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The computation of tunes and matched beam distributions are essential steps in the analysis of circular

accelerators. If certain symmetries—like midplane symmetry—are present, then it is possible to treat the

betatron motion in the horizontal, the vertical plane, and (under certain circumstances) the longitudinal

motion separately using the well-known Courant-Snyder theory, or to apply transformations that have

been described previously as, for instance, the method of Teng and Edwards. In a preceding paper, it has

been shown that this method requires a modification for the treatment of isochronous cyclotrons with non-

negligible space charge forces. Unfortunately, the modification was numerically not as stable as desired

and it was still unclear, if the extension would work for all conceivable cases. Hence, a systematic

derivation of a more general treatment seemed advisable. In a second paper, the author suggested the use

of real Dirac matrices as basic tools for coupled linear optics and gave a straightforward recipe to decouple

positive definite Hamiltonians with imaginary eigenvalues. In this article this method is generalized and

simplified in order to formulate a straightforward method to decouple Hamiltonian matrices with

eigenvalues on the real and the imaginary axis. The decoupling of symplectic matrices which are

exponentials of such Hamiltonian matrices can be deduced from this in a few steps. It is shown that

this algebraic decoupling is closely related to a geometric ‘‘decoupling’’ by the orthogonalization of the

vectors ~E, ~B, and ~P, which were introduced with the so-called ‘‘electromechanical equivalence.’’ A

mathematical analysis of the problem can be traced down to the task of finding a structure-preserving

block diagonalization of symplectic or Hamiltonian matrices. Structure preservation means in this context

that the (sequence of) transformations must be symplectic and hence canonical. When used iteratively, the

decoupling algorithm can also be applied to n-dimensional systems and requires Oðn2Þ iterations to

converge to a given precision.
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I. INTRODUCTION

The significance of the symplectic groups in
Hamiltonian dynamics has been emphasized for instance
by Dragt [1], and it has long been known [2] that the Dirac
matrices are generators of the symplectic group Spð4; RÞ.
In Ref. [3] the author presented a toolbox for the treatment
of two coupled harmonic oscillators that is based on the use
of the real Dirac matrices (RDMs) as generators of the
symplectic group Spð4; RÞ and a systematic survey of
symplectic transformations in two dimensions. This tool-
box enabled the development of a straightforward recipe
for the decoupling of positive definite two-dimensional
harmonic oscillators. Here we present an improvement of
the method that is based on geometric arguments, i.e., on
the orthogonalization of three-dimensional vectors associ-
ated via the electromechanical equivalence (EMEQ) to
certain linear combinations of matrix elements.

There is a long history of publications covering the
diagonalization (and related) problems in linear algebra
as well as in linear coupled optics, linear Hamiltonian
dynamics, and control theory. A (nonexhaustive) list is
given in the bibliography (see Refs. [4–20], but also
Refs. [3,21] and references therein). However, none of
the previous works (known to the author) takes full advan-
tage of the group structure of the generators of Spð4Þ.
The conceptually closest approach uses ‘‘quaternions,’’
the representations of which seem to be identical to the
RDMs [22], but seem to be limited to orthogonal symplec-
tic transformations. The decoupling method of Teng and
Edwards has been the starting point for this work, as it
turned out to fail in some special cases (see Ref. [21] and
Appendix D).
The method that we present here is based on a survey of

all symplectic similarity transformations. We do not make
specific assumptions about the Hamiltonian other than that
it is a symmetric quadratic form and we present a geomet-
ric interpretation via the EMEQ, which provides a physical
notation of otherwise complicated and nondescriptive al-
gebraic expressions.1 Furthermore, we believe that the use
of the EMEQ is an interesting example of how elements of
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classical physics, quantum mechanics, special relativity,
electrodynamics, group theory, geometric algebra, statis-
tics [24], and last but not least symplectic theory fit to-
gether and allow one to use a common formalism.

The simplest classical linear dynamical system with
interaction (coupling) has 2 degrees of freedom and, hence,
a four-dimensional phase space. It can be considered as
‘‘fundamental’’ and a detailed analysis of its properties will
likely be instructive also for n > 2. Indeed it turns out that
the decoupling technique of a two-dimensional system can
be iteratively applied to systems with more than 2 degrees
of freedom. A Jacobi-like iteration with pivot search is
sketched in Sec. VC.

From the viewpoint of coupled linear optics, the problem
is solved if a symplectic transformation is derived
that transforms (constant) Hamiltonian matrices to
2� 2-block-diagonal form (see below). It has been shown
in Ref. [3] that the same transformation method can be
applied to symplectic matrices as well. The arguments will
be briefly reported below. When applied to symplectic
matrices, the method is equivalent to the computation of
the matrix logarithm. A solution for the counterpart, i.e.,
the computation of the matrix exponential with emphasis
on the use of Dirac matrices, has been presented by Barut,
Zeni, and Laufer in 1994 [25].

If 2� 2-block-diagonal form has been achieved, the
remaining task is completely analogous to the application
of the Courant-Snyder theory for 1 degree of freedom.
Nevertheless some arguments require awareness of the
eigenvalues and their relation to the properties of the
Dirac matrices so that a reference to a complete diagonal-
ization seemed appropriate.

II. COUPLED LINEAR OPTICS

The Hamiltonian of an n-dimensional harmonic oscil-
lator with arbitrary coupling terms can be written in the
form

H ¼ 1
2c

TAc ; (1)

where A is a symmetric matrix and c is a state vector or
‘‘spinor’’ of the form c ¼ ðq1; p1; q2; p2; . . . ; qn; pnÞT .
Even though the matrix A is time dependent in the general
case, it is well-known practice to use the Floquet trans-
formation to reduce it to a constant matrix for the treatment
of periodic systems (see Appendix B and for instance
Refs. [26,27]). The symplectic unit matrix (usually labeled
J or S) is a skew-symmetric matrix that squares to the
negative unit matrix. For n ¼ 2 it is identified with the real
Dirac matrix �0. As described in Ref. [3], it is possible to
freely choose the order of the variables in the state vector.
However, the order of the variables fixes the form of
the symplectic unit matrix �0.

2 We prefer the use of an

ordering system in which the phase space coordinates
ðqi; piÞ are grouped as pairs of canonical conjugate varia-
bles, so that �0 has the form

�0 ¼

0 1 0 0

�1 0 . . . 0 0

..

. ..
.

0 0 . . . 0 1

0 0 �1 0

0
BBBBBBBBB@

1
CCCCCCCCCA
: (2)

Using the overdot to indicate the derivative with respect
to time (or path length), the equations of motion have the
familiar form,

_q i ¼ @H

@pi

_pi ¼ � @H

@qi
; (3)

or in vector notation,

_c ¼ �0rcH ¼ Fc ; (4)

where the force matrix F is given as

F ¼ �0A: (5)

From the definition of F, one quickly finds that [26,27]

F T ¼ �0F�0; (6)

where the superscript ‘‘T’’ denotes the transposed matrix.
Matrices that obey Eq. (6) are usually called ‘‘infinitesi-
mally symplectic’’ or ‘‘Hamiltonian’’ [26]. Both terms
are—in the opinion of the author—misleading: the former
because F is neither symplectic nor is it infinitesimal, the
latter since F does not appear in the Hamiltonian while the
symmetric matrix A does. In addition A and not F is in
the view of the author the classical counterpart of the
Hamiltonian operator (see Appendix A in Ref. [3]).
Furthermore, Eq. (6) is a purely formal property and not
necessarily connected to a Hamiltonian. Therefore the
author decided to use the term ‘‘symplex’’ (plural
‘‘symplices’’) when referring to its formal definition [i.e.,
Eq. (6)] and its relation to the symplectic transfer matrix
and to call it ‘‘force matrix’’ when referring to its physical
content—especially with respect to the EMEQ (see
Ref. [3] and below). Accordingly we speak of an antisym-
plex or cosymplex (i.e., ‘‘skew-Hamiltonian’’ matrix), if a
matrix C fulfills the equation

C T ¼ ��0C�0: (7)

If we write S (C) for (co)symplices, respectively, option-
ally with a subscript, then it is easy to prove that

S1S2 � S2S1

C1C2 �C2C1

CSþ SC;

9>>=
>>; ) symplex (8)

and

2For n ¼ 2, this also follows from the fundamental theorem of
the Dirac matrices (see for instance Refs. [2,28]).
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S1S2 þ S2S1

C1C2 þC2C1

CS� SC

9>>=
>>; ) cosymplex: (9)

A. Dirac matrices

In the following we focus on 2 degrees of freedom
(n ¼ 2), i.e., to a four-dimensional phase space and the
use of the real Dirac matrices to describe its dynamics and
transformation properties. Often the term ‘‘Dirac matri-
ces’’ is used more restrictively and designates only four
matrices, namely �k, k 2 ½0 . . . 3�. Here we consider the
four basic Dirac matrices as the four basic elements of a
Clifford algebra Clð3; 1Þwith 16 elements derived from the
basic matrices (see Appendix A). For further details, see
for instance Refs. [29–31].

Any real 4� 4 matrix M can be written as a linear
combination of the RDMs:

M ¼ X15
k¼0

mk�k: (10)

The RDM coefficients mk are given by3

mk ¼ Trð�2
kÞTr

�
M�k þ �kM

32

�
; (11)

where TrðXÞ is the trace of the matrixX. Only the first ten
RDMs are symplices and since symplices obey the super-
position principle [1,3,27], any force matrix (symplex) can
be written as

F ¼ X9
k¼0

fk�k: (12)

The solution of Eq. (4) is known to be

c ðsÞ ¼ expðFsÞc ð0Þ; (13)

where the matrix

M ¼ expðFsÞ (14)

is called transfer matrix, which can be shown to fulfill the
symplectic condition, if F is a symplex [1,3,27]:

M�0M
T ¼ �0: (15)

Vice versa it is known that symplectic matrices can be
written in the form of Eq. (14) [26,27].

Transfer matrices can be split into two parts, one (Ms)
being a symplex, the other (Mc) being a cosymplex [3,32]:

M c ¼ ðM� �0M
T�0Þ=2;

Ms ¼ ðMþ �0M
T�0Þ=2;

(16)

which is in case of a symplectic matrix M identical to

Mc ¼ ðMþM�1Þ=2; Ms ¼ ðM�M�1Þ=2: (17)

It has been shown in Ref. [3] that the decoupling of the
symplex part Ms of a symplectic matrix M automatically
decouples the corresponding cosymplex Mc. Hence, it is
sufficient to derive a method to decouple symplices of the
above-mentioned type. In cases where only the one-turn-
transfer matrix is available, Eq. (16) is used beforehand to
extract the symplex part of the transfer matrix. The decou-
pling algorithm can then be applied to this matrix (see also
the detailed discussion in Ref. [3]).

III. BLOCK DIAGONALIZATION
AND EIGENVALUES

The force matrix F is by definition a product of a
symmetric matrix A and of a skew-symmetric matrix �0.
Hence, it has zero trace and the sum of all eigenvalues is
zero. We restrict ourselves to systems with real-valued
force matrices and therefore real-valued transfer matrices.
The eigenvalues of real-valued 2� 2 symplices are either
both real or both purely imaginary (since they are the
square root of a real expression). Block diagonalization
(in the case of the variable ordering as described above)
means to find a symplectic similarity transformation R

such that the matrix ~F ¼ RFR�1 has the form

~F ¼ ~F1 0
0 ~F2

 !
; (18)

where ~Fk are real 2� 2 matrices. Since similarity trans-
formations preserve the eigenvalues, a symplex is block
diagonalizable in the form that we are going to describe, if
the (pairs of) eigenvalues are either real or imaginary. In
case of imaginary eigenvalues, the corresponding degree of
freedom [i.e., pair ðqi; piÞ] is stable (or focused), while a
pair of real eigenvalues belongs to an unstable (nonfo-
cused) degree of freedom. The corresponding betatron
motion is unstable in the sense that no sufficient focusing
is present.
However, in the general coupled case without further

assumptions, F is a general 4� 4 symplex (or larger).
Using the RDMs it is relatively easy to construct matrices
with complex eigenvalues. An example is

F ¼ Ex�4 þ Bx�7; (19)

which has the complex eigenvalues �iðBx � iExÞ. Since
the eigenvalues are complex, also the 2� 2 blocks are
complex. They can be block diagonalized, but the general-
ization to the 2n� 2n case requires a general treatment of
the complex case, which goes beyond the scope of this
paper.

3Equation (11) is based on the fact that all RDMs except the
unit matrix have zero trace.
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As in Ref. [3] the author speaks of regular or massive
systems, if the Hamiltonian is positive definite and of
irregular or magnetic systems in the case of indefinite
Hamiltonian, respectively. Both types may be stable or
unstable and this distinction should not be confused with
the question of stability. A detailed discussion of stability
would go beyond the scope of this paper and we refer the
reader for instance to Ref. [27] or Ref. [22] and references
therein.

A. The S matrix

The matrix of second moments � of a charged particle
distribution,

� ¼ hc c Ti; (20)

has the time derivative

_� ¼ F�þ �FT: (21)

Multiplication from the left with �0 and the use of Eq. (6)
leads to

_S ¼ FS� SF; (22)

where the matrix S is defined by

S ¼ ��0: (23)

If Eq. (23) is compared to Eq. (5), then it is obvious that S
is also a symplex as it is also the product of a symmetric
and a skew-symmetric matrix and obeys Eq. (6). From
Eqs. (13), (14), and (20) it follows that

�ðsÞ ¼ MðsÞ�ð0ÞMTðsÞ: (24)

The second moments of a matched distribution are un-
changed after one turn (or sector) of period L so that
�ðLÞ ¼ �ð0Þ so that one obtains in a few steps:4

MS� SM ¼ 0: (25)

B. The eigensystems and matching

Hence, one finds that the matrices M, F, and S have the
same eigenvectors—but in general different eigenvalues
[33,34]:

F ¼ E�E�1 M ¼ E�E�1 S ¼ EDE�1; (26)

where [34]

� ¼ Diagði!1;�i!1; i!2;�i!2Þ;
� ¼ Diagðei!1 ; e�i!1 ; ei!2 ; e�i!2Þ;
D ¼ Diagð�i"1; i"1;�i"2; i"2Þ: (27)

!i are the oscillation frequencies and "i the emittances.
If E is known, the second moments of the matched distri-
bution can be computed by replacing the eigenfrequencies
by the emittances. If a symplectic transformation R is
known, that brings F (and hence S and M) to block-
diagonal form, then one can simply use the usual
Courant-Snyder theory for one-dimensional systems [35].
In this case an explicit computation of the eigenvectors is
not required.

IV. THE ELECTROMECHANICAL EQUIVALENCE

It was shown in Ref. [3] that the ten coefficients of the
force matrix F or the Smatrix can be identified with energy

E and momentum ~P of a particle and with electric and

magnetic field ( ~E and ~B, respectively) seen by a charged
particle in external fields. The meaning of this identifica-
tion is that the corresponding coefficients of F or S trans-
form under symplectic transformations in the exact same
way as the fields and the momentum transform under the
corresponding boosts and rotations.
It was also shown that the envelope equations of coupled

linear optics are isomorphic to the Lorentz force equation.
The Lorentz group was found to be a subset of the
two-dimensional symplectic group. The so-defined

‘‘fields’’ ( ~E and ~B) of the EMEQ should not be confused
with the real fields of the beam line elements or accelerator
components.
This isomorphism has been named electromechanical

equivalence (EMEQ). The ten possible symplectic trans-
formations are identified with spatial and phase rotations,
Lorentz boosts, and so-called ‘‘phase boosts.’’ The trans-
formation properties are analogous to those in Minkowski
space-time.
This structural analogy is the basic idea behind the

electromechanical equivalence (EMEQ). Naturally, �0 is
associated with the timelike components of 4-vectors (i.e.
energy), the spatial matrices ~� ¼ ð�1; �2; �3ÞT are associ-
ated with the momentum, the matrices �0 ~� with the elec-
tric field, and �14�0 ~� with the magnetic field. The
pseudoscalar has been named �14 ¼ �0�1�2�3 (instead
of �5, as convention in QED). The remaining six matrices
are �10, which is the time component of the pseudovector,
ð�11; �12; �13ÞT ¼ �14 ~� are the spatial components of the
pseudovector and �15 ¼ 1 is the unit matrix. A complete
list is given in Appendix A; further details in Ref. [3] and in
textbooks on quantum electrodynamics.
The EMEQ is given by the following nomenclature:

E � f0; ~P � ðf1; f2; f3ÞT;
~E � ðf4; f5; f6ÞT; ~B � ðf7; f8; f9ÞT;

(28)

with the fk given by Eq. (12). Using the EMEQ, the
eigenvalues of F [Eqs. (26) and (27)] can be expressed by

4See common textbooks on linear Hamiltonian dynamics or
Ref. [3].
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K1 ¼ E2 þ ~B2 � ~E2 � ~P2;

K2 ¼ �2E ~P � ð ~E� ~BÞ þ E2 ~B2 þ ~E2 ~P2

� ð ~E � ~PÞ2 � ð ~E � ~BÞ2 � ð ~P � ~BÞ2
¼ ðE ~Bþ ~E� ~PÞ2 � ð ~E � ~BÞ2 � ð ~P � ~BÞ2;

!1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1 þ 2

ffiffiffiffiffiffi
K2

pq
; !2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1 � 2

ffiffiffiffiffiffi
K2

pq
;

DetðFÞ ¼ K2
1 � 4K2:

(29)

Force matrices of stable systems have purely imaginary
eigenvalues [36], so that for stable systems one has K2 > 0
and K1 > 2

ffiffiffiffiffiffi
K2

p
.

Using the notation of the EMEQ a general symplex F is
given explicitly by

F¼

�Ex EzþBy Ey�Bz Bx

Ez�By Ex �Bx �Ey�Bz

EyþBz Bx Ex Ez�By

�Bx �EyþBz EzþBy �Ex

0
BBBBB@

1
CCCCCA

þ

�Pz E�Px 0 Py

�E�Px Pz Py 0

0 Py �Pz EþPx

Py 0 �EþPx Pz

0
BBBBB@

1
CCCCCA: (30)

Note that F is block diagonal, if Bx ¼ Bz ¼ Ey ¼ Py ¼ 0.

V. DECOUPLING OF TWO-DIMENSIONAL
SYSTEMS

A. The geometrical approach

In the following we describe a geometrical approach of
decoupling that is inspired by the observation, that in the

decoupled force matrix, the scalar products ~E � ~B and ~P � ~B
vanish [3]. In Hamiltonian form [see Eq. (38) below], also

the product ~P � ~E is zero and only the components E, Px,
Ez, and By remain. It is therefore instructive to analyze the

symplectic transformation properties of these scalar prod-

ucts. The product ~E � ~B is known to be invariant under
rotations and Lorentz boosts. Formally it is a pseudoscalar
in contrast to the scalar component representing the mass.
Hence, one might loosely speak of ‘‘mass components’’
and use the abbreviations:

Mr ¼ ~E � ~B; Mg ¼ ~B � ~P; Mb ¼ ~E � ~P: (31)

The mass components are invariant under spatial rotations.
We may therefore proceed with phase rotations and boosts.
We introduce the following auxiliary vectors:

~r � E ~Pþ ~B� ~E; ~g � E ~Eþ ~P� ~B;

~b � E ~Bþ ~E� ~P;
(32)

so that K2 from Eq. (29) can be written as

K2 ¼ ~b2 �M2
r �M2

g: (33)

It is easy to see that ~g, ~r, and ~b transform under spatial
rotations just like usual vectors. It is also quite obvious that

the vector ~g equals the usual Lorentz force and the vector ~b
equals the ‘‘Lorentz force’’ of a particle with magnetic

charge, as the role of ~E and ~B is exchanged compared to ~g
in the algebraic way that corresponds to a duality rotation
through an angle of �

2 [3].

One finds the following products:

~g2 ¼ �2E ~P � ð ~E� ~BÞ þ E2 ~E2 þ ~B2 ~P2 �M2
g;

~r2 ¼ �2E ~P � ð ~E� ~BÞ þ E2 ~P2 þ ~B2 ~E2 �M2
r ;

~b2 ¼ �2E ~P � ð ~E� ~BÞ þ E2 ~B2 þ ~E2 ~P2 �M2
b;

~g � ~r ¼ ðE2 � ~B2ÞMb þMrMg;

~g � ~b ¼ ðE2 � ~P2ÞMr þMgMb;

~r � ~b ¼ ðE2 � ~B2ÞMg þMrMb:

(34)

We introduce the following abbreviations for a better
readability:

c ¼ cosð"Þ; s ¼ sinð"Þ; c2 ¼ cosð2"Þ;
s2 ¼ sinð2"Þ; C ¼ coshð"Þ; S ¼ sinhð"Þ;
C2 ¼ coshð2"Þ; S2 ¼ sinhð2"Þ:

(35)

The phase rotation generated by �0 yields

~g 0 ¼ ~gcþ ~rs; ~r0 ¼ ~rc� ~gs; ~b0 ¼ ~b: (36)

The transformation of the mass components is listed in
Table I. From the discussion of the normal form of the
force matrix in Ref. [3] it follows that decoupling to block-
diagonal form is done by a transformation that makes Py ¼
Ey ¼ Bx ¼ Bz ¼ 0.Geometrically this means that ~B has to

be aligned along the y axis and the vectors ~P and ~E should

be in the plane perpendicular to ~B. In a first step, the
decoupling of a two-dimensional harmonic oscillator re-
quires the (partial) orthogonalization of the (three-

dimensional) ‘‘vectors’’ ~E, ~B, and ~P:

TABLE I. Table of transformed mass components for sym-
plectic transformations in two dimensions. Compare Eqs. (31),
(32), and (35).

M0
r M0

g M0
b

�0 MrcþMgs Mgc�Mrs Mbc2 þ ~P2� ~E2

2 s2
�1 MrC� ð ~bÞxS Mg MbC� ð~rÞxS
�2 MrC� ð ~bÞyS Mg MbC� ð~rÞyS
�3 MrC� ð ~bÞzS Mg MbC� ð~rÞzS
�4 Mr MgCþ ð ~bÞxS MbCþ ð ~gÞxS
�5 Mr MgCþ ð ~bÞyS MbCþ ð ~gÞyS
�6 Mr MgCþ ð ~bÞzS MbCþ ð ~gÞzS
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Mr ¼ ~E � ~B ! 0; Mg ¼ ~P � ~B ! 0; (37)

which can be interpreted as a geometrical ‘‘decoupling.’’

The alignment of ~B along the y axis in a second step is
simple. A transformation to what we call Hamiltonian
form,

Fd ¼

0 � 0 0

�� 0 0 0

0 0 0 �

0 0 �� 0

0
BBBBB@

1
CCCCCA; (38)

requires additionally to make Ex ¼ Pz ¼ 0, which can
again by done in two steps, orthogonalization

Mb ¼ ~E � ~P ! 0; (39)

and subsequent alignment of ~E and ~P. The general form of
symplectic transformations has been described in some
detail in Ref. [3]; here we give only a brief summary.
A symplectic transformation matrix Rb is generated by a
basic symplex �b with b 2 ½0 . . . 9� and controlled by a
parameter ":

R b ¼ exp

�
�b

"

2

�
; R�1

b ¼ exp

�
��b

"

2

�
;

F ! RbFR
�1
b :

(40)

The effect of a basic symplex �b depends on its
‘‘signature,’’ which is positive for symmetric and negative
for skew symmetric �b:

Rb¼
�
1cosð"=2Þþ�b sinð"=2Þ for�2

b¼�1

1coshð"=2Þþ�bsinhð"=2Þ for�2
b¼1;

(41)

where the bold printed 1 is the unit matrix. Note that
transformations with �2

b ¼ �1ðþ1Þ are called rotations

(boosts), respectively. Explicitly, �0 is the generator of a
‘‘phase rotation,’’ �b b 2 ½7; 8; 9� are ‘‘spatial rotations‘‘
with respect to the x, y, and z axis, and �b b 2 ½4; 5; 6�
generate ‘‘Lorentz boosts’’ with respect to the x, y, and z
axes. The ‘‘phase boosts’’ generated by �b b 2 ½1; 2; 3� are
combinations of phase rotations and Lorentz boosts. The
parameter " is called ‘‘angle’’ in case of rotations and
‘‘rapidity’’ in case of boosts. As the decoupling requires
a sequence of transformations, we emphasize that the
RDM coefficients have to be updated according to
Eq. (11) after each transformation.

Inspection of Table I shows that a straightforward strat-
egy is the following: (i) Mg ! 0: make a phase rotation

generated by �0 with angle " ¼ arctanðMg

Mr
Þ—this will al-

ways work independent on the size of Mi; (ii) ~b ! j ~bj ~ey:
align the vector ~b along the y axis by the spatial rotations

with R7 and an angle of " ¼ arctanðbzbyÞ and with R9

through an angle of " ¼ � arctanðbxbyÞ—such rotations can

always be done; (iii) Mr ! 0: boost using �2 and angle

" ¼ arctanhðMr

by
Þ.

The last transformation is only possible if

jMrj< jbyj ¼ j ~bj:

ð ~E � ~BÞ2 � �2E ~P � ð ~E� ~BÞ þ E2 ~B2 þ ~E2 ~P2 � ð ~E � ~PÞ2:
(42)

The first transformations result in ~P � ~B ¼ 0, so that
Eq. (42) is identical to the requirement that K2 � 0 [see
Eq. (29)]. This means that the eigenvalues are either
located on the real or imaginary axis, but not off axis in
the complex plane. If this condition is fulfilled, then the

vector components ð ~gÞy and ð ~rÞy, ð ~bÞx, and ð ~bÞz are zero

after the decoupling transformations have been applied.
That is, we found a symplectic decoupling algorithm for

both systems with purely imaginary eigenvalues, which are
called ‘‘strongly’’ stable [36], and unfocused systems with
purely real eigenvalues. That the algorithm works in both
cases equally well, is important for instance in the case
of transverse-longitudinal coupling with space charge in
cyclotrons [21].
We continue the discussion of force matrices with ei-

genvalues off axis in the complex plane in Sec. VB and
assume for now that K2 > 0. Using the abbreviations,

Mx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

r þM2
g

q
; byz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2y þ b2z

q
; (43)

the RDM coefficients of the block-diagonal (decoupled)
force matrix are given by

E 0 ¼ E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

x

~b2

s
; P0

x ¼
PxMr � ExMg

Mx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~b2 �M2

x

q
byz

;

P0
z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~b2 �M2

x

q
~b2Mxbyz

½MgðbzEy � byEzÞ þMrðbyPz � bzPyÞ�;

E0
x ¼

~b2ðMrEx þMgPxÞ � EbxM2
x

Mxbyzjbj ;

E0
z ¼

MrðbyEz � bzEyÞ þMgðbyPz � bzPyÞ
Mxbyz

;

B0
y ¼ E ~B2 � ~P � ð ~E� ~BÞ

j ~bj ; B0
x ¼ B0

z ¼ E0
y ¼ P0

y ¼ 0:

(44)

In order to bring the block-diagonal force matrix to
Hamiltonian form, one may apply the following transfor-
mations: (i) Mb ! 0: use another phase rotation with �0

with " ¼ 1
2 arctanð 2Mb

~E2� ~P2Þ; (ii) Pz ! 0: use rotation about

the y axis with �8 with " ¼ � arctanðPz

Px
Þ.

After these two rotations, the matrix has Hamiltonian
form, if K2 > 0 holds. In charged particle optics this is
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usually the case and therefore we consider this method as a
generally applicable decoupling algorithm.

B. Complex eigenvalues

Even though the problem of complex eigenvalues has
not yet been solved for the general 2n� 2n case, it is
possible to give a solution for the 4� 4 case as we are
going to describe here. The more general case of arbitrary
2n� 2n symplices with arbitrary (complex) eigenvalues
can presumably be solved by a block diagonalization with
4� 4 blocks for each set of complex conjugate eigenval-
ues and 2� 2 blocks for each pair of real or imaginary
eigenvalues.

If K2 < 0 the eigenvalues are complex and a block
diagonalization with 2� 2 blocks is not possible (within
the reals). However, a simplification of the matrix is pos-
sible with the aim that the RDM coefficients of the trans-
formed matrix have the following structure:

Px ¼ 0; Py ¼ 0; Pz ¼ 0; Ex ¼ 0;

Bx ¼ 0; Bz ¼ 0; Ez � 0; Ey � 0;

By � 0; E ¼ 0; Mg ¼ 0; Mb ¼ 0;

(45)

so that one finds ~g ¼ 0 and ~b ¼ 0 and the auxiliary vector ~r
has only a single nonvanishing component rx. We distin-

guish two cases, the first with E2 <Maxð ~P2; ~E2Þ and the

second with E2 >Minð ~P2; ~E2Þ. In both cases the goal is to
let ‘‘energy’’ and ‘‘momentum’’ vanish by appropriate

Lorentz or phase boosts. Then one may align ~B along the
y axis and rotate about the y axis to make Ex ¼ 0. Then the
conditions of Eq. (45) are fulfilled.

1. The low energy case

The decoupling strategy for the first case, i.e., for

E2 <Maxð ~P2; ~E2Þ is as follows.
(i) Mg ! 0.—Apply a phase rotation R0 with angle

"1 ¼ arctanðMg

Mr
Þ. Note that this maximizes Mr ¼ ~E � ~B.

(ii) ~E ! j ~Ej ~ey.—Align the vector ~E along the y axis by

the spatial rotations with R7 and an angle of "2 ¼
arctanðEz

Ey
Þ and (after an update of the RDM coefficients

and a recomputation of the auxiliary vector and mass

components) withR9 about an angle of "3 ¼ � arctanðEx

Ey
Þ.

(iii) E ! 0.—Boost using R2 and rapidity "4 ¼
arctanhð EEy

Þ. According to the assumptions, this is possible

and does not change Ex ¼ 0 or Ez ¼ 0.

(iv) Px ! 0.—Boost using R3 and rapidity "5 ¼
�arctanhðPx

By
Þ.

(v) Pz ! 0.—Boost using R1 and rapidity "6 ¼
arctanhðPz

By
Þ. Since E ¼ Ez ¼ Ex ¼ 0, the energy E as

well as ~E are unchanged by the boost.

(vi) ~B ! j ~Bj ~ey.—Align the vector ~B along the y axis by

the spatial rotations with R7 and an angle of "7 ¼
arctanðBz

By
Þ and (after an update of the RDM coefficients

and a recomputation of the auxiliary vector and mass

components) withR9 about an angle of "8 ¼ � arctanðBx

By
Þ.

(vii) Ex ! 0.—Rotate about the y axis with R8 with an

angle of "9 ¼ arctanðEx

Ez
Þ.

2. The intermediate energy case

The case where E2 >Minð ~P2; ~E2Þ but K2 < 0 might be
called ‘‘intermediate,’’ since the energy is large compared
to the ‘‘low energy’’ case, but not large enough to make
K2 > 0. The following procedure leads to the state de-
scribed by Eq. (45).
(i) Mb ! 0.—Apply a phase rotation R0 with angle

"1 ¼ 1
2 arctanð 2Mb

~E2� ~P2Þ. Note that this transformation mini-

mizes ~P2.

(ii) ~P ! j ~Pj ~ey.—Align the vector ~P along the y axis by

the spatial rotations with R7 and an angle of "2 ¼
arctanðPz

Py
Þ and (after an update of the RDM coefficients

and a recomputation of the auxiliary vector and mass

components) with R9 about an angle of "3 ¼
� arctanðPx

Py
Þ. Since Mb ¼ ~E � ~P ¼ 0 one also has now

Ey ¼ 0.

(iii) Py ! 0.—Lorentz boost using R5 and rapidity

"4 ¼ arctanhðPy

E Þ.
(iv) ~B ! j ~Bj ~ey.—Align the vector ~B along the y axis by

the spatial rotations with R7 and an angle of "6 ¼
arctanðBz

By
Þ and (after an update of the RDM coefficients

and a recomputation of the auxiliary vector and mass

components) withR9 about an angle of "7 ¼ � arctanðBx

By
Þ.

(v) E ! 0.—Boost using R2 and rapidity "8 ¼
arctanhð EEy

Þ.
(vi) Ex ! 0.—Rotate about the y axis with R8 with an

angle of "9 ¼ arctanðEx

Ez
Þ.

In both cases the transformed matrix F then has the form

F ¼ Ey�5 þ Ez�6 þ By�8: (46)

In order to bring it to Hamiltonian form, one applies the
transformation R2 with an angle of i�=2:

R ¼ expði�=4�2Þ ¼ 1ffiffiffi
2

p ð1þ i�2Þ; (47)

so that F ! RFR�1 is

F ¼ �iEy�0 þ Ez�6 þ By�8: (48)
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Note that the complex eigenvalues of a force matrix with

K2 < 0 all lie on a circle of radius � ¼ ðK2
1 þ 4jK2jÞ1=4 in

the complex plane.

C. Decoupling n-dimensional symplices

The general eigenvalue problem of symplices
(Hamiltonian matrices) is an area of intense research.
The algorithm presented above is based on a physical
and geometrical analysis of two-dimensional linear sym-
plectic systems. As described before, the algorithm is
limited to symplices that have real or imaginary eigenval-
ues, but a generalization to include complex eigenvalues
might be possible—even though not urgently required in
charged particle optics.5

In order to decouple symplectic systems with more than
2 degrees of freedom, the described algorithm can be used
in an iterative scheme analogous to the Jacobi method for
symmetric matrices.6 If all eigenvalues are real or imagi-
nary, it is possible to avoid computations using complex
numbers. The 2n� 2n symplex is then regarded as a n� n
matrix of 2� 2 blocks. We tested a pivot search that picks
the maximum average square amplitude of all nondiagonal
blocks Bij. The blocks Bii, Bij, Bji, and Bjj are then

analyzed as 4� 4 symplices and the symplectic similarity
transformation that block diagonalizes this submatrix is

applied, so that ~Bij ¼ ~Bji ¼ 0 holds. This iterative scheme

allows one to compute simultaneously the symplectic
transformation matrix and the resulting block-diagonal or
Hamiltonian form symplex with high precision.

Given fxg is a sequence of random numbers between
zero and one, then one may construct random symmetric
2n� 2n matrices A according to the rule

Aij ¼ Aji ¼
�
x� 1

2 for i � j

nþ x for i ¼ j:
(49)

The increase of the diagonal terms helps to avoid complex
eigenvalues. The symplex to decouple is then given by
F ¼ �0A. We tested the algorithm with these random
matrices up to n ¼ 12 and logged the number of
4� 4-diagonalization steps. Figure 1 shows the average
number of iterations that is required to compute the trans-
formation that brings a 2n� 2n symplex to Hamiltonian
form, i.e., into the form

0 �1 . . . 0 0

��1 0 . . . 0 0

..

. ..
. ..

. ..
.

0 0 . . . 0 �n

0 0 . . . ��n 0

0
BBBBBBBBB@

1
CCCCCCCCCA
: (50)

D. Diagonalization

In order to proceed from Eq. (38) towards diagonaliza-
tion, the matrix is scaled using the generators �3 and �4:

R ¼ exp

�
ð�3 þ �4Þ s2þ ð�3 � �4Þ t2

�

¼ Diag½expð�sÞ; expðsÞ; expð�tÞ; expðtÞ�;
s ¼ exp

�
log

�����������
��������
��

4

�
;

t ¼ exp

�
log

�����������
��������
��

4

�
;

(51)

so that one obtains (for stable systems) what we call
‘‘normal’’ form:

F!RFR�1¼

0 !1 0 0

�!1 0 0 0

0 0 0 !2

0 0 �!2 0

0
BBBBB@

1
CCCCCA; (52)

where the signs of the frequencies !1 and !2 can both be
positive and negative, depending on the signs of �, �, �,

0

50

100

150

200

250

300

2 4 6 8 10 12
n

N
it

er

FIG. 1. Solid line: Number of iterations required to bring a
2n� 2n symplex (Hamiltonian matrix) to Hamiltonian form.

Dashed line: Approximation by 5 nðn�2Þ
2 . The number nb of

nondiagonal 2� 2 blocks is nb ¼ nðn�1Þ
2 .

5The S matrix for instance will never have complex eigenval-
ues as it is derived from the matrix of second moments. Complex
eigenvalues would only be possible for correlations with a
modulus greater than one.

6Jacobi introduced a method to iteratively diagonalize real
symmetric matrices by a sequence of orthogonal transformations
each of which diagonalizes a 2� 2 submatrix [37].
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and �. At this stage, all components of ~g and ~r as well as

ð ~bÞx and ð ~bÞz are zero. Only ð ~bÞy is nonzero:
F ¼ E0Diagði!1;�i!1; i!2;�i!2ÞE�1

0 ;

E0 ¼ 1

2

1� i �1þ i 0 0

1þ i 1þ i 0 0

0 0 1� i �1þ i

0 0 1þ i 1þ i

0
BBBBB@

1
CCCCCA

¼ 1

2
ð1� �0 þ i�3 þ i�6Þ;

E0�0E
T
0 ¼ �0; E�1

0 ¼ Ey
0 :

(53)

That is, the last transformation matrix that is required for
diagonalization is not only symplectic—it is also unitary.

E. Example

A simplified and idealized cyclotron model with space
charge was described, which served as an example for an
irregular system [3,21]. Without repeating all details, the
constant force matrix has the following form:

F ¼

0 1 0 0

�kx þ Kx 0 0 h

�h 0 0 1
�2

0 0 Kz�
2 0

0
BBBBB@

1
CCCCCA: (54)

The RDM coefficients are then given by

E ¼ 1

4

�
1þ kx � Kx þ 1

�2
� �2Kz

�
;

Px ¼ 1

4

�
�1þ kx � Kx þ 1

�2
þ �2Kz

�
;

Py ¼ Pz ¼ 0; Ex ¼ Bx ¼ 0; Ey ¼ Bz ¼ � h

2
;

Ez ¼ 1

4

�
1� kx þ Kx þ 1

�2
þ �2Kz

�
;

By ¼ 1

4

�
1þ kx � Kx � 1

�2
þ �2Kz

�
: (55)

From this, one finds for the ‘‘mass’’ terms and the vectors

~g, ~r, and ~b:

Mr ¼ ~E � ~B ¼ � h

4
ð1þ Kz�

2Þ;
Mg ¼ ~P � ~B ¼ 0; Mb ¼ ~E � ~P ¼ 0;

~g ¼
�
0;
h

4
ðKz�

2 � 1Þ; 1þ �2ðkx � KxÞKz

4�2

�
T
;

~r ¼
�
kx � Kx þ �2ðKz � h2Þ

4�2
; 0; 0

�
T
;

~b ¼
�
0;
Kz þ kx � Kx

4
;
hð�2Kz � 1Þ

4

�
T
:

(56)

According to the geometrical approach, the first transfor-
mation can be omitted, since the mass Mg is zero. The

second transformation using �7 aligns ~b along the y axis.
The second rotation may again be omitted, since the
vector ~r is already aligned along the x axis. The last
transformation is a phase boost using �2 and is sufficient
to bring F into block-diagonal form. This transformation
would usually change the value ofMb, but here it does not,
since Mb ¼ ð ~rÞy ¼ 0 as can be seen from Table I. Hence,

Mb remains zero—Mg is invariant under both transforma-

tions. Hence, all ‘‘mass terms’’ are then zero after the
described two transformations so that the system is
decoupled.

F. Operators, expectation values, and Lax pairs

Coupled linear optics is in its essence (as quantum
mechanics) a statistical theory. Since the reference trajec-
tory is fixed, the coordinates are always taken relative to
the local reference frame and the geometry is (only) locally
Euclidean. Even though the starting point is the description
of single-particle motion, the orbits of single particles are
usually both, hard to access experimentally and of low
practical value. The description of the beam by average
values in contrast is both measurable and of high value.
The use of symplectic transformations leaves the expecta-
tion values unchanged. We can therefore evaluate the
expectation values of any operator O in an arbitrary refer-
ence frame:

hOi � h �cOc i ¼ hc T�0R
�1ROR�1Rc i

¼ hc T�0R
�1 ~O ~c i ¼ hc TRT�0

~O ~c i ¼ h ~�c ~O ~c i;
(57)

since for symplectic R we have

R T�0 ¼ �0R
�1; RT�0R ¼ �0: (58)

The time derivative of the expectation value of an arbitrary
operator O, which does not explicitly depend on time, is

d

d	
ð �cOc Þ ¼ _�cOc þ �cO _c ¼ c TFT�0Oc þ �cOFc

¼ �c ðOF� FOÞc : (59)

Equations of the form (here S ¼ ��0)

_S ¼ FS� SF (60)

appear frequently in the theory of coupled linear optics and
it is worth mentioning that Eq. (60) is a so-called Lax
representation and the operators S and F are a so-called
Lax pair [38,39]. As a consequence, the expressions

Ik ¼ TrðSkÞ (61)
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are first integrals of motion, where TrðÞ is the trace. Using
again the EMEQ to express the elements of S, one finds

I1¼TrðSÞ¼0;

I2¼TrðS2Þ¼�4ðE2� ~P2þ ~B2� ~E2Þ¼�4K1;

I3¼TrðS3Þ¼0; I4¼TrðS4Þ¼4ðK2
1þ4K2Þ:

(62)

The values of K1 and K2 are (as expected) first integrals
and constants of motion. The complete expression for S4 is

S 4 ¼ ðK2
1 þ 4K2Þ1� 4K1ðMg�10 þMr�14 þ ~b�14 ~�Þ:

(63)

Another derivation of Eq. (61) has been given in [40].

VI. SUMMARYAND OUTLOOK

A powerful method for symplectic decoupling of the
n-dimensional nondissipative harmonic oscillator has been
developed. The method apparently is stable, of the order
Oðn2Þ, and works with purely real or purely imaginary
eigenvalues, for which a Hamiltonian Schur form does
not always exist [14]. The resulting block-diagonal sym-
plex can be used to compute the�matrix of matched beam
ellipsoids of linear coupled systems in charged particle
optics [3,21,34]. Another application is the production of
multivariate Gaussian distributions for a given covariance
matrix [24].

The presented parametrization gives deep insight into
the general nature of coupling and might be instructive also
in other areas of physics. The algebraic problem of finding
the eigenvalues and eigenvectors of a two-dimensional
symplectic system was solved using geometrical argu-
ments based on the use of the real Dirac matrices and the
electromechanical equivalence.
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APPENDIX A: THE � MATRICES

To complete the list of the real � matrices used through-
out this paper,

�0 ¼

0 1 0 0

�1 0 0 0

0 0 0 1

0 0 �1 0

0
BBBBB@

1
CCCCCA; �1 ¼

0 �1 0 0

�1 0 0 0

0 0 0 1

0 0 1 0

0
BBBBB@

1
CCCCCA;

�2 ¼

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

0
BBBBB@

1
CCCCCA; �3 ¼

�1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 1

0
BBBBB@

1
CCCCCA;

�14 ¼ �0�1�2�3; �15 ¼ 1; �4 ¼ �0�1;

�7 ¼ �14�0�1 ¼ �2�3; �5 ¼ �0�2;

�8 ¼ �14�0�2 ¼ �3�1; �6 ¼ �0�3;

�9 ¼ �14�0�3 ¼ �1�2; �10 ¼ �14�0 ¼ �1�2�3;

�11 ¼ �14�1 ¼ �0�2�3; �12 ¼ �14�2 ¼ �0�3�1;

�13 ¼ �14�3 ¼ �0�1�2: (A1)

APPENDIX B: FLOQUET THEOREM

If the matrix A in Eq. (1) and hence the forces are not
constant, but periodic [Fðtþ TÞ ¼ FðtÞ], then Floquet’s
theorem can be applied and the solution has the general
form [26,27]

M ðtÞ ¼ KðtÞ expð �FtÞ; (B1)

where KðtÞ is symplectic and periodic with period T:

M ð0Þ ¼ 1 ) Kð0Þ ¼ 1;

Kðtþ TÞ ¼ KðtÞ ) KðTÞ ¼ 1:
(B2)

The transfer matrix of one period of length T (‘‘one-turn-
transfer-matrix’’),

M ðTÞ ¼ MT ¼ expð �FTÞ; (B3)

is identical to the transfer matrix for a system with the
constant force matrix �F and length T. In this sense �F is the
‘‘average’’ or ‘‘effective’’ force matrix with respect to one
turn and can formally be written as [26]

�F ¼ 1

T
lnðMTÞ: (B4)

From Eq. (B1), one derives in a few steps [26,41]

_K ¼ FK�K �F: (B5)

If the canonical transformation represented by K has been
applied to the state vector, then with Kð0Þ ¼ 1 it follows:

~c ðtÞ ¼ K�1c ðtÞ ¼ expð �FtÞ ~c ð0Þ ¼ ~M ~c ð0Þ: (B6)

Note that the knowledge of K is not required to solve the
decoupling problem, as long as the one-turn-transfer ma-
trix MT is known. MT can either be obtained as a product
of the transfer matrices of all beam line elements or simply
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by numerical integration. If the matched beam distribution
has been found at an arbitrary (known) position s ¼ 0
along the closed reference orbit, then the matched distri-
bution can be computed for any position s using

�ðsÞ ¼ MðsÞ�ð0ÞMTðsÞ: (B7)

APPENDIX C: QUICK GUIDE TO DECOUPLING

To start with, it is required to have either the average or
constant force matrix F or the symplectic transfer matrix
M that represents a complete turn or (cyclotron) sector. In
the latter case, one computes an auxiliary force matrix by

M s ¼ 1
2ðMþ �0M

T�0Þ; (C1)

while the usual (effective) force matrix has the form

F ¼ EDiagði!1;�i!1; i!2;�i!2ÞE�1; (C2)

!i being the betatron frequencies. The auxiliary matrix has
the same structure

M s ¼ EDiagðis1;�is1; is2;�is2ÞE�1; (C3)

but different eigenvalues si ¼ sinð!i	Þ, where !i	 ¼
2�Qi with the betatron tunes Qi.

Now compute the RDM coefficients according to

E¼�TrðF�0þ�0FÞ=8; Px¼TrðF�1þ�1FÞ=8;
Py¼TrðF�2þ�2FÞ=8; Pz¼TrðF�3þ�3FÞ=8;
Ex¼TrðF�4þ�4FÞ=8; Ey¼TrðF�5þ�5FÞ=8;
Ez¼TrðF�6þ�6FÞ=8; Bx¼�TrðF�7þ�7FÞ=8;
By¼�TrðF�8þ�8FÞ=8; Bz¼�TrðF�9þ�9FÞ=8:

(C4)

Note that the coefficients for �k with k 2 ½10; . . . ; 15�must
be zero—otherwise the system is not symplectic. Then

compute the eigenvalues and auxiliary vectors ~r, ~g, ~b
according to Eqs. (29), (31), and (32). Construct the trans-
formation matrices Rb according to

Rb ¼
�
1 cosð"=2Þ þ �b sinð"=2Þ for b 2 ½0; 7; 8; 9�
1 coshð"=2Þ þ �b sinhð"=2Þ for b 2 ½1; . . . ; 6�;

R�1
b ¼

�
1 cosð"=2Þ � �b sinð"=2Þ for b 2 ½0; 7; 8; 9�
1 coshð"=2Þ � �b sinhð"=2Þ for b 2 ½1; . . . ; 6�:

(C5)

Transform with �0 and " ¼ arctanðMg

Mr
Þ:

F ! R0FR
�1
0 : (C6)

Recompute RDM coefficients, then transform using �7

with " ¼ arctanðbzbyÞ. Recompute RDM coefficients, then

transform using �9 with " ¼ arctanðbxbyÞ. Recompute

RDM coefficients, then transform using �2 with " ¼
arctanhðMr

by
Þ. The (auxiliary) force matrix should now be

block diagonal. Recompute RDM coefficients, then trans-

form with �0 and " ¼ arctanð 2Mb

~E2� ~P2Þ. Recompute RDM

coefficients, then transform with �8 and " ¼
� arctanðPz

Px
Þ. Now the (auxiliary) force matrix should

have normal form, so that the frequencies (or their sines)
are given by

!1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�F1;2F2;1

p
; !2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�F3;4F4;3

p
: (C7)

The complete transformation is given by

R�1 ¼ R�1
0 �R�1

1 . . .R�1
n ; R ¼ Rn �Rn�1 . . .R0;

Fd ¼ RFR�1: (C8)

If the auxiliary matrix has been used, then compute the

matrix ~Mc according to

~M c ¼ 1
2RðM� �0M

T�0ÞR�1: (C9)

The cosines of the tunes are then given by

cosð!1	Þ þ cosð!2	Þ ¼ Trð ~MÞ=2;
cosð!1	Þ � cosð!2	Þ ¼ Trð ~M�12 þ �12

~MÞ=4:
(C10)

APPENDIX D: THE TENGAND EDWARDS ANSATZ

Assume that we have an even number of DOF, so that a
4n� 4n symplectic matrixR can be written in block form
according to [42,43]

R ¼ A a

b B

 !
; (D1)

where all quadratic submatrices are of size 2n� 2n, then
the matrix R is symplectic if

�0 ¼
A a

b B

 !
�0

AT bT

aT BT

 !

¼ A�0A
T þ a�0a

T A�0b
T þ a�0B

T

b�0A
T þB�0a

T b�0b
T þ B�0B

T

 !
(D2)

which yields

�0 ¼ A�0A
T þ a�0a

T; �0 ¼ b�0b
T þB�0B

T;

0 ¼ A�0b
T þ a�0B

T; (D3)

where �0 has—in dependence of the context—to be taken
as 2n� 2n or 4n� 4n.
If one now assumes that A ¼ B ¼ C1, then it follows

that

�0ð1� C2Þ ¼ a�0a
T; �0ð1� C2Þ ¼ b�0b

T;

b ¼ �0a
T�0:

(D4)

If one assumes with Teng and Edwards that C ¼ cosð
Þ,
then one may define a ¼ sinð
Þas and b ¼ sinð
Þbs with
symplectic matrices as and bs, respectively:
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�0 ¼ as�0a
T
s ; �0 ¼ bs�0b

T
s : (D5)

It has been shown in Ref. [21] that C ¼ cosð
Þ is not the
general case, since one might also choose C ¼ coshð
Þ,
a ¼ sinhð
Þas, and b ¼ sinhð
Þbs. In this case, one finds

� �0 ¼ as�0a
T
s ; ��0 ¼ bs�0b

T
s ; (D6)

i.e., the matrices as and bs can also be antisymplectic
(symplectic with multiplier�1). Still the matrixR remains
symplectic. Hence, Teng and Edwards limited their treat-
ment in two ways: First, they assumed that C ¼ cosðc Þ
such that R must be a rotation matrix and, secondly, they
considered only the case that a and b are symplectic.

APPENDIX E: COSYMPLICES

The geometric approach is based on the second order
terms, i.e., products of the RDM coefficients. It is therefore
instructive to see where else these terms appear. For in-

stance, one quickly finds the mass terms and vectors ~g, ~r, ~b
in the following products:

FF ¼ �ðE2 � ~P2 þ ~B2 � ~E2Þ1þ 2Mr�14

þ 2Mg�10 þ 2 ~b�14 ~�;

F�0F ¼ ð3E2 � ~P2 � ~E2 � ~B2Þ�0 � 4EF

þ 2 ~r ~�þ2 ~g�0 ~�þ 2 ~b�14�0 ~�;

F�14F ¼ 2Mb�10 � 2Mr1þ ðE2 � ~P2 þ ~E2 � ~B2Þ�14

þ 2 ~g�14 ~�;

F�10F ¼ 2Mb�14 � 2Mg1þ ðE2 þ ~P2 � ~E2 � ~B2Þ�10

þ 2 ~r�14 ~�: (E1)

So in the decoupled and normalized case [see Eq. (52)],
these products are

FF ¼ �ðE2 � ~P2 þ ~B2 � ~E2Þ1þ 2ð ~bÞy�12;

F�0F ¼ ð3E2 � ~P2 � ~E2 � ~B2Þ�0 � 4EFþ 2ð ~bÞy�8;

F�14F ¼ ðE2 � ~P2 þ ~E2 � ~B2Þ�14;

F�10F ¼ ðE2 þ ~P2 � ~E2 � ~B2Þ�10: (E2)

APPENDIX F: EXPECTATION VALUES
(COMPLEMENT)

In Ref. [3] it has been shown that the expectation values
of the RDMs, fk, defined by

fk ¼ 1
2
�c�kc ; (F1)

vanish for all cosymplices, i.e., for �k with k 2
½10; . . . ; 15�. It was also shown that for all symplices (i.e.
�k with k 2 ½0; . . . ; 9� or linear combinations thereof)
the expectation values gk � �c ð�kFþ F�kÞc vanish.
Nevertheless nothing was mentioned about the gk for

k 2 ½10; . . . ; 15�. The complement is given in the
following:

g10 ¼ 2ðPxf7 þ Pyf8 þ Pzf9 � Bxf1 � Byf2 þ Bzf3Þ;
g11 ¼ 2ð�Ef7 þ Bxf0 þ Pzf5 þ Eyf3 � Pyf6 � Ezf2Þ;
g12 ¼ 2ð�Ef8 þ Byf0 þ Pxf6 þ Ezf1 � Pzf4 � Exf3Þ;
g13 ¼ 2ð�Ef9 þ Bzf0 þ Pyf4 þ Exf2 � Pxf5 � Eyf1Þ;
g14 ¼ 2ðExf7 þ Eyf8 þ Ezf9 � Bxf4 � Byf5 þ Bzf6Þ;
g15 ¼ 2hFi: (F2)

According to Eq. (59) the expectation values of the opera-
tors gk are

_g k ¼ �c ð�kF
2 � F2�kÞc : (F3)

The square of the force matrix is given in Eq. (E1). Now we
insert this into Eq. (F3). The scalar part commutes with all
�k and hence contributes nothing. Since all commutators
of symplices with cosymplices result in cosymplices, we
obtain _gk ¼ 0 for all symplices. This had to be expected as
for all symplices we had gk ¼ 0. Hence, the remaining
terms are

_g10 ¼ 4 �c ðMr�0 þ ~b�0 ~�Þc
¼ 4ðMrf0 þ bxf4 þ byf5 þ bzf6Þ;

_g11 ¼ 2ð4Mrf1 � 4Mgf4 þ byf9 � bzf8Þ;
_g12 ¼ 2ð4Mrf2 � 4Mgf5 þ bzf7 � bxf9Þ;
_g13 ¼ 2ð4Mrf3 � 4Mgf6 þ bxf8 � byf7Þ;
_g14 ¼ �4 �c ðMg�0 þ ~b ~�Þc

¼ �4ðMgf0 þ bxf1 þ byf2 þ bzf3Þ:

(F4)
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