x
@f�
@p

þ i��0f�

¼ ��1E�e
�i��kuz

@f0
@�

; (3)
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�
@

@z
þ r2

?
2i�kr

�
E�ðx; zÞ

¼ ��2e
i��kuz

Z 1

�1
d2p

Z 1

�1
d�f�ð�;x;p; zÞ; (4)

with �0 ¼ d�=dz ¼ 2ku�� ðkr=2Þ½p2 þ k2�x
2�. In

the relations given above, f� ¼ R1
�1 d�f1e

�i��=ð2�Þ,
�� ¼ �� 1 is the detuning, �1 ¼ eKJJ=ð4�2

0m0c
2Þ,

�2 ¼ eKJJ=ð2"0�0Þ—where "0 is the vacuum permittiv-
ity and JJ ¼ J0½K2=ð4þ 2K2Þ� � J1½K2=ð4þ 2K2Þ�—
while k� is the combined focusing strength of the undu-

lator. The latter quantity takes into account both the
undulator natural focusing and the contribution of the
external focusing lattice, which we assume can be treated
in the smooth approximation. Furthermore, the unper-
turbed distribution f0 evolves according to the zeroth-order
Vlasov equation,

@f0
@z

þ p
@f0
@x

� k2�x
@f0
@p

¼ 0; (5)

and its normalization is given byZ 1

�1
d2p

Z 1

�1
d2x

Z 1

�1
d�f0ð�;x;p; zÞ ¼ Nb=lb; (6)

where lb and Nb are, respectively, the length of the bunch
and the number of electrons it contains. A detailed deriva-
tion of Eqs. (3)–(6) from first principles is given in
Appendices A and B. We now introduce the interim
variables,

x� ¼ x cosðk�z0Þ � p

k�
sinðk�z0Þ; (7)

p� ¼ xk� sinðk�z0Þ þ p cosðk�z0Þ; (8)

where z0 � z� ze and ze is a constant offset. From a
particle dynamics point of view, x� and p� represent the
transverse position of an electron and the slope of its
trajectory at z ¼ ze when their respective values at a given
z are x and p (we note that p2 þ k2�x

2 ¼ p2� þ k2�x
2�). In

terms of these new variables, Eqs. (5) and (3) become

@~f0
@z

¼ 0 (9)

and

@~f�
@z

þ i�~�0 ~f� ¼ ��1
~E�e

�i��kuz
@~f0
@�

; (10)

where a tilde over a quantity denotes that it has been
expressed in terms of x� and p� instead of x and p.

Equation (9) implies that ~f0 does not have an explicit

dependence on z, so ~f0 ¼ gð�;x�;p�Þ or, equivalently,
f0 ¼ g½�;xcosðk�z0Þ � ðp=k�Þ sinðk�z0Þ;xk� sinðk�z0Þ þ
p cosðk�z0Þ�, where g is an arbitrary function. In particular,

we choose an unperturbed distribution that corresponds to
a mismatched beam with a round, Gaussian profile:

~f 0¼ Nb

ð2�Þ5=2lb	2	02	�

exp

�
� �2

2	2
�

�
exp

�
� x2�
2	2

� p2�
2	02

�
;

or, equivalently,

f0 ¼ Nb

ð2�Þ5=2lb	2	02	�

exp

�
� �2

2	2
�

�

� exp

�
k�� sinð2k�z0Þ

2	02 xp

� k2�½1þ �cos2ðk�z0Þ�
2	02 x2 � 1þ �sin2ðk�z0Þ

2	02 p2

�
;

(11)

where 	� is the rms energy spread and �¼	02=ð	2k2�Þ�1

is the mismatch parameter, defined in terms of 	 and 	0,
which are—respectively—the rms size and angular diver-
gence of the electron beam when sinðk�z0Þ ¼ 0. Since the

transverse distribution is upright at the aforementioned z
locations, the emittance 
 is still equal to		0. The electron
beam size 	eðzÞ is given by

	2
eðzÞ ¼ hx2i ¼ hy2i ¼

R1
�1 d�

R1
�1 d2p

R1
�1 x2f0d

2xR1
�1 d�

R1
�1 d2p

R1
�1 f0d

2x

¼ 	2½1þ �sin2ðk�z0Þ�: (12)

The special case with � ¼ 0—for which 	=	0 ¼
�m�1=k�—corresponds to a Gaussian beam that is

matched to the focusing system and has a constant trans-
verse size. The general solution of Eq. (10) is

~f� ¼ ~f�ðz ¼ 0Þe�i�~�0z � �1

@~f0
@�

Z z

0
d�E�

�
x� cosðk��0Þ

þ p�
k�

sinðk��0Þ; �
�
e�i��ku�ei�

~�0ð��zÞ; (13)

where �0 � � � ze and ~�0 ¼ 2ku�� ðkr=2Þ½p2� þ k2�x
2��.

In this paper, we only consider FEL configurations for
which the electron beam is initially unmodulated, so
~f�ðz ¼ 0Þ ¼ 0. Switching back to the original transverse
variables yields

f� ¼ ��1

@f0
@�

Z z

0
d�E�ð �x; �Þe�i��ku�ei��

0�; (14)

where � � � � z and �x � x cosðk��Þ þ ðp=k�Þ sinðk��Þ.
The use of x� and p� as intermediate variables is an
example of the method of integration along the unper-
turbed trajectories [12]. Substituting Eq. (14) into Eq. (4)
and performing the integration over �, we obtain a single
integrodifferential equation for the radiation field ampli-
tude E�:

@E�

@z
þr2

?E�

2ikr
¼

Z z

0
d�

Z 1

�1
d2p�ðx;p; z; �ÞE�ð �x; �Þ:

(15)

The integral kernel � is given by
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�ðx;p; z; �Þ ¼ � 4i
3k3u
�	02 �e�i��ku��2	2

�k
2
u�

2

� exp

�
k��

2	02 sinð2k�z0Þxp

� k2�

2	02 ½1þ �cos2ðk�z0Þ þ ikr	
02��x2

� 1þ �sin2ðk�z0Þ þ ikr	
02�

2	02 p2

�
; (16)

where


 ¼
�

K2JJ2

16�3
0k

2
u	

2

I

IA

�
1=3

(17)

is the Pierce parameter [13], expressed in terms of
the peak current I ¼ eNbc=lb and the Alfven current

IA ¼ 4�"0m0c
3=e � 17 045 A. We also point out that, in

the process of deriving Eqs. (15) and (16), we have used the
fact that � � 1 in order to simplify those terms that contain
the scaled frequency. The sole exception is the detuning
term, which cannot be eliminated since kuz � 1 for the
better part of the interaction. Changing the momentum
integration variable from p to �x, we obtain the driven
paraxial wave equation,

@E�

@z
þr2

?E�

2ikr
¼

Z z

0
d�

Z 1

�1
d2 �x�ðx; �x; z; �ÞE�ð �x; �Þ;

(18)

where (recall that z0 ¼ z� ze, �0 ¼ � � ze, and
� ¼ � � z)

�ðx; �x; z; �Þ ¼ � 4i
3k3u
�	02

k2��

sin2ðk��Þ
e�i��ku��2	2

�k
2
u�

2
exp

�
� k2�½1þ ikr	

02�þ �sin2ðk��0Þ�
2	02sin2ðk��Þ

x2

� k2�½1þ ikr	
02�þ �sin2ðk�z0Þ�

2	02sin2ðk��Þ
�x2 þ k2�

	02
ð1þ ikr	

02�Þ cosðk��Þ þ � sinðk�z0Þ sinðk��0Þ
sin2ðk��Þ

x �x

�
: (19)

B. Orthogonal expansion method

Our goal is to obtain a solution to Eq. (18) that is
consistent with a specified initial amplitude E�ðx; 0Þ. The
method we adopt is based on expanding the field amplitude
in terms of a complete set of orthogonal basis functions.
The transverse basis we employ consists of generalized
Gauss-Laguerre (GLpq) modes

c pqðx; zÞ ¼
�

p!

ðpþ jqjÞ!
�
1=2

� ffiffiffi
2

p
r

w

�jqj

� Ljqj
p

�
2r2

w2

�
c 00ðx; zÞeiq�e�ið2pþjqjÞu; (20)

where ðr; �Þ are polar coordinates in the transverse plane,

p and q are integers with p 	 0, and Ljqj
p are the associated

Laguerre polynomials. Here,

c 00ðx; zÞ ¼
�
kr�1

�

�
1=2 1

z� i�
exp

�
ikrr

2

2ðz� i�Þ
�

(21)

is the fundamental basis mode, defined by means of a
complex-valued function � ¼ �1 þ i�2 ¼ �ðzÞ, while

w ¼
�

2

kr�1

�
1=2jz� i�j (22)

and

u ¼ arctan

�
zþ �2

�1

�
(23)

are, respectively, the spot size and the Gouy phase asso-
ciated with it. From a physical point of view,�1ðzÞ—which
is always assumed to be positive—represents the local
Rayleigh length of the mode while ��2ðzÞ corresponds
to the local waist position. The basis elements described
above satisfy the orthonormality condition,

hc nmjc pqi �
Z 1

�1
d2xc �

nmc pq ¼ �np�mq;

and reduce to the standard vacuum modes of paraxial
optics when � is a constant. On the other hand, when the
complex beam parameter z� i� ¼ zþ �2 � i�1 is
chosen as constant, one obtains a set of modes with fixed
transverse profiles, analogous to the guided modes encoun-
tered in waveguide theory. For the moment, wewill assume
that �ðzÞ is an arbitrary complex function. The expansion
for E� is

E�ðx; zÞ ¼ �"� �E�ðx; zÞ ¼ �"�
X1
p¼0

X1
q¼�1

CpqðzÞc pqðx; zÞ;

(24)

where the coefficients Cpq are chosen to be dimensionless

and �"� is a constant that can be related to the initial
amplitude [see Eq. (49)]. Inserting the first equality of
Eq. (24) into Eq. (18) yields the operator relation,

L �E� ¼ R �E�; (25)
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where L ¼ @=@zþr2
?=ð2ikrÞ is the paraxial operator and

R �E�ðx; zÞ �
Z z

0
d�

Z 1

�1
d2 �x�ðx; �x; z; �Þ �E�ð �x; �Þ:

Using Eqs. (20)–(23), along with properties of the associated Laguerre polynomials, we obtain the relation

LðCpqc pqÞ ¼
�
dCpq

dz
� ð2pþ jqj þ 1Þ iCpq

2�1

d�2

dz

�
c pq �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ 1Þðpþ jqj þ 1Þ

q Cpq

2�1

d�

dz
c pþ1;q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðpþ jqjÞ

q Cpq

2�1

d��

dz
c p�1;q; (26)

which, in conjunction with orthogonality, yields

hc nmjL �E�i ¼ dCnm

dz
� ð2nþ jmj þ 1Þ iCnm

2�1

d�2

dz
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þðnþ jmj þ 1Þ

q Cnþ1;m

2�1

d��

dz

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ jmjÞ

q Cn�1;m

2�1

d�

dz
: (27)

Furthermore, after a lengthy calculation, we obtain

hc nmjR �E�i ¼
X1
p¼0

X1
q¼�1

hc nmjRðCpqc pqÞi; (28)

with

hc nmjRðCpqc pqÞi ¼ �qmhc nmjRðCpmc pmÞi ¼ �qm

Z z

0
d�Cpmð�Þ�nm

pmðz; �; �; �� Þ (29)

and

�nm
pmðz; �; �; �� Þ ¼

Z 1

�1
d2xc �

nmðx; zÞ
Z 1

�1
d2 �xc pmð �x; �Þ�ðx; �x; z; �Þ

¼ 8i
3k3u
D

ð�1Þpþnþ1ðpþ nþ jmjÞ!
ðn!p!Þ1=2½ðpþ jmjÞ!ðnþ jmjÞ!�1=2

�
�1�

�1

�ðjmjþ1Þ=2 ðz� i�Þnþjmj

ð� � i�� Þpþjmj

� ð� þ i��
� Þp

ðzþ i��Þn �e
�i��ku��2	2

�k
2
u�

2 ðX � YÞpðX� 1Þn
Xpþnþjmj

dpbjmj

apþjmj 2F1ð�p;�n;�p� n� jmj; JÞ: (30)

In the relations given above, 2F1 is a Gaussian hypergeo-
metric function, �� is shorthand for �ð�Þ and �1� �
�1ð�Þ ¼ Re½�� �. As we shall see later on, we will mostly
treat the basis parameter � not as a variable to be specified
a priori but rather as an additional unknown quantity to be
determined during the solution of the initial value problem.
Anticipating this, we have made explicit the dependence of
�nm

pm on �. Moreover,

a ¼ 1þ �sin2ðk�z0Þ þ ikr	
02
�
�� sin2ðk��Þ

k2�ð� � i�� Þ
�
; (31)

d ¼ a� 2kr	
02�1�sin

2ðk��Þ
k2�j� � i�� j2

; (32)

b ¼ ð1þ ikr	
02�Þ cosðk��Þ þ � sinðk�z0Þ sinðk��0Þ;

(33)

Y ¼ �1�

�1

jz� i�j2
j� � i�� j2

b2

ad
(34)

and

D1 ¼ ½1þ �sin2ðk�z0Þ þ ikr	
02��ð� � i�� Þ

� ikr	
02sin2ðk��Þ
k2�

; (35)
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D2 ¼ kr	
02�� i½1þ �sin2ðk��0Þ� þ k2�

�
1

kr	
02 þ i�

�

� ð1þ �þ ikr	
02�Þð� � i�� Þ; (36)

D3 ¼ D1

z� i�
; D ¼ iD1 þ ðzþ i��ÞD2

2�1

; (37)

X ¼ D

D3

; J ¼ 1� Y

ðX � YÞðX � 1Þ : (38)

An interesting limiting case arises when k� ! 0, or—more
precisely—when 	0=ð	k�Þ � 1. The mismatch parameter
is then approximated by � � 	02=ð	2k2�Þ and the electron
beam size is expressed by 	eðzÞ ¼ ð	2 þ 	02z20Þ1=2, a re-
sult which corresponds to an unfocused, coasting beam
with a single waist at z ¼ ze. In this limit, Eqs. (30), (34),
(37), and (38) still hold but Eqs. (31)–(33), (35), and (36)
are, respectively, replaced by

a ¼ 1þ 	02z20
	2

þ ikr	
02�

z� i��

� � i��

; (39)

d ¼ a� 2kr	
02�1��

2

j� � i�� j2
; (40)

b ¼ 1þ 	02z0�0
	2

þ ikr	
02� (41)

and

D1 ¼
�
1þ 	02z20

	2
þ ikr	

02�
�
ð� � i�� Þ � ikr	

02�2; (42)

D2 ¼ kr	
02�� i

�
1þ 	02�20

	2

�
þ

�
1

kr
þ i	02�

�
� � i��

	2
:

(43)

Combining Eqs. (25) and (27)–(29), we obtain a set of
coupled integrodifferential equations for the expansion
coefficients:

dCnm

dz
¼ ð2nþ jmj þ 1Þ iCnm

2�1

d�2

dz

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ jmjÞ

q Cn�1;m

2�1

d�

dz

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þðnþ jmj þ 1Þ

q Cnþ1;m

2�1

d��

dz

þ
Z z

0
d�

X1
p¼0

Cpmð�Þ�nm
pmðz; �; �; �� Þ; (44)

where n ¼ 0; 1; 2; . . . and m ¼ 0;�1;�2; . . . . The above
equations describe the FEL interaction in terms of the
evolution of the expansion coefficients CnmðzÞ along the
undulator. An important preliminary observation is that

coefficients with different azimuthal indices m are always
uncoupled. This reflects the fact that there exist separable
solutions of the form gmðr; zÞeim� for the amplitude of the
radiation field, a property which is due to the axial sym-
metry of the system under study. As a result, we can
decompose the general initial value problem into an infi-
nite number of independent component problems, each of
which is characterized by a particular value of m. In what
follows, we will concentrate on such a reduced seeded
problem, the solution of which yields a field amplitude
that can be expressed as

E�ðx; zÞ ¼ �"�
X1
n¼0

CnmðzÞc nmðx; zÞ: (45)

We also point out that the function �ðzÞ which is used in
the definition of the basis elements is as yet unspecified.
Since the full, infinite-dimensional system of Eq. (44) is
obviously not amenable to analytical or numerical treat-
ment, truncating the expansion for the field amplitude
becomes a necessity. In general, if we keep a large number
of modes in the right-hand side (rhs) of Eq. (45), the error
introduced by such a truncation is small regardless of the
choice of �. In practice, however, the need for fast nu-
merical calculations, coupled with the desire to obtain
useful analytical results whenever possible, limit the num-
ber of modes that can be retained. Thus, an additional
objective emerges: to determine �ðzÞ in such a way that,
when only a few modes are used, the resulting truncated
system of evolution equations captures as much as possible
of the physics contained in its full counterpart. This task is
twofold. First, we have to specify the initial value �ð0Þ.
Given the external seed E�ðx; 0Þ 
 eim�, the initial con-
ditions for Cnm are

Cnmð0Þ ¼ ð1= �"�Þ
Z 1

�1
d2xE�ðx; 0Þc �

nmðx; 0Þ: (46)

Taking into account the fact that

Z 1

�1
d2xjE�ðx; 0Þj2 ¼ j �"�j2

X1
n¼0

jCnmð0Þj2; (47)

we obtain the convenient normalization condition

X1
n¼0

jCnmð0Þj2 ¼ 1 (48)

by selecting

�" � ¼
�Z 1

�1
d2xjE�ðx; 0Þj2

�
1=2

: (49)

Generally speaking, it is desirable to choose �ð0Þ so that
the magnitude of the coefficients Cnmð0Þ falls off as rapidly
as possible with increasing n. In this way, it can be ex-
pected that the number of modes that are excited at z ¼ 0
will be kept to a minimum. Here, we shall only consider
the special case where the input field consists of a finite
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number of vacuum Gauss-Laguerre modes with the same
azimuthal indexm and—constant—beta parameter�in. By
choosing �ð0Þ ¼ �in, we ensure that Cnmð0Þ ¼ 0 for all
n >M, where M is the maximum radial index of the seed
modes. The next step is to determine how � evolves with z.
Let us assume that our goal is to construct an approximate
solution using the minimum number of modes advisable
for this problem, i.e., the firstMþ 1 terms in the expansion
of the field amplitude (0 � n � M). In order to facilitate
the optimization of the basis function, we temporarily
include the next-order mode in our calculations and
truncate at n ¼ Mþ 1. With this in mind, the ‘‘equation
of motion’’ for the coefficient of the aforementioned mode
becomes

dCMþ1;m

dz
¼ ð2Mþ jmj þ 3Þ iCMþ1;m

2�1

d�2

dz

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMþ 1ÞðMþ jmj þ 1Þ

q CMm

2�1

d�

dz

þ
Z z

0
d�

XM
p¼0

Cpmð�Þ�Mþ1;m
pm ðz; �; �; �� Þ

þ
Z z

0
d�CMþ1;mð�Þ�Mþ1;m

Mþ1;mðz; �; �; �� Þ:

If we select � so thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMþ 1ÞðMþ jmj þ 1Þ

q CMm

2�1

d�

dz

þ
Z z

0
d�

XM
p¼0

Cpmð�Þ�Mþ1;m
pm ðz; �; �; �� Þ ¼ 0; (50)

it is evident that the evolution of CMþ1;m is no longer
correlated with that of the lower-order coefficients. In
addition, the equation satisfied by the highest-order expan-
sion coefficient becomes homogeneous and admits the
unique solution CMþ1;mðzÞ ¼ 0. In other words, CMþ1;m

vanishes identically when its initial value is equal to zero,
as is the case in our example. The evolution equations for
the remaining coefficients are

dCnm

dz
¼ ð2nþ jmj þ 1Þ iCnm

2�1

d�2

dz

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ jmjÞ

q Cn�1;m

2�1

d�

dz

� snM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þðnþ jmj þ 1Þ

q Cnþ1;m

2�1

d��

dz

þ
Z z

0
d�

XM
p¼0

Cpmð�Þ�nm
pmðz; �; �; �� Þ; (51)

where n ¼ 0; 1; 2; . . . ;M while snM ¼ 0 for n ¼ M and 1
for n <M. To recapitulate, starting from an approximation
using Mþ 2 modes and an unspecified basis function,
we were able—through a suitable choice of �ðzÞ—to

eliminate the contribution of the highest-order mode,
thus enhancing the accuracy of the resulting Mþ 1-mode
approximation scheme. To include additional expansion
modes in our calculation, we choose to retain Eq. (50)
(whose form is determined by the seed modes) and simply
use Eq. (51) withM replaced byN 	 Mþ 2, where N þ 1
is the total number of modes. In terms of methodology, the
expansion technique discussed in this section can be
viewed as a generalization of the source-dependent expan-
sion introduced in Ref. [11]. The latter approach was
developed using a differently defined and parametrized
set of Gauss-Laguerre modes and only considered seeding
with a single (Gaussian) mode.
Before we move on, it is essential to mention two very

useful results about the radiation power and beam size.
When the field amplitude has an eim� angular dependence,
the general expression for the radiation power derived in
Appendix C—Eq. (C6)—can be rewritten as

P ¼ �"0
kr�

Z 1

0
d�j �"�j2

Z 1

�1
d2xj �E�ðx; zÞj2

¼ �"0
kr�

Z 1

0
d�j �"�j2

X1
n¼0

jCnmðzÞj2; (52)

where � ¼ lb=c and we have utilized Eq. (45) and ortho-
normality. For a monochromatic signal, Eq. (52) reduces to

PðzÞ ¼ P0

X1
n¼0

jCnmðzÞj2 ¼
Z 1

�1
Iðx; zÞd2x; (53)

where P0 ¼ ½�"0=ðkr�Þ�
R1
0 d�j �"�j2 is the input power

and I ¼ P0j �E�j2 is the intensity of the radiation. The
radiation beam size 	rðzÞ is defined by

	2
rðzÞ ¼ hx2i ¼ hy2i ¼ 1

2
hr2i ¼

R1
�1 r2Iðx; zÞd2x

2
R1
�1 Iðx; zÞd2x ; (54)

where we have made use of the fact that the intensity
profile is radially symmetric. Taking into account
Eqs. (20), (22), (53), and (54), we ultimately obtain

	2
rðzÞ¼ðw2=4Þ 1P1

n¼0 jCnmðzÞj2
�X1
n¼0

ð2nþjmjþ1ÞjCnmðzÞj2

�2Re

�
e2iu

X1
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþjmjÞ

q
Cn�1;mðzÞC�

nmðzÞ
��
:

(55)

Equations (53) and (55) can be used in conjunction with
the systematic approximation technique discussed earlier
in order to provide a reliable quantitative description of the
basic characteristics of the FEL radiation.
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III. NUMERICAL RESULTS

A. Demonstration of gain guiding

To illustrate the expansion method, we have used it to
study various aspects of the operation of a high-gain FEL
in the linear regime. We have considered two different FEL
parameter sets, both of which correspond to hard x-ray
machines (Table I). Set 1 roughly describes the design
parameters of the LCLS while Set 2 refers to a machine
with lower beam energy and more ambitious undulator
specifications [14,15]. To begin with, we seek to make a
connection with standard theory [7] by considering an FEL
with the parameters of Set 1, driven by a matched electron
beam with a constant size 	m ¼ 23:14 �m. For such a
configuration, the amplitude of the radiation field can be
expressed as a superposition of the guided FEL eigen-
modes, i.e.,

E�ðx; zÞ ¼
X
n;m

cnme
i�nmzRnmðrÞeim�; (56)

where �nm and RnmðrÞ are, respectively, the complex
growth rate and the radial profile of the Enm FEL eigen-
mode (cnm are constant coupling coefficients and m is the
azimuthal index). Eigenmodes with different m are or-
thogonal, though the same is not true of modes with the
same azimuthal but different radial indices. The fundamen-
tal (E00) eigenmode of the FEL is characterized by a
Gaussian-like profile and usually has the growth rate with
the largest imaginary part (in absolute value). Thus, if
c00 � 0, it dominates all the other modes in the high-gain
regime, which allows us to approximate the radiation
amplitude by

E�ðx; zÞ � c00e
i�00zR00ðrÞ; (57)

for z � L3D, where L3D ¼ �1=ð2Im½�00�Þ is the 3D
power gain length. Here, we would like to verify this
well-known theoretical result (namely, the emergence of
a single, Gaussian-like guided mode in the high-gain re-
gion of the linear regime) by directly solving the initial

value problem with our expansion technique. Assuming
a Gaussian external seed for the FEL, we first attempt to
obtain a solution employing only a single (Gaussian)
expansion mode, so that E�ðx; zÞ / C00ðzÞc 00ðx; zÞ.
Recalling Eq. (21), we note that the GL00 expansion
mode can be conveniently rewritten in terms of the radia-
tion complex beam parameter qr ¼ z� i� � q2 � iq1
(q1 ¼ �1, q2 ¼ zþ �2) as

c 00ðx; zÞ ¼
�
krq1
�

�
1=2 1

qr
exp

�
ikrr

2

2qr

�
: (58)

To further facilitate comparison between our results and
those of the eigenmode theory, we can also define a
z-dependent, local complex growth rate �ðzÞ through the
relation C00ðzÞ ¼ exp½iRz

0 �ðẑÞdẑ� or, equivalently,

�ðzÞ ¼ � i

C00ðzÞ
dC00ðzÞ

dz
: (59)

For calculations involving only one expansion mode, the
(negative) imaginary part of the above quantity is equal to
half the local power growth rate ð1=PÞdP=dz ¼ dG=dz,
where G ¼ log½P=P0� is the FEL gain. To improve the
accuracy of our single-mode approximation, we want the
transverse profile of the input radiation field to match as
much as possible that of the fundamental FEL mode. To
achieve this, some quantitative knowledge of the properties
of the latter is required. A very useful technique for calcu-
lating the FEL growth rates and mode parameters is the
variational method [6,16–18]. Specifically, to obtain the
variational data that are included in this paper, we have
relied on the algorithms described in Refs. [6] (for the E00

mode) and [17] (for higher-order eigenmodes). In the case
of the fundamental FEL mode, a trial solution of the form
expð�Ar2Þ is assumed for the radial profile, yielding an
highly accurate approximation to �00 and a fairly reliable
estimate of the mode shape. For our discussion, it is more
meaningful to parametrize the trial solution in terms of the
betalike quantity �0 ¼ iq0 ¼ kr=ð2AÞ, where q0 is the
complex beam parameter of the mode. Using the varia-
tional method, one can also optimize the fundamental
growth rate, i.e., maximize its imaginary part with respect
to the detuning. For the LCLS parameters, the variational
approach yields an optimum normalized growth rate of
�̂00 ¼ �00=ð2
mkuÞ ¼ 0:247� i0:717 and a correspond-
ing mode parameter given by �0=�m ¼ 0:384þ i0:206
(i.e., a mode size 57.5% the size of the electron beam)
for a scaled detuning �̂ ¼ ��=ð2
mÞ ¼ �0:38, which in
turn corresponds to a wavelength of 1.500 62 Å. We select
the latter as the seed wavelength and also choose �ð0Þ ¼
�0 [the remaining initial condition is simply C00ð0Þ ¼ 1].
Using the approximation scheme defined by Eqs. (50) and
(51) forM ¼ 0, we obtain the single-mode results included
in Figs. 1–4. In particular, in Fig. 1—which shows the
evolution of the FEL gain—we observe that an initial
lethargy stage is followed by a rapid power buildup,

TABLE I. Undulator and electron beam parameters.

Parameter Set 1 Set 2

Undulator parameter K 3.7 0.5

Undulator period �u 3 cm 0.5 cm

Beam energy �0m0c
2 14.31 GeV 2.21 GeV

Resonant wavelength �r 1.5 Å 1.5 Å

Peak current I 3 kA 3 kA

Energy spread 	� 10�4 10�4

Normalized emittance �0
 0:5 �m 0:5 �m
Matched beta �m ¼ 1=k� 30 m 13.78 m

Matched beam size 	m 23:14 �m 39:89 �m
Pierce parameter 
m (for 	 ¼ 	m) 5:4� 10�4 2:3� 10�4

3D power gain length L3D 2.95 m 1.59 m

External focusing Yes No
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eventually leading to a region in which the gain increases
linearly with z. Moreover, from Fig. 2, it is evident that the
local complex growth rate asymptotically approaches a
constant value in the high-gain limit. This is also the case
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FIG. 2. (a) Real and (b) negative imaginary parts of the scaled,
local growth rate �0ðzÞ ¼ �ðzÞ=ð2
mkuÞ (blue curves, based on
1-mode data). The dashed lines are the variational estimates for
the fundamental FEL growth rate.

0 10 20 30 40 50 60
0.35

0.4

0.45

0.5

0.55

z (m)
(a)

(b)

β 1(z
)/

β m

1 mode
Variational

0 10 20 30 40 50 60
0.15

0.2

0.25

0.3

0.35

0.4

z (m)

(z
+

β 2(z
))

/β
m

1 mode
Variational

FIG. 3. Single-mode data for (a) the local Rayleigh length and
(b) the real part of the radiation complex beam parameter in units
of �m (blue curves). The dashed lines are the corresponding
variational values for the E00 eigenmode.
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FIG. 1. Gain function GðzÞ ¼ log½PðzÞ=P0� for an FEL driven
by a matched beam and seeded with a Gaussian field (Set 1
parameters). Figures 2–4 also refer to this configuration. Both 1-
mode (blue curve) and 5-mode results (symbols) are shown.
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FIG. 4. Radiation beam size in units of 	m, using various
numbers of expansion modes. Also shown is the variational
estimate of the fundamental mode size (dashed line).
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for the complex beam parameter qr ¼ zþ �2 � i�1, as
we can see in Fig. 3. The last two results confirm that the
radiation field eventually evolves into a guided mode with
a constant size. Additional verification of this gain guiding
effect is provided by Fig. 4, where the radiation beam size,
after an initial transient, is also shown to approach a
constant value in the high-gain limit. The obtained asymp-
totic values for � (in units of 2
mku), qr (in units of �m),
and 	r (in units of 	m) are, respectively, 0:250� i0:717,
0:196� i0:425, and 58.7%. We note that these results are
in good agreement with the variational prediction, espe-
cially in the case of the growth rate (which is, in any case,
the quantity most accurately calculated by the variational
method). A systematic analysis of the asymptotic solu-
tions, including their generalization in case the size of
the electron beam is not constant, requires the study of
dispersion relations similar to those obtained in the context
of the eigenmode formalism. We will defer a detailed
discussion of this important topic to a subsequent publica-
tion. As a closing remark, we note that Figs. 1 and 4 also
include data obtained using multiple (up to five) expansion
modes. In fact, Fig. 4 shows the gradual convergence of the
radiation size estimates as the number of modes increases.

For the radiation power PðzÞ ¼ P0e
GðzÞ and the radiation

beam size, our calculations show that the 1-mode results
differ from their 5-mode counterparts by about 3% and 1%,
respectively (in an rms sense). This suggests the potential
usefulness of the single-mode approximation for deriving
reliable results with a minimum of computational effort.

B. Higher-order mode (HOM) seeding

Next, we would like to explore the degree to which
seeding with a non-Gaussian input field affects the FEL

performance. We focus on the parameters of Set 2 and
again assume that the electron beam is matched to the
undulator, which only relies on natural focusing.
However, we now consider two distinct cases: seeding
with a Gaussian and a GL01 mode. For both cases, the
input parameters are chosen to be �ð0Þ=�m ¼ 0:92þ
i0:91 and �̂ ¼ ��=ð2
mÞ ¼ �0:94 (these parameters
roughly match the Gaussian seed to the optimized funda-
mental FEL eigenmode). Figures 5 and 6 summarize the
resulting single-mode data for the two seeding schemes.
From Fig. 5, it follows that, after traversing an undulator
length Lu ¼ 34:45 m, the total FEL gain for theGL01 seed
is less than what it would be for the GL00 seed by an
amount �G01 � �3. In other words, if the input power
is the same in both cases, the amplified power ratio is
P01=P00 ¼ e�G01 � 5%, a result which clearly reflects
the less than optimum overlap of the higher-order mode
with the electron beam. Moreover, the two gain curves
have constant but different slopes in the high-gain region.
This suggests that different eigenmodes prevail in each
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FIG. 6. (a) Real and (b) negative imaginary parts of the scaled,
local growth rate �0ðzÞ ¼ �ðzÞ=ð2
mkuÞ for a GL0m seed mode
(solid lines, based on single-mode data) compared to the varia-
tional values for the growth rate of the E0m eigenmode (dashed
lines). Results for m ¼ 0 (blue) and m ¼ 1 (red) are shown.
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FIG. 5. Gain functions for an FEL driven by a matched beam
(Set 2 parameters) and seeded with a GL0m mode: data for
m ¼ 0 (blue) and m ¼ 1 (red) are shown. Figure 6 also refers
to this configuration. Both 1-mode (solid curves) and 5-mode
results (symbols) are included. In terms of the radiation power,
the rms deviation of the latter from the former is about 1% (2%)
for the GL00 (GL01) seed.
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case. In Fig. 6, we compare the z-dependent, local growth
rates with the growth rates of the dominant FEL modes. In
the case of the GL01 seed, we need to point out the
following: (a) The local growth rate is now defined by
�ðzÞ ¼ �½i=C10ðzÞ�dC10ðzÞ=dz. (b) Of the FEL modes
with nonzero coupling to the input field (i.e. those with
m ¼ 1), the dominant one is the E01 eigenmode, which has
a transverse profile similar to that of the seed. The varia-
tional method yields �̂00 ¼ 0:259� i0:514 and �̂00 ¼
0:227� i0:438 while the corresponding asymptotic values
of the local growth rates are 0:261� i0:514 and 0:232�
i0:438 (in units of 2
mku). Good agreement is again
observed between the two quantities.

Another aspect of this analysis involves seeding with a
GLn0 mode, where n � 0. In particular, we assume that the
previously studied FEL configuration (matched beam/Set 2
parameters) is now seeded with a GL10 mode, for which
�ð0Þ=�m ¼ 0:230þ i0:227 and �̂ ¼ �0:94. In this ex-
ample, we use at least two expansion modes to construct
a solution so we set M ¼ 1 in Eqs. (50) and (51). The
numerical results are presented in Figs. 7–9, which also
include data for the case of the Gaussian seed. From Fig. 7,
we deduce that the difference in total gain (in favor of the
GL00 seed) is �G10 � �0:9, which yields a power ratio
P10=P00 ¼ e�G10 � 40% at the exit of the undulator.
Unlike the previous case, the two gain curves appear to
have approximately the same constant slope in the high-
gain regime, the only difference being in the extent of the
lethargy region. This is verified by an inspection of Fig. 8,
in which the power growth rate ð1=PÞdP=dz (in units of
4
mku) is plotted as a function of z. This property is due to
the fact that both the GL00 and the GL10 seed modes have
nonzero coupling to the E00 eigenmode so the latter is the
dominant FEL mode in both cases. Finally, in Fig. 9 we
plot the ratios

rn0 ¼ jCn0j
½jC00j2 þ jC10j2�1=2

(60)

(for n ¼ 0; 1) versus z. Bearing in mind that (in the context
of the 2-mode approximation) the amplified power is given
by P ¼ P0½jC00j2 þ jC10j2�, it becomes clear that these
quantities represent the square root of the fraction of the
power due to each expansion mode. The transition of the
system from an initial state defined by the GL10 seed to an
eventual state dominated by the Gaussian-like E00 FEL
eigenmode is evident.

C. Mismatched/unfocused electron beam

In all the cases studied so far, the size of the electron
beam was constant. The remaining part of the numerical
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FIG. 8. Local power growth rate ð1=PÞdP=dz (in units of
4
mku) for a Gaussian (blue) and a GL10 seed mode (red).
The dashed line is the growth rate of the fundamental FEL
mode, obtained from the variational method.
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FIG. 9. Amplitude ratios r00 and r10—defined by Eq. (60)—
versus z. The plots were generated using the 2-mode results for
the case of the GL10 seed.
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FIG. 7. Gain functions for an FEL driven by a matched beam
(Set 2 parameters) and seeded with a Gaussian (blue solid line)
and a GL10 mode (red solid line). Figures 8 and 9 also refer to
this configuration. These results have been obtained using the
minimum number of expansion modes suitable for each case.
Also included are 7-mode data for the HOM seed (red markers),
which are in good agreement with the 2-mode results.
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results deals primarily with z-dependent schemes. Let us
consider again the example studied earlier in the context of
demonstrating gain guiding (matched beam/Gaussian seed/
LCLS parameters). We now expand this example by in-
cluding (for the same undulator and input field) a case for
which the electron beam is underfocused, with ze ¼ 0,

	=	m ¼ ffiffiffiffiffiffiffi
2:5

p
, and � ¼ 	4

m=	
4 � 1 ¼ �0:84. In

Figs. 10 and 11, we show the comparison between the
results obtained with our technique and simulation data
given by GENESIS [19] (for the latter, an input power P0 ¼
2kW has been assumed). In the linear regime, the theoreti-
cal results are in good agreement with simulation, even
though only a single Gaussian mode has been used in
obtaining the former. Including higher-order modes in
our calculation makes the comparison with simulation
even more favorable. As we can see in Fig. 10(b), the
power growth rate for the mismatched beam lags behind
that for the matched beam in the earlier stages of the
interaction but this situation is eventually reversed. As a

result, the total gain is almost the same for the two cases
[see Fig. 10(a)—interestingly, this observation appears to
be valid both for the gain derived from the linearized
solution and for the actual saturation gain given by
GENESIS]. This is due to the fact that the oscillation of

the electron beam size in the case of the underfocused
beam [Fig. 11(b)] allows that variable to attain values
smaller than the matched size of 23:14 �m and closer to
the optimum beam size 	opt � 0:47	m (which corre-

sponds to a beta function of 6.72 m). This optimized value
can be determined by minimizing the 3D gain length with
respect to the matched beta using Ming Xie’s fitting for-
mula [6], though a value larger than the optimum is usually
chosen. In our case, the electron beam size is minimum and

equal to 	min ¼ 	ð1þ �Þ1=2 � 0:63	m when z ¼
��m=2 � 47 m. In the neighborhood of this minimum,
the electron beam size is approximately constant and as
close as possible to the optimum size, which is why the
power growth rate becomes maximum in the same region.
From Fig. 11(a), we also observe that the radiation size
roughly follows the evolution of the electron beam size in
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FIG. 11. (a) Radiation and (b) electron beam sizes in units of
	m for a matched and a mismatched electron beam. The legend
is the same as in Fig. 10.

0 10 20 30 40 50 60
0

5

10

15

20

z (m)
(a)

(b)

G
(z

)

Matched beam−Theory
Matched beam−Simulation
Mismatched beam−Theory
Mismatched beam−Simulation

0 10 20 30 40 50 60
−0.5

0

0.5

1

z (m)

(4
ρ m

k u)−
1 dG

(z
)/

dz

Matched beam−Theory
Matched beam−Simulation
Mismatched beam−Theory
Mismatched beam−Simulation

FIG. 10. (a) FEL gain GðzÞ ¼ log½PðzÞ=P0� and
(b) normalized local power growth rate ð4
mkuÞ�1dGðzÞ=dz
for a matched (blue curves) and a mismatched beam (red
curves)—LCLS parameters. Both analytical results (solid
curves) and GENESIS simulation data (dashed curves) are shown.

BAXEVANIS, RUTH, AND HUANG Phys. Rev. ST Accel. Beams 16, 010705 (2013)

010705-12



the high-gain regime, as has been noted in the literature
(Ref. [20]).

To conclude this section, we switch back to the parame-
ters of Set 2 and consider an FEL based on an undulator
with the listed values of K and �u but with virtually no
focusing (natural or external). This option can refer to a
planar rf undulator (Ref. [21]), where the transverse defo-
cusing effect is typically very weak. As we have mentioned
before, this case describes an FEL that is driven by an
electron beam with a waist at z ¼ ze. We choose the waist
beta function �e � 	=	0 to be numerically equal to the
natural focusing value of �m ¼ 13:78 m, which is fairly
close to the optimum beta for these parameters (10.6 m).
Thus, we expect the neighborhood of the waist to be the
optimum region for such a beam, as far as the FEL gain is
concerned. In Figs. 12 and 13, we compare 1-mode (solid
curves) with 5-mode results (markers) for three beams with
ze ¼ 0=0:5Lu=Lu, where Lu ¼ 2:5�e ¼ 34:45 m is the
undulator length. For these, as well as all remaining cal-
culations, we have assumed the same Gaussian seed that

was used for deriving part of the data for Figs. 5–9. Overall,
the rms deviation between the 1-mode and the 5-mode
estimates for the amplified power and the radiation size
is of the order of 1% or less. From Fig. 12(a), we note that
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FIG. 13. (a) Radiation and (b) electron beam sizes in units of
	m for three different unfocused beams. The legend is the same
as in Fig. 12.
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FIG. 12. (a) FEL gain GðzÞ ¼ log½PðzÞ=P0� and
(b) normalized local power growth rate ð4
mkuÞ�1dGðzÞ=dz
for three unfocused beams with �e ¼ 	=	0 ¼ 13:78m and ze ¼
0=17:225=34:45 m (blue/red/black, Set 2 parameters). Both
1-mode (solid curves) and 5-mode results (markers) are shown.
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FIG. 14. Total gain (i.e., gain at z ¼ Lu ¼ 34:45 m) vs scaled
waist position (blue markers) for an FEL driven by an unfocused
beam with �e ¼ 13:78 m (Set 2 parameters). Also shown is the
gain for a matched beam (red dashed line).
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the highest total gain is registered by the configuration with
ze ¼ Lu=2, for which the overlap of the optimum region of
the beam with the undulator region appears to be best
[Fig. 13(b)]. Moreover, an inspection of Fig. 12(b) verifies
that the position at which the power growth rate becomes
maximum is roughly identical to the waist position of each
beam [though this is less clear for the blue curve (ze ¼ 0),
for which the optimum region around z � 0 lies mostly in
the transient regime]. The corresponding maximum growth
rate (in the high-gain region) seems to be independent of
the position of the waist. Figure 13(a) again establishes that
the evolution of the size of the radiation beam is closely
correlated with that of the electron beam size in the
exponential gain regime. Finally, having shown that the
1-mode formalism is reliable in this case, we can use it to
study in more detail the influence of the waist position
upon the total FEL gain (for the same�e and Lu as before).
The results are summarized in Fig. 14, where we also
include the total gain for a beam that is matched to the
conventional version of the undulator. From this parameter
scan, we conclude that one can indeed recover as much as
93% of the gain for the matched beam when ze ¼
1:25�e ¼ 0:5Lu, i.e., by placing the waist of the unfocused
beam in the middle of the undulator segment.

IV. CONCLUSIONS

An expansion method has been developed for solving
the initial value problem of an FEL with variable electron
beam parameters, taking full account of 3D effects. We
have used this technique in our study of a high-gain FEL
that is driven by a beam with varying transverse sizes. In
particular, we have considered a round, Gaussian electron
beam with no initial modulation that, in general, is not
properly matched to a constant-focusing undulator system.
This model includes the constant-size beam as a special
case and can also deal with the case of an unfocused,
coasting beam by taking the limit of vanishing undulator
focusing strength. Starting from the linearized Vlasov-
Maxwell equations for the FEL, we obtained a driven
paraxial wave equation for the slowly varying amplitude
of the radiation field. By expanding the radiation amplitude
in terms of a set of Gauss-Laguerre transverse modes, we
eventually derived a truncated set of coupled, integrodif-
ferential equations for the mode coefficients and the vari-
able basis parameter. The latter is selected so as to
approximately match the retained basis modes to the evolv-
ing radiation profile. Given the input field, a straightfor-
ward numerical solution of this set leads to accurate
estimates of the radiation power and beam size. Several
topics were covered during this numerical study. For a
matched beam, these included a direct demonstration of
the gain guiding effect and seeding with a higher-order
mode (for which less gain was registered—compared to the
case of a Gaussian seed—due to the less than optimum
coupling to the electron beam). For the cases with an

explicit z dependence, we explored the effect of betatron
mismatch on the FEL output and also showed how the
parameters of an unfocused beam can be optimized so as to
yield the maximum possible FEL gain. Overall, the results
obtained are in good agreement both with GENESIS simu-
lations and with the predictions of the standard guided
mode theory (the latter, of course, refers to the special
case of a matched electron beam). The ability to describe
the radiation amplitude with a small number of expansion
modes makes this method potentially useful for parameter
studies. Moreover, this approach can be thought of as a
possible alternative (or benchmark) to simulation when
one seeks to solve the initial value problem in the linear
regime in order to validate other theoretical techniques,
such as the adiabatic version of the eigenmode formalism
presented in Ref. [9]. Finally, we would like to stress that
the broad applicability of this method enables us to use it in
the analysis of a wide range of FEL configurations and
parameter regimes.

APPENDIX A: SINGLE PARTICLE
EQUATIONS OF MOTION

The purpose of this Appendix is to derive the equations
of motion for a single electron of charge �e and mass m0

in the combined field of the undulator system and
the radiation. In a gauge where the scalar potential is equal
to zero, the radiation field is derivable from a vector
potential Ar ¼ Arx̂ ¼ �R

Erdt. Thus, the total vector

potential is A ¼ Axx̂þ Auyŷþ Azẑ, where Ax ¼
Aux þ Ar and Az ¼ Azðx; zÞ represents the longitudinal
vector potential from which the external focusing fields
are derived. For the linear focusing channel under consid-
eration, Az is given by

Az ¼ kðzÞ
2

ðx2 � y2Þ; (A1)

where the focusing function kðzÞ is periodic with period
equal to the length L of the basic FODO cell. The relativ-
istic, single particle Hamiltonian is

H1 ¼ c½ðP x þ eAxÞ2 þ ðP y þ eAuyÞ2
þ ðP z þ eAzÞ2 þm2

0c
2�1=2 ¼ E; (A2)

where E is the electron energy and P i (i ¼ x; y; z) are the
canonical momenta. Next, we would like to use the
longitudinal position z as the independent variable and
also eliminate the time t by introducing the phase c ¼
ðku þ krÞz�!rt as a new coordinate. These tasks can
easily be accomplished simultaneously by noting that the
action integral

I ¼
Z t2

t1

P xdxþ P ydyþ P zdz�H1dt

can—by virtue of the phase definition—be rewritten as
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I ¼
Z z2

z1

P xdxþ P ydyþ P c dc �H2dz;

where P c ¼ H1=!r ¼ E=!r is the new conjugate

momentum and

H2 ¼ �P z þ ðku þ krÞ E!r

(A3)

is the new Hamiltonian. Solving Eq. (A2) for P z and
substituting into Eq. (A3), we obtain

H2 � ðku þ krÞE
!r

þ eAz � pm

þ ðP x þ eAxÞ2 þ ðP y þ eAuyÞ2
2pm

; (A4)

where we have used the small angle approximation, i.e.,

the fact that the total mechanical momentum pm ¼
½E2=c2 �m2

0c
2�1=2 is much larger than its transverse

component p?
m ¼ ½ðP x þ eAxÞ2 þ ðP y þ eAuyÞ2�1=2. The

next step is to introduce the fractional energy deviation,

� ¼ E� E0

E0

¼ !rP c

E0

� 1; (A5)

where E0 ¼ �0m0c
2 is the average energy of the electrons,

as the new canonical momentum conjugate to the phase c .
To this purpose, we scale H2—along with the remaining
canonical momenta—by the appropriate factor and expand
pm in terms of �. Up to second order in �, this manipula-
tion yields

H3 ¼ !r

E0

H2

¼ ku�� kr
2�2

0

ð�� �2Þ þ 1

2kr
ð1� �þ �2Þ

� ½ðPx þ ~AxÞ2 þ ðPy þ ~AuyÞ2� þ ~Az; (A6)

where Px;y ¼ !rP x;y=E0, ~Ax ¼ ~Aux þ ~Ar, and ~Aj ¼
ð!re=E0ÞAj (j ¼ ux; uy; z; r). Assuming that the radiation

vector potential is a small quantity—that is,
jArj � jAuj—the term in the brackets in Eq. (A6) can
be written as

P2
xþP2

yþ2ð ~Auxþ ~ArÞPxþ2 ~AuyPyþ ~A2
uxþ ~A2

uyþ2 ~Aux
~Ar;

where we have omitted the quadratic ~A2
r term in the ex-

pansion of ~A2
x. For small transverse displacements from the

undulator axis, i.e., when kujxj and kujyj � 1, Eq. (1)
yields

~Aux ¼ �ðkrK=�0Þ½1þ k2uðx2 þ y2Þ=4� cosðkuzÞ;
~Auy ¼ ½krK=ð2�0Þ�k2uxy cosðkuzÞ: (A7)

In view of the above relations and after some rearranging
and truncation, Eq. (A6) becomes

H3 ¼ � krK
2

4�2
0

� cosð2kuzÞ � K

�0

Px cosðkuzÞ

þ 1

kr
½ ~ArPx þ ~AuyPy� þ ku�

2 þ 1� �

2kr

� ½P2
x þ P2

y þ k2rk
2
nðx2 þ y2Þ� þ

~Aux
~Ar

kr
þ ~Az: (A8)

Here, the fourth-order term ~A2
uy 
 x2y2 has been omitted

and kn ¼ Kku=ð2�0Þ ¼ �K=ð�0�uÞ is the undulator natu-
ral focusing strength. As is well known (see, for instance,
Ref. [7]), the horizontal position x of an electron can be
expressed as x ¼ xw þ x�, where xw ¼ �½K=ð�0kuÞ��
sinðkuzÞ is the term due to the fast wiggling motion and
x� is the contribution of the slow betatron motion. We note

that the expression for xw does not include a small qua-
dratic correction due to the transverse dependence of the
undulator field. Furthermore, in a planar undulator,
the longitudinal velocity is not constant—as would be the
case for a helical geometry—but oscillates about an aver-
age value at twice the transverse wiggle frequency cku. As
a result, c can be decomposed into a fast oscillating part
c w ¼ �½krK2=ð8ku�2

0Þ� sinð2kuzÞ and a slowly varying

phase �. To switch to the slowly varying coordinates (�,
x�), we employ the second-type canonical transformation

defined through the generating function,

F2 ¼ F2ðc ; x; y; ~�;P1; P2; zÞ

¼
�
c þ krK

2

8ku�
2
0

sinð2kuzÞ
�
~�

þ
�
xþ K

ku�0

sinðkuzÞ
�
P1 þ yP2: (A9)

The transformation equations are

� ¼ @F2

@~�
¼ c þ krK

2

8ku�
2
0

sinð2kuzÞ

¼ ðku þ krÞz�!rtþ krK
2

8ku�
2
0

sinð2kuzÞ; (A10)

x� ¼ @F2

@P1

¼ xþ K

ku�0

sinðkuzÞ; (A11)

y� ¼ @F2

@P2

¼ y; (A12)

� ¼ @F2

@c
¼ ~�; (A13)

Px ¼ @F2

@x
¼ P1; (A14)

Py ¼ @F2

@y
¼ P2 (A15)

and the new Hamiltonian is
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H4 ¼ H3 þ @F2

@z

¼ Kk2uPy

2�0

xy cosðkuzÞ þ
~ArPx

kr
þ ku�

2

þ 1� �

2kr
½P2

x þ P2
y þ k2rk

2
nðx2 þ y2Þ�

þ
~Aux

~Ar

kr
þ!re

2E0

kðzÞðx2 � y2Þ: (A16)

Finally, we wish to retain only those terms in the
Hamiltonian that vary slowly on the scale of the undulator
period �u. To this end, we first pay closer attention to the

terms that involve ~Ar. Using Eqs. (2) and (A10), the latter
quantity can be written as

~A r ¼ e

2iE0

Z 1

�1
d�

�
E�ðx; zÞei�krðz�ctÞ

¼ e

2iE0

Z 1

�1
d�

�
E�ðx; zÞei�½��kuz�Q sinð2kuzÞ�

¼ e

2iE0

Z 1

�1
d�

�
E�ðx; zÞei��

X1
l¼�1

Jlð�QÞe�ið�þ2lÞkuz;

(A17)

where Q ¼ krK
2=ð8ku�2

0Þ ¼ K2=ð4þ 2K2Þ and we have

also used the identity

eib sinx ¼ X1
l¼�1

JlðbÞeilx: (A18)

We also need the expansion

E�ðx; zÞ ¼ E�ðx�; zÞ � @E�

@x�
rw sinðkuzÞ þ 
 
 
 ;

where rw ¼ K=ð�0kuÞ is the amplitude of the wiggling
motion. In what follows, we assume that rw is always
much smaller than the radiation/electron beam sizes. In
that case, we may keep only the zeroth-order term in the
expansion given above. In view of this approximation and
bearing in mind that (a) � � �1, and (b) Px, Py, and � are

slowly varying quantities, it becomes clear that ~ArPx only
has fast oscillating components. This is not the case for the
~Aux

~Ar=kr term, which (ignoring the transverse dependence

of ~Aux) can be written as

~Aux
~Ar

kr
¼ i

eK

4E0�0

Z 1

�1
d�

�
E�ðx�;zÞei��

� X1
l¼�1

Jlð�QÞðeikuzþe�ikuzÞe�ið�þ2lÞkuz: (A19)

Using the previously quoted identity—Eq. (A18)—and
properties of the Bessel functions, we conclude that the
slowly varying part of the cross product term is

i�1

Z 1

�1
d�

�
a�ðx�; zÞei��;

where �1 ¼ eKJJ=ð4�2
0m0c

2Þ and JJ ¼ J0ðQÞ � J1ðQÞ
while a� is defined by

a� � E�

�
e�ið��1Þkuz; � > 0

e�ið�þ1Þkuz; � < 0
(A20)

for � � 0 and is equal to zero for � ¼ 0 (note that a�� ¼
a��). The averaging of the remaining terms on the rhs of
Eq. (A16) proceeds along similar lines. The final, wiggle-
averaged Hamiltonian is given by

H ¼ ku�
2 þ 1� �

2kr
½P2

x þ P2
y þ k2rk

2
nðx2� þ y2�Þ�

þ i�1

Z 1

�1
d�

�
a�ðx�; zÞei�� þ!re

2E0

kðzÞðx2� � y2�Þ:
(A21)

In one important special case, the above Hamiltonian can
be further simplified. If knL � 1, the undulator segments
can be treated as drift spaces as far as determining the
betatron functions is concerned. From the standard results
for a FODO cell, it is known that the lattice beta functions
�x and �y oscillate between a maximum and a minimum

value given by �� ¼ L½1� sinð�=2Þ�= sin�, where � is
the phase advance per cell. The latter quantity is in turn
expressed by the relation sinð�=2Þ ¼ L=ð4fqÞ, where fq
is the magnitude of the quadrupole focal lengths.
Furthermore, the alpha functions ax and ay are zero at

the quads and equal to �1= cosð�=2Þ at the midpoints of
the drift spaces. In the limit of small phase advance
(� � 1), the beta functions are approximately constant
and equal to an average value �� � L=� � 2fq while the

evolution of the alpha functions can be approximated by a
periodic step function with values equal to �1. To rigor-
ously derive the simplified Hamiltonian in the framework
of this so-called constant focusing or smooth approxima-
tion, we perform the canonical transformation given by

~x ¼ x�; ~y ¼ y�; ~Px ¼ Px þ kr
ax
�x

x�;

~Py ¼ Py þ kr
ay
�y

y�;
(A22)

which can be obtained from the second-type generating
function,

�F 2 ¼ �F2ð�; x�; y�; ��; ~Px; ~Py; zÞ

¼ ~Pxx� þ ~Pyy� � kr
2

�
ax
�x

x2� þ ay
�y

y2�

�
þ � ��:

(A23)

The new Hamiltonian ~H ¼ H þ @ �F2=@z is given by
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~H ¼ ku�
2 þ 1� �

2kr

�
~P2
x þ ~P2

y þ k2r

�
a2x
�2

x

x2� þ a2y

�2
y

y2�

�
þ k2rk

2
nðx2� þ y2�Þ

�
þ i�1

Z 1

�1
d�

�
a�ðx�; zÞei��

þ!re

2E0

kðzÞðx2� � y2�Þ � ð1� �Þ
�
ax
�x

x� ~Px þ
ay
�y

y� ~Py

�
� kr

2

��
ax
�x

�0
x2� þ

�
ay
�y

�0
y2�

�
; (A24)

where a prime denotes differentiation with respect to z. The
transverse conjugate variables can be related to the action-
angle variables ðJx; Jy; c x; c yÞ of the linear betatron
motion via

x� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jx�x

p
cosc x; y� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jy�y

q
cosc y;

~Px � kr
�xx

0
� þ axx�

�x

¼ �kr

ffiffiffiffiffiffiffi
2Jx
�x

s
sinc x;

~Py � kr
�yy

0
� þ ayy�

�y

¼ �kr

ffiffiffiffiffiffiffi
2Jy
�y

s
sinc y: (A25)

Given that (a) the actions Jx, Jy are exact invariants of the
motion in the absence of radiation, and (b) the beta func-
tions �x, �y are almost constant while c xðzþ LÞ �
c xðzÞ ¼ c yðzþ LÞ � c yðzÞ ¼ � � 1, we conclude that
x� ¼ ðx�; y�Þ and ~P ¼ ð ~Px; ~PyÞ change little over the
length L of a FODO cell. Moreover, ax, ay and the focusing
function kðzÞ average to zero over that same length. Using
the above observations and the periodicity of the betatron
functions, it becomes evident that the last three terms in the
Hamiltonian do not contribute to an averaging over the cell
length. Taking into account the fact that �x; �y � �� and
a2x; a

2
y � 1, we obtain the final form of the averaged

Hamiltonian:

~H ¼ ku�
2 þ 1� �

2kr
½~P2 þ k2rk

2
�x

2
��

þ i�1

Z 1

�1
d�

�
a�ðx�; zÞei��; (A26)

where k� ¼ ðk2n þ 1= ��2Þ1=2 is the total focusing strength.
Introducing the new momentum variable p ¼ ~P=kr, taking
into account the fact that j�j � 1, and neglecting those
terms which describe the influence of radiation on the
betatron motion, the single particle equations of motion
become

dx�

dz
¼ p; (A27)

dp

dz
¼ �k2�x�; (A28)

d�

dz
¼ 2ku�� kr

2
½p2 þ k2�x

2
��; (A29)

d�

dz
¼ �1

Z 1

�1
d�a�ðx�; zÞei��: (A30)

Equations (A27) and (A28) describe the betatron oscilla-
tions in the smooth approximation while Eqs. (A29) and
(A30) constitute the 3D generalization of the 1D FEL
pendulum equations, including the emittance effect.

APPENDIX B: VLASOV-MAXWELL FORMALISM

On a microscopic level, the phase space density of the
electron beam is given by the Klimontovich distribution,

fKð�;�;x�;p; zÞ � kr
XNb

j¼1

�½�� �jðzÞ��½�� �jðzÞ�

� �½x� � x�jðzÞ��½p� pjðzÞ�; (B1)

where Nb is the total number of electrons in the bunch. In
cases where random effects such as shot noise can be
neglected, we may instead deal with a smoothed distribu-
tion function f ¼ hfKi, where the brackets denote an en-
semble averaging. The evolution of f along the undulator
is governed by the Vlasov equation,

@f

@z
þd�

dz

@f

@�
þd�

dz

@f

@�
þdx�

dz

@f

@x�

þdp

dz

@f

@p
¼0; (B2)

while its normalization is given byZ 1

�1
d2p

Z 1

�1
d2x�

Z 1

�1
d�

Z 1

�1
dzbfð�;�;x�;p; zÞ ¼Nb;

(B3)

where zb ¼ �=kr is the longitudinal position with respect
to the centroid of the bunch. In the startup and the expo-
nential gain regimes of the FEL interaction, one can em-
ploy perturbation theory in order to obtain a linearized
version of the Vlasov equation. We set f ¼ f0 þ f1, where
f0 is the background distribution and f1 is the perturbation
caused by the microbunching effect (jf1j � f0). Here, we
will only consider cases with @f0=@� ¼ 0, which corre-
sponds to a bunch with a uniform longitudinal profile.
This approximation is valid when the bunch length lb is
much larger than the slippage length Nu�r, where Nu is
the number of undulator periods. Taking into account
Eqs. (A27)–(A30) and the fact that the radiation amplitude
is to be treated as a first-order quantity, we find that
the unperturbed distribution f0ð�;x�;p; zÞ satisfies the

equation

@f0
@z

þ p
@f0
@x�

� k2�x�

@f0
@p

¼ 0 (B4)

and is normalized according to
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lb
Z 1

�1
d2p

Z 1

�1
d2x�

Z 1

�1
d�f0ð�;x�;p; zÞ ¼ Nb (B5)

while the linearized Vlasov equation for the perturbation
f1ð�; �;x�;p; zÞ is

@f1
@z

þ p
@f1
@x�

� k2�x�

@f1
@p

þ �0
@f1
@�

¼ ��1

@f0
@�

Z 1

�1
d�a�ðx�; zÞei��; (B6)

where �0 ¼ d�=dz is given by Eq. (A29). Making use of
the Fourier representation f1 ¼

R1
�1 d�f�e

i��—where
f� ¼ R1

�1 d�f1e
�i��=ð2�Þ)—Eq. (B6) is carried entirely

into the frequency domain, since it can be written as

@f�
@z

þ p
@f�
@x�

� k2�x�

@f�
@p

þ i��0f�

¼ ��1a�ðx�; zÞ@f0@�
: (B7)

The above result is valid for all �. As expected, different
frequencies remain uncoupled in the linear regime.
Furthermore, we recall that Er and f1 are real quantities,
which implies that E�� ¼ E�

� and f�� ¼ f��. This property
allows us to restrict the remainder of our analysis to the
positive frequency domain, in which the Vlasov equation
has the form

@f�
@z

þ p
@f�
@x�

� k2�x�

@f�
@p

þ i��0f�

¼ ��1E�ðx�; zÞe�i��kuz
@f0
@�

; (B8)

where we have introduced the detuning �� ¼ �� 1.
We now turn our attention to the electrodynamics aspect

of our derivation. The radiation field Er satisfies the wave
equation,

r2Er � 1

c2
@2Er

@t2
¼ 1

"0

�
@
e

@x
þ 1

c2
@jx
@t

�
; (B9)

where 
e (jx) is the charge (current) density. Substituting
Eq. (2) in the rhs of the relation given above yields

1

2

Z 1

�1
d�

�
r2

?E� þ 2i�kr
@E�

@z

�
ei�krðz�ctÞ

¼ 1

"0

�
@
e

@x
þ 1

c2
@jx
@t

�
; (B10)

where we have dropped the @2E�=@z
2 term in the paren-

theses as a consequence of the slowly varying approxima-
tion (SVA) for the field amplitude E�. Inverting the Fourier
transform, we obtain

r2
?E� þ 2i�kr

@E�

@z

¼ ckr
�"0

Z 1

�1
dt

�
@
e

@x
þ 1

c2
@jx
@t

�
e�i�krðz�ctÞ

¼ ei��kuz

�"0

X1
l¼�1

Jlð�QÞeið1þ2lÞkuz

�
Z 1

�1
d�

�
@
e

@x
� i

�kr
c

jx

�
e�i��: (B11)

Here, we have performed an integration by parts in order to
transform the @jx=@t term and have also utilized the defi-
nition of � and Eq. (A18). Next, we calculate the charge
and current densities in terms of the distribution function f.
This can be done in a systematic way by first considering
their microscopic counterparts. We have 
m

e ¼ �enm,
where the (microscopic) electron number density nm is
given by

nm ¼ XNb

j¼1

�½x� xjðtÞ��½z� zjðtÞ�

� 1

c

XNb

j¼1

�½x� xjðzÞ��½t� tjðzÞ�

¼ kr
XNb

j¼1

�½x� � x�jðzÞ��½�� �jðzÞ�

¼
Z 1

�1
d2p

Z 1

�1
d�fKð�;�;x�;p; zÞ;

wherewe have utilized Eqs. (A10)–(A12). In a similar way,
we get

jmx ¼ �e
XNb

j¼1

dxjðtÞ
dt

�½x� xjðtÞ��½z� zjðtÞ�

¼ �e!r

XNb

j¼1

dxjðzÞ
dz

�½x� � x�jðzÞ��½�� �jðzÞ�

¼ �ec
Z 1

�1
d2p

Z 1

�1
d�

�
px � K

�0

cosðkuzÞ
�

� fKð�;�;x�;p; zÞ:
An ensemble averaging of the above results yields


e ¼ �e
Z 1

�1
d2p

Z 1

�1
d�fð�;�;x�;p; zÞ;

jx ¼ �ec
Z 1

�1
d2p

Z 1

�1
d�

�
px � K

�0

cosðkuzÞ
�

� fð�; �;x�;p; zÞ: (B12)

Keeping only the zeroth-order term in the expansion

fð�;�;x�;p; zÞ ¼ fð�; �;x;p; zÞ þ @f

@x
rw sinðkuzÞ þ 
 
 
 ;

the phase integral on the rhs of Eq. (B11) becomes
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Z 1

�1
d�

�
@
e

@x
� i

�kr
c

jx

�
e�i�� ¼ e

Z 1

�1
d�e�i��

Z 1

�1
d2p

Z 1

�1
d�

�
i�krpx � @

@x

�
fð�; �;x;p; zÞ

� i�kr
eK

�0

cosðkuzÞ
Z 1

�1
d�e�i��

Z 1

�1
d2p

Z 1

�1
d�fð�;�;x;p; zÞ: (B13)

Both multiple integrals on the rhs of Eq. (B13) are slowly varying functions of z as the SVA is equally valid for the
distribution function f. After Eq. (B13) is substituted into Eq. (B11) and the familiar averaging over an undulator period is
performed, we obtain

�
@

@z
þ r2

?
2i�kr

�
E�ðx; zÞ ¼ � eKJJ

4�"0�0

ei��kuz
Z 1

�1
d�e�i��

Z 1

�1
d2p

Z 1

�1
d�fð�; �;x;p; zÞ: (B14)

Once more, we substitute f ¼ f0 þ f1 (with @f0=@� ¼ 0) and recall that E� is a first-order quantity. The nontrivial result
is a driven paraxial wave equation [Eq. (4) in the main text]

�
@

@z
þ r2

?
2i�kr

�
E�ðx; zÞ ¼ ��2e

i��kuz
Z 1

�1
d2p

Z 1

�1
d�f�ð�;x;p; zÞ; (B15)

where �2 ¼ eKJJ=ð2"0�0Þ.

APPENDIX C: RADIATION POWER

In this section, we derive an analytical expression for the radiation power, working from first principles. The magnetic
field of the radiation is expressed by Br ¼ r�Ar ¼ r� Arx̂ ¼ rAr � x̂. The corresponding Poynting vector is

S ¼ 1

�0

ðEr �BrÞ ¼ Er

�0

x̂� ðrAr � x̂Þ ¼ Er

�0

�
@Ar

@y
ŷþ @Ar

@z
ẑ

�
; (C1)

where�0 is the vacuum permeability, and its longitudinal component is given by Sz ¼ ðEr=�0Þð@Ar=@zÞ. From Eq. (2), we
obtain

@Ar

@z
¼ 1

2ickr

Z 1

�1
d�

�

�
@E�

@z
þ i�krE�

�
ei�krðz�ctÞ: (C2)

As a result of the paraxial approximation, we can disregard the first term in the parenthesis. Thus, we obtain

@Ar

@z
� 1

2c

Z 1

�1
d�E�e

i�krðz�ctÞ ¼ Er

c
; (C3)

which yields

Sz ¼ E2
r

c�0

¼ "0c

4

�Z 1

�1
d�E�e

i�krðz�ctÞ
��Z 1

�1
d�0E�0ei�

0krðz�ctÞ
�
¼ "0c

4

Z 1

�1
d�d�0E�E�0e

ið�þ�0Þkrze�ið�þ�0Þkrct: (C4)

The total radiation energy from a single electron bunch is

U ¼
Z 1

�1
d2x

Z 1

�1
dtSz ¼ "0c

4

Z 1

�1
d2x

Z 1

�1
d�d�0E�E�0eið�þ�0Þkrz

Z 1

�1
dte�ið�þ�0Þkrct ¼ �"0

kr

Z 1

�1
d2x

Z 1

0
d�jE�j2:

(C5)

In the last step, we have utilized the integral representation of the delta function as well as the relation E�� ¼ E�
�. Taking

into account the bunched structure of the electron beam, the average radiation power is given by

P ¼ U

�
¼ �"0

kr�

Z 1

�1
d2x

Z 1

0
d�jE�j2; (C6)

where � ¼ lb=c is the bunch duration.
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