
Estimation of emittance growth with simple orbit correction in long linacs

Kiyoshi Kubo

KEK, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba Ibaraki 305-0801, Japan
(Received 26 March 2012; published 10 December 2012)

Estimating emittance growth is important for evaluation of performance of linear accelerators,

especially where stable and low emittance beam is required, such as linear colliders. Usually, estimation

of emittance growth is performed using tracking simulations, including the Monte Carlo method, which

tend to take a long time. We have developed a much faster and simpler method of quantitative estimation.

Formulas of orbit and emittance due to random misalignment without corrections were reported in our

previous paper [K. Kubo,Phys. Rev. ST Accel. Beams 14, 014401 (2011)]. Here, formulas of emittance

growth after a simple orbit correction are reported. This method is valid for very long linacs with many

components, where statistical treatment is justified. It is shown that the results from the method agree well

with tracking simulations for the International Linear Collider main linac.

DOI: 10.1103/PhysRevSTAB.15.121002 PACS numbers: 29.27.Bd, 29.27.Eg

I. INTRODUCTION

In a linear accelerator with misalignment of its
components, certain orbit corrections need to be applied,
where the beam is steered based on measured beam posi-
tions along the beam line. Usually, estimation of emittance
growth after such corrections needs tracking simulations,
including the Monte Carlo method, which tend to take a
long time. We have developed a much faster and simpler
method of quantitative estimation. For deriving the formu-
las given here, we extended the method for the formulas for
orbit change and emittance growth without corrections,
which were reported before [1].

This method is valid for very long linacs with many
components, where statistical treatment of errors is justi-
fied. It is shown that the results from the method agree
well with tracking simulations for the International Linear
Collider (ILC) main linac.

We assume a linear accelerator consists of quadrupole
magnets, steering magnets, beam position monitors
(BPMs), and accelerating cavities. One quadrupole magnet
is assumed to have a steering magnet and a BPM attached.

In the following sections, we derive formulas of emit-
tance growth due to dispersive effect, after a simple orbit
correction (one to one steering), with transverse offset error
of BPMs. Then, results are compared with tracking simu-
lations for the ILC main linac.

We do not consider effects of a wakefield in this
report. We also do not consider transverse kicks by accel-
erating cavities, which can be caused by tilting misalign-
ment of cavities and geometrical asymmetries of couplers
attached to cavities. Steering magnets and beam offset at

quadrupole magnets are the only considered sources of
transverse kicks.
For simplicity, the linac is assumed to be straight, though

it is following the curvature of the earth in actual ILC
design. Also for simplicity, we only consider one trans-
verse direction, denoting y. It is straightforward to include
the other direction.
Some past studies on analytic and semianalytic estima-

tions of orbit change and emittance growth are introduced
in our previous paper [1]. Reference [2] extensively studied
analytic estimation of emittance growth in high-energy
linear accelerators. Though it gave some formulas, its
assumptions are not valid in the case of the ILC main linac.
Our method and formulas for emittance growth are new,
which can be applied to the ILC main linac.
In this paper, only a simple orbit correction (one to

one steering) is assumed, though more complicated beam
based orbit corrections will be applied in actual accelera-
tors, such as dispersion-free steering (DFS) [3,4], ballistic
steering [5], and so on. Extending our formulas for these
corrections will need further studies. However, an idea
of extension of our method assuming DFS is briefly
discussed later.

II. EMITTANCE GROWTH BY
DISPERSIVE EFFECT

A. Emittance with dispersion

First, we derive an expression for emittance growth due
to dispersion, similar as in our past paper [1].
A dispersive effect is estimated from orbit difference

between particles with different energies. Let us assume
that position and angle deviation depend on energy devia-
tion are as follows:

�y ¼ X
n

�nð�E=EÞn; �y0 ¼ X
n

�0
nð�E=EÞn; (1)
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where �E=E is relative energy deviation of a particle, �n

and �0
n are the nth order dispersion and angle dispersion,

respectively.
Square of emittance with the deviations is expressed as

�2 ¼ ðy� �yÞ2 � ðy0 � �y0Þ2 � ½ðy� �yÞðy0 � �y0Þ�2

¼ ðy0 þ �y� �y0 � �yÞ2 � ðy00 þ �y0 � �y00 � �y0Þ2

� ½ðy0 þ �y� �y0 � �yÞðy00 þ �y0 � �y00 � �y0Þ�2;
(2)

where y0 and y00 are position and angle without the devia-

tions due to the dispersion, and the overlines denote aver-
age over all particles in the beam.

After some manipulations, we will have

�2 ¼ �20 þ ð��2Þ1 þ ð��2Þ2; (3)

where

ð��2Þ1 ¼ �0
X1

m;n¼1

H mn½ð�E=EÞmþn � ð�E=EÞm ð�E=EÞn�

(4)

and

ð��2Þ2 ¼ 1

2

X1
k;l;m;n¼1

ð�k�
0
l � �l�

0
kÞð�m�

0
n � �n�

0
mÞ

� ½ð�E=EÞkþm � ð�E=EÞk ð�E=EÞm�
� ½ð�E=EÞlþn � ð�E=EÞl ð�E=EÞn�; (5)

where �0 is the emittance without dispersion, and we
defined

H nm � �y�m�n þ�yð�m�
0
n þ�m�

0
nÞþ�y�

0
m�

0
n; (6)

where �y, �y, and �y are the Twiss parameters, and

we used

ðy0 � �y0Þ2 ¼ �0�y (7)

ðy0 � �y0Þðy00 � �y00Þ ¼ ��0�y (8)

ðy00 � �y00Þ2 ¼ �0�y: (9)

For evaluating emittance growth in the following
sections, we calculate H mn and ð�k�

0
l � �l�

0
kÞð�m�

0
n �

�n�
0
mÞ at the end of the linac.

In the following evaluations, we assume the energy
deviation has the normal distribution and for a positive
integer N,

ð�E=EÞ2N ¼ ð2N � 1Þ!
2N�1ðN � 1Þ! ð�E=EÞ2N

ð�E=EÞ2N�1 ¼ 0;
(10)

where �E is the energy spread. With this assumption, only
terms of mþ n ¼ even contribute ð��2Þ1 and only terms
of kþ lþmþ n ¼ even contribute ð��2Þ2.

III. ONE TO ONE STEERING WITH BPM OFFSET

In this section, we consider a simple orbit correction, so
called ‘‘one to one steering.’’ We assume every quadrupole
magnet in a linac has a steering magnet and a BPMwithin a
very short distance. (Let us call a set of a quadrupole
magnet, a steering magnet and a BPM ‘‘magnet unit’’.)
In the one to one steering, the beam is steered using steer-
ing magnets to make the reading of every BPM zero. Since
length of a magnet unit is assumed to be very small, kick by
a steering magnet and transverse offset of a quadrupole
magnet have an equivalent effect, and misalignment of
quadrupole magnets has no important effect. Here, we
estimate emittance growth due to random and independent
offset error of BPM. The beam orbit follows the offset error
of each BPM.
Any effects of accelerating cavities to transverse

beam motion (such as tilting of cavity and wakefield) are
ignored here.
Let ai be offset error of the ith BPM with respect to

the designed straight beam line. Kick angle of the beam
center (particles with design energy), due to this offset
error, at the ith magnet unit after one to one steering
will be

�i ¼ aiþ1 � 2ai þ ai�1

Lqq

; (11)

where Lqq is the distance between magnet units, which is

assumed to be constant along the linac.
The deviation of the kick angle due to relative energy

deviation �E=E at the ith magnet unit is

��i ¼ �i

�
1

1þ ð�E=EÞi � 1

�
� �i½�ð�E=EÞi þ ð�E=EÞ2i =2þ � � ��: (12)

IV. DERIVATION OF FORMULAS

A. Expressions of dispersion

Position and angle deviations at the end of the linac up to
the first order of the energy deviation are

�yf1 ¼ �1ð�E=EÞf �
X
i

R12ði ! fÞ��i; (13)

�y0f1 ¼ �0
1ð�E=EÞf �

X
i

R22ði ! fÞ��i; (14)

then

�1 ¼
X
i

ð��iÞR12ði ! fÞEf

Ei

; (15)
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�0
1 ¼

X
i

ð��iÞR22ði ! fÞEf

Ei

; (16)

where Rmnði ! fÞ is them-n element of the transfer matrix
from the ith magnet unit to the end of the linac, Ei is the
designed beam energy at the ith magnet unit, and Ef is the

final beam energy. �E for each particle is assumed to be
constant along the linac.

The transfer matrix can be expressed as

R12ði ! fÞ ¼
ffiffiffiffiffiffi
Ei

Ef

s ffiffiffiffiffiffiffiffiffiffiffi
�i�f

q
sin	i;f (17)

and

R22ði ! fÞ ¼
ffiffiffiffiffiffi
Ei

Ef

s ffiffiffiffiffiffi
�i

�f

s
ðcos	i;f � �f sin	i;fÞ; (18)

where 	i;f is the betatron phase advance from the ith

magnet unit to the linac end.
We can take the second order term in Eq. (12) and have

the second order dispersion and angle dispersion from this
term as

�2a ¼
X
i

�iR12ði ! fÞ E
2
f

2E2
i

; (19)

�0
2a ¼

X
i

�iR22ði ! fÞ E
2
f

2E2
i

: (20)

For the second order dispersion, we need to include
another effect as follows. If the first order dispersion at
the i2th quadrupole magnet is �1;i2 , its position dependent

field induces second order dispersion. The position devia-
tion at the magnet is �1;i2ð�E=EÞi2 and its quadrupole field
kicks the particle as

ki2�1;i2ð�E=EÞi2
1

1þ ð�E=EÞi2
� ki2�1;i2ð�E=EÞi2 � ki2�1;i2ð�E=EÞ2i2 : (21)

The first term is already included, for the first order dis-
persions downstream, in Eqs. (15) and (16). The second
term is the deviation of the kick angle at the magnet
proportional to ð�EÞ2, which contributes second order dis-
persions downstream.

�1;i2 is obtained by replacing f in Eq. (15) by i2, and we

will have the second order dispersion and angle dispersion
at the linac end from this effect as

�2b ¼
X
i1;i2

ki2ð��i1ÞR12ði1 ! i2ÞR12ði2 ! fÞ E2
f

Ei1Ei2

; (22)

�0
2b ¼

X
i1;i2

ki2ð��i1ÞR12ði1 ! i2ÞR22ði2 ! fÞ E2
f

Ei1Ei2

; (23)

where the summation is over magnet units with the con-
straint i1 < i2, or the i2th magnet unit is downstream of the
i1th magnet unit.
Comparing Eq. (22) and (23) with Eqs. (19) and (20),

�2b and �0
2b have additional summations over the magnet

units. Since we assume a long linac with a large number of
magnets, �2b and �0

2b are expected to be much larger than

�2a and�
0
2a, respectively, and we ignore�2a and�

0
2a in the

following evaluations. Further calculations show that this
approximation is good if the energy gain between two
magnet units is much smaller than the initial beam energy,
which is true in the case of the ILC main linac.
For higher order dispersions, we consider that (n� 1)th

order dispersion at a quadrupole magnet induces nth order
dispersion downstream. Then, we have expressions for nth
order dispersion and angle dispersion as

�n �
X

i1;...;in

ð��i1Þ
Yn
p¼2

½kipR12ðip�1 ! ipÞ�R12ðin ! fÞ

� En
fQ

n
p¼1 Eip

; (24)

�0
n �

X
i1;...;in

ð��i1Þ
Yn
p¼2

½kipR22ðip�1 ! ipÞ�R12ðin ! fÞ

� En
fQ

n
p¼1 Eip

; (25)

where the summation is over magnet units with the con-
straint i1 < i2 < � � �< in.
Using expressions for the transfer matrix like Eqs. (17)

and (18),

�n � X
i1;...;in

ð��i1Þ
ffiffiffiffiffiffiffi
�i1

p
ffiffiffiffiffiffiffi
Ei1

p Yn
p¼2

�kip�ip sin	ip�1;ip

Eip

�

� En�ð1=2Þ
f

ffiffiffiffiffiffi
�f

q
sin	in;f; (26)

�0
n �

X
i1;...;in

ð��i1Þ
ffiffiffiffiffiffiffi
�i1

p
ffiffiffiffiffiffiffi
Ei1

p Yn
p¼2

�kip�ip sin	ip�1;ip

Eip

�
En�ð1=2Þ
f

� 1ffiffiffiffiffiffi
�f

p ðcos	in;f � � sin	in;fÞ; (27)

where	i;j denotes the betatron phase advance from the ith

magnet unit to the jth unit.
From these, we have

H nm � X
i1;...;im

X
j1;...;jn

ð�i1�j1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i1�j1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ei1Ej1

p
� Ym

p¼2

�kip�ip sin	ip�1;ip

Eip

�Yn
q¼2

�kjq�jq sin	jq�1;jq

Ejq

�

� cos	im;jnE
mþn�1
f ; (28)
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and

�m�
0
n � �0

m�n �
X

i1;...;im

X
j1;...;jn

ð�i1�j1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i1�j1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ei1Ej1

p
� Ym

p¼2

�kip�ip sin	ip�1;ip

Eip

�

� Yn
q¼2

�kjq�jq sin	jq�1;jq

Ejq

�

� sin	im;jnE
mþn�1
f : (29)

B. Expected emittance growth

We will evaluate the expected value (average of many
linacs) of H mn, assuming the offset of error of each BPM
is independent. We use

haiaji ¼ �ija
2; (30)

where h i denote average over many sets of BPM offset
errors and a the root mean square (rms) of the error.
Then, from Eqs. (11) and (28), expected H mn due to

BPM offset error can be expressed as

hH mni � a2

L2
qq

X
i1;...;im

X
j1;...;jn

�i1;j1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i1�j1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ei1Ej1

p
� Ym

p¼2

�kip�ip sin	ip�1;ip

Eip

�

� Yn
q¼2

�kjq�jq sin	jq�1;jq

Ejq

�
cos	im;jnE

mþn�1
f :

(31)

Here we defined

�i;j � �i�2;j � 4�i�1;j þ 6�i;j � 4�iþ1;j þ �iþ2;j; (32)

where �i;j is the Kronecker delta.

Also, from Eqs. (11) and (29), we have

hð�k�
0
l � �l�

0
kÞð�m�

0
n � �n�

0
mÞi � a4

L4
qq

X
g1;...;gk

X
h1;...;hl

X
i1;...;im

X
j1;...;jn

ð�g1;h1�i1;j1 þ�g1;i1�h1;j1 þ �g1;j1�h1;i1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�g1�h1�i1�j1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eg1Eh1Ei1Ej1

p
� Yk

p¼2

�kgp�gp sin	gp�1;gp

Egp

�Yl
q¼2

�khq�hq sin	hq�1;hq

Ehq

�Ym
r¼2

�
kir�ir sin	ir�1;ir

Eir

�

�Yn
s¼2

�
kjs�js sin	js�1;js

Ejs

�
sin	gk;hl sin	im;jnE

kþlþmþn�2
f : (33)

Here, we used an approximation,

hag1ah1ai1aj1i � hag1ah1ihai1aj1i þ hag1ai1ihah1aj1i
þ hag1aj1ihah1ai1i: (34)

Using Eqs. (3), (10), (31), and (33), we can calculate
emittance growth, up to desired order of energy spread.

C. Analytic formula

Though the expressions in the previous subsection are
suitable for numerical calculation using a computer, we
can a derive simpler formula using some further approx-
imations as follows.

Assumptions and approximations used in this article are
listed in Table I.

The assumption ‘‘energy deviation, �E, is constant for
each particle’’ is essential for our formula. It means energy
gain of all particles are the same and the energy spread is
dominantly determined as the initial condition. We will
discuss possible modification of this assumption later.

We also assume the linac is with a uniform FODO lattice
(iteration of focusing quadrupole magnet—drift space—
defocusing quadrupole magnet—drift space), where beta
function at every other magnet unit is �F (at focusing

quadrupole magnet) and at the others �D (at defocusing
quadrupole magnet), and betatron phase advance between
magnet units is constant ( ¼ 	qq). We write the strength of

quadrupole magnets as kFð<0Þ (focusing quadrupole mag-
net) and kDð>0Þ (defocusing quadrupole magnet).
Then, taking the average over many magnet units, we

can make replacements,

�i;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i�iþ2

p ! ð�F þ �DÞ=2ð� ��Þ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i�iþ1

p ! ffiffiffiffiffiffiffiffiffiffiffiffiffi
�F�D

p ð� ~�Þ;
ki�i ! ðkF�F þ kD�DÞ=2ð� k�Þ:

(35)

TABLE I. List of assumptions and approximations for analytic
formula.

Energy deviation, �E, is constant for each particle

Same mean square of offset error for all BPM, following a

normal distribution

Uniform FODO lattice

Large number of components, for taking averages

Same energy gain in all cavities

Initial beam energy ðE0Þ � energy gain between magnets ðEqqÞ
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We also assume that the energy gain between two magnet units is small compared with the beam energy and take
approximation Ei�2;i�1 � Ei for any i. The summations can be replaced by integrations as

X
i1;...;in

! 1

En
qq

Z Ef

E0

dEi1

Z Ef

Ei1

dEi2 � � �
Z Ef

Ein�1

dEin ; (36)

where Eqq is the energy gain between magnet units and E0 the initial beam energy.
Then, the energy part in Eq. (31) becomes

X
i1;...;im

X
j1;...;jn

�i1;j1ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ei1Ej1

p Ym
p¼2

�
1

Eip

�Yn
q¼2

�
1

Ejq

�
Emþn�1
f !Emþn�1

f

Emþn�1
qq

Z Ef

E0

dEi1

Ei1

Z Ef

Ei1

dE12

E12

� � �
Z Ef

Eim�1

dEim

Eim

Z Ef

Ei1

dEj2

Ej2

� � �
Z Ef

Ejn�1

dEjn

Ejn

�i1;j1

¼ �i1;j1

ðm� 1Þ!ðn� 1Þ!ðmþnþ 1Þ
�Ef log

Ef

E0

Eqq

�
mþn�1

: (37)

Similarly, for the energy part in Eq. (33), we have

X
g1;...;gk

X
h1;...;hl

X
i1;...;im

X
j1;...;jn

�g1;h1�i1;j1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eg1Eh1Ei1Ej1

p Yk
p¼2

�
1

Egp

�Yl
q¼2

�
1

Ehq

�Ym
r¼2

�
1

Eir

�Yn
s¼2

�
1

Ejs

�
Ekþlþmþn�2
f

! �g1;h1�i1;j1

ðk� 1Þ!ðl� 1Þ!ðm� 1Þ!ðn� 1Þ!ðkþ lþ 1Þðmþ nþ 1Þ
�Ef log

Ef

E0

Eqq

�
kþlþmþn�2

: (38)

For the part of trigonometric functions, considering summations over many different phases, we ignore summation of
oscillating terms asX
j

sin	i;j sin	j;k ¼
X
j

sinðc j � c iÞ sinðc k � c jÞ ¼
P
j

1
2 ½� cosðc k � c iÞ þ cosðc k þ c i � 2c jÞ� ! � 1

2 cos	i;k

P
j

(39)

andX
j

sin	i;j cos	j;k ¼
X
j

sinðc j � c iÞ cosðc k � c jÞ ¼ P
j

1
2 ½sinðc k � c iÞ � sinðc k þ c i � 2c jÞ� ! 1

2 sin	i;k

P
j
:

(40)

Here, c j denotes the betatron phase at the jth magnet unit.
Applying the above replacements subsequently to the part of trigonometric functions in Eq. (31),X

i1;...;im

X
j1;...;jn

Ym
p¼2

ðsin	ip�1;ipÞ
Yn
q¼2

ðsin	jq�1;jqÞcos	im;jn !�ð�1Þnþm
2

�
1

2

�
mþn�2

cos	i1;j1

X
i1;...;im

X
j1;...;jn

ðif nþm¼ evenÞ: (41)

Note that H mn with odd mþ n does not contribute to the emittance growth, from Eqs. (3) and (10).
Similarly, for the part of trigonometric functions in Eq. (33) we use

X
g1;...;gk

X
h1;...;hl

Yk
p¼2

ðsin	gp�1;gpÞ
Yl
q¼2

ðsin	hq�1;hqÞsin	gk;hl !

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

�ð�1Þkþl
2

�
1
2

�
kþl�2

sin	g1;h1

P
g1;���;gk

P
h1;���;hl

½ðk; lÞ ¼ ðodd;oddÞ�

�ð�1Þkþl�1
2

�
1
2

�
kþl�2

cos	g1;h1

P
g1;���;gk

P
h1;���;hl

½ðk; lÞ ¼ ðodd;evenÞ�

ð�1Þkþl�1
2

�
1
2

�
kþl�2

cos	g1;h1

P
g1;���;gk

P
h1;���;hl

½ðk; lÞ ¼ ðeven;oddÞ�

ð�1Þkþl
2

�
1
2

�
kþl�2

sin	g1;h1

P
g1;���;gk

P
h1;���;hl

½ðk; lÞ ¼ ðeven;evenÞ�:

(42)

Now we can derive an expression for the average of H mn as
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hH mni � 4
a2

L2
qq

Fðm; nÞ
�Ef log

Ef

E0

Eqq

�
mþn�1ðk�Þmþn�2½ ��ð1þ cos2	qqÞ � 2 ~� cos	qq� ðnþm ¼ evenÞ; (43)

where we defined

Fðm; nÞ �
�
1

2

�
mþn�2 �ð�1Þmþn

2

ðmþ n� 1Þðm� 1Þ!ðn� 1Þ! ; (44)

and used X
i1;j1

�i1;j1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i1�j1

q
cos	i1;j1 ! 4½ ��ð1þ cos2	qqÞ � 2 ~� cos	qq�

X
i1;j1

: (45)

From a little more manipulations, we also have

hð�k�
0
l � �l�

0
kÞð�m�

0
n � �n�

0
mÞi � 0 ½if ðkþ l; mþ nÞ ¼ ðeven; evenÞ� (46)

and

hð�k�
0
l � �l�

0
kÞð�m�

0
n � �n�

0
mÞi � ð�1Þkþn8

a4

L4
qq

�Ef log
Ef

E0

Eqq

�
kþlþmþn�2ðk�Þkþlþmþn�4f2Fðk; lÞFðm; nÞ

þ Fðk; nÞFðm; lÞ þ Fðk;mÞFðl; nÞg½ ��ð1þ cos2	qqÞ � 2 ~� cos	qq�2
½if ðkþ l; mþ nÞ ¼ ðodd; oddÞ�; (47)

where we used Eq. (45) and

�g1;i1�h1;j1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�g1�h1�i1�j1

q
sin	g1;h1 sin	i1;j1 ¼ ��g1;j1�h1;i1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�g1�h1�i1�j1

q
sin	g1;h1 sin	i1;j1 (48)

and

X
g1;h1;i1;j1

�g1;i1�h1;j1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�g1�h1�i1�j1

q
cos	g1;h1 cos	i1;j1 ¼

X
g1;h1;i1;j1

�g1;j1�h1;i1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�g1�h1�i1�j1

q
cos	g1;h1 cos	i1;j1

! 8½ ��ð1þ cos2	qqÞ � 2 ~� cos	qq�2: (49)

Note that only terms of kþ lþmþ n ¼ even contribute
the emittance growth, from Eqs. (3) and (10).

Now, we have an analytical expression of average
of emittance growth, from Eq. (3), substituting Eqs. (10),

(43), and (47) for ð�E=EÞN , H mn, and ð�k�
0
l � �l�

0
kÞ�ð�m�

0
n � �n�

0
mÞ, respectively.

D. Effect of second order dispersion to orbit correction

So far, we used Eq. (11) as the kick angle at each magnet
unit, assuming the orbit of the on-momentum (designed
energy) particle is steered as going through centers of all
BPMs. However, orbit correction is based on the position
of center of mass of the beam, which will be distorted by
even order dispersions as

�y ¼ �y0 þ
X
N

�2Nð�E=EÞ2N: (50)

From here, we consider the lowest order of this effect
(N ¼ 1).

Additional kick angle due to second order dispersion at
the ith magnet unit is, similar to Eq. (11), expressed as

��i ¼ ��yiþ1 þ 2�yi ��yi�1

Lqq

; (51)

where deviation of the center of mass of the beam at i is

�yi � �2;ið�E=EiÞ2: (52)

Similarly to Eqs. (15) and (16), this additional kick
induces additional dispersion and angle dispersion at the
end of the linac as

��1 ¼
X
i

ð���iÞR12ði ! fÞEf

Ei

; (53)

��0
1 ¼

X
i

ð���iÞR22ði ! fÞEf

Ei

: (54)
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And, from Eq. (22) (replacing f by i3, i3 � 1),

��1 ¼
X

i1;i2;i3

1

Lqq

ð��i1ÞR12ði1 ! i2Þ
�2

EEf

Ei1Ei2Ei3

ki2½�R12ði2 ! i3 þ 1Þ þ 2R12ði2 ! i3Þ � R12ði2 ! i3 � 1Þ�R12ði3 ! fÞ;

(55)

��0
1 ¼

X
i1;i2;i3

1

Lqq

ð��i1ÞR12ði1 ! i2Þ
�2

EEf

Ei1Ei2Ei3

ki2½�R12ði2 ! i3 þ 1Þ þ 2R12ði2 ! i3Þ � R12ði2 ! i3 � 1Þ�R22ði3 ! fÞ:

(56)

For the lowest order of energy spread to the emittance growth, we modify H 11 as

H 11 þ�H 11 � �yð�1 þ ��1Þ2 þ 2�yð�1 þ��1Þð�0
1 þ ��0

1Þ þ �yð�0
1 þ ��0

1Þ2
� H 11 þ 2½�y�1��1 þ �yð�1��

0
1 þ �0

1��1Þ þ �y�
0
1��

0
1�: (57)

Equation (3), which is expressing emittance growth, should have an additional term as

ð��2Þ3 ¼ �0�H 11ð�E=EfÞ2: (58)

From the above expressions, the average of �H 11 can be evaluated as

h�H 11i � 2
X

i1;i2;i3;j

h�i1�ji
Lqq

ffiffiffiffiffiffiffiffiffiffiffiffi
�i1�j

p
Ei1Ej

ki2�i2

Ei2Ei3

�2
EEf sin	i1;i2 sin	i2;i3

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i3�i3�1

q
cos	j;i3�1 þ 2�i3 cos	j;i3

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i3�i3þ1

q
cos	j;i3þ1

�

¼ 2
X

i1;i2;i3;j

a2

L3
qq

�i1;j

ffiffiffiffiffiffiffiffiffiffiffiffi
�i1�j

p
Ei1Ej

ki2�i2

Ei2Ei3

�2
EEf sin	i1;i2 sin	i2;i3

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i3�i3�1

q
cos	j;i3�1 þ 2�i3 cos	j;i3

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i3�i3þ1

q
cos	j;i3þ1

�
: (59)

Using further approximations and some manipulations, we have an expression for the expected �H 11 as

h�H 11i � � 8

3

a2

L3
qq

�2
E

E2
f

�logEf

E0

Eqq

�
3
k�ð ��� ~� cos	qqÞ½ ��ð1þ cos2	qqÞ � 2 ~� cos	qq�: (60)

E. Summary of the formula

Let us write down the obtained formula, which is from Eqs. (3), (10), (43), (47), and (60). Defining

Gðm; nÞ � ðmþ n� 1Þ!
2ðmþnÞ=2�1½ðmþ nÞ=2� 1�!�

ðm� 1Þ!
2m=2�1ðm=2� 1Þ!

ðn� 1Þ!
2n=2�1ðn=2� 1Þ! ½ðm; nÞ ¼ ðeven; evenÞ�

� ðmþ n� 1Þ!
2ðmþnÞ=2�1½ðmþ nÞ=2� 1�! ½ðm; nÞ ¼ ðodd; oddÞ�

� 0 ðmþ n ¼ oddÞ; (61)

the formula is

h�2i � �20 � ð��2Þ1 þ ð��2Þ2 þ ð��2Þ3; (62)

ð��2Þ1 ¼ �0
X

m;nðmþn¼evenÞ
4
a2

L2
qq

Fðm; nÞGðm; nÞ
�
�E

log
Ef

E0

Eqq

�
mþn�1 �E

Ef

ðk�Þmþn�2½ ��ð1þ cos2	qqÞ � 2 ~� cos	qq�; (63)

ESTIMATION OF EMITTANCE GROWTH WITH SIMPLE . . . Phys. Rev. ST Accel. Beams 15, 121002 (2012)

121002-7



ð��2Þ2 ¼ 4
X

k;l;ðkþl¼oddÞ

X
m;n;ðmþn¼oddÞ

ð�1Þkþn a4

L4
qq

Gðk;mÞGðl; nÞ
��E log

Ef

E0

Eqq

�
kþlþmþn�2 �2

E

E2
f

ðk�Þkþlþmþn�4f2Fðk; lÞFðm; nÞ

þ Fðk; nÞFðm; lÞ þ Fðk; mÞFðl; nÞg½ ��ð1þ cos2	qqÞ � 2 ~� cos	qq�2; (64)

ð��2Þ3 ¼ ��0
8

3

a2

L3
qq

�E

Ef

�
�E

log
Ef

E0

Eqq

�
3
k�ð ��� ~� cos	qqÞ½ ��ð1þ cos2	qqÞ � 2 ~� cos	qq�: (65)

The function F is defined as Eq. (44).
ð��2Þ1 and ð��2Þ2 are summations of series proportional

to ½�E logðEf=E0Þ=Eqq�2N (N ¼ 1; 2; . . . ). Therefore, in

cases �E logðEf=E0Þ=Eqq 	 1, taking some lower terms

is a good approximation. For the ILC main linac this factor
is about 0.23.

F. Possibility of modifications

For the formulas, we made some assumptions as in
Table I. Let us consider if we can extend the formula to
more general cases.

One assumption we used for the analytic formulas is a
simple FODO lattice. It will not be difficult applying our
method for other lattice designs. For example, in the case
�F and �D are not constant but simple functions of beam
energy, we will obtain formulas with modified energy
integrations. For more complicated lattice designs, instead
of using analytic formulas, we can use Eqs. (31), (33), and
(59), for numerical calculations. Such calculations do not
need Monte Carlo simulations and will be much faster than
tracking simulations.

The essential approximation for our formula is ‘‘energy
deviation, �E, is constant for each particle.’’ It means
energy gain of all particles are the same and the energy
spread is dominantly determined as the initial condition.
This is a good approximation for the ILC main linac using
superconducting accelerating cavities, with weak longitu-
dinal wakefield and relatively low rf frequency, which
make longitudinal position dependent energy gain very
small. However, this assumption may not be used for
most accelerators using normal conducting cavities,
because of strong wakefield and high rf frequencies (sig-
nificant slope of rf voltage in a beam bunch).

We can consider cases in which the opposite extreme
assumption is valid, where the initial energy spread can be
ignored and the energy spread is dominantly induced in
the acceleration. The deviation of the energy gain of a
particle (from longitudinal wakefield and rf voltage slope)
will depend only on the relative longitudinal position in a
beam bunch, and we may assume �E of a particle at any
location is proportional to the design energy at the location.
Modification of our formulas with such an assumption is
straightforward, by replacing �E at location i by ð�E=EÞEi,
assuming ð�E=EÞ is constant for each particle. We will have
different dependences on the final beam energy.

The evaluation will be more complicated if the initial
energy spread and the induced energy spread are compa-
rable. In such cases, it will be difficult to derive simple
analytic formulas. However, we will still have formulas for
numerical calculations by replacing �E at location i by
�Einit þ ð�E=EÞindEi, where �Einit (initial energy devia-
tion) and ð�E=EÞind (induced relative energy deviation) are
constant for each particle.

G. Possibility of extension for DFS

In this paper, we assumed only a simple orbit correction
method (one to one steering). Extending our formulas for
more complicated corrections will need further studies.
However, there is an idea of extension of our method for
dispersion-free steering (DFS) as follows.
Assuming DFS, the first order dispersion will be mea-

sured at every BPM location. Therefore, the first order
dispersion will be corrected with accuracy determined by
the error of dispersion measurement. Residual first order
dispersion at a quadrupole magnet will induce the second
order dispersion downstream (just like orbit offset at a
quadrupole magnet induces the first order dispersion).
Then, the second and higher order dispersion at the end
of a linac assuming DFS will be expressed as a function of
the errors of dispersion measurement. This is just like the
formula that we obtained, which is expressing the first and
higher order dispersion assuming one to one steering as a
function of the BPM offset errors. In such a way, a formula
of emittance growth including the higher order dispersion
will be derived.

V. COMPARISON WITH TRACKING
SIMULATIONS

For checking validity of the derived formulas, tracking
simulations are performed for the ILC main linac, setting
similar conditions to Ref. [1]. The simulation code SLEPT

[6] was used. Relevant parameters of the ILC main linac
are listed in Table II [7]. For simplicity, we simulated a
straight linac, while the actual ILC main linac is designed
to be curved following the earth’s curvature.
Though the code SLEPT could include various sources of

emittance dilution, the following effects were turned off in
the tracking simulations for comparing with the formulas;
transverse wakefield, tilting misalignment of cavities, and
transverse kicks in accelerating cavities due to geometrical
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asymmetries of couplers. On the other hand, effects of
bunch length, longitudinal position dependent energy dif-
ferences which are induced during acceleration, were
included in the tracking simulations, while our formulas
ignore the effects. Also, it is obvious that the tracking
simulation included many orders of dispersion (the highest
order is the same as the number of quadrupole magnets in
the linac).

For taking average, the simulation for each condition
was performed with 1000 different sets of random numbers
(random seeds).

Root mean square (rms) of BPM offset error was set as
50 
m as nominal error.

First, we compared contributions of several lowest
orders of �2

E to ð��2Þ1 and ð��2Þ2. Figure 1 shows con-
tributions of ð��2Þ1 and ð��2Þ2 of each order of �2

E, to the
hð��Þ2i (square of normalized emittance) growth. It
shows that it will be good enough to take three lowest
orders for each of ð��2Þ1 and ð��2Þ2. The figure also shows
the contribution of ð��2Þ3 (we only evaluated the lowest
order), which cannot be ignored. In the following calcu-
lations, we take up to �6

E order for ð��2Þ1 and up to �10
E

order for ð��2Þ2.

In Fig. 2, we compare results of tracking simulations and
the formula for square of emittance growth along the linac,
starting from the beam energy 15 GeV. The contribution of
each of ð��2Þ1, ð��2Þ2, and ð��2Þ3 is also shown.
Figure 3 shows the square of emittance growth as a

function of initial beam energy. For higher initial beam
energy, the downstream part of the linac is used, keeping
the energy gain per length constant. The final beam energy
is 250 GeV.
We also performed tracking simulations with different

initial energy spread and rms of BPM misalignment.
Figure 4 shows the average square of emittance growth at

γ 2 ∆ε

γ ∆ε

γ ∆ε

∆(
γε

)

FIG. 2. Average growth of square of normalized emittance
[hð��Þ2i] with BPM offset error 50 
m (rms) after one to one
correction, as a function of beam energy along the ILC main
linac. Results of tracking simulation and the analytic formula.
Contributions of ð��2Þ1, ð��2Þ2, and ð��2Þ3 are also shown.

γ 2 ∆ε

γ ∆ε

γ ∆ε

∆(
γε

)

FIG. 3. Average growth of square of emittance (hð��Þ2i) at the
linac end, with BPM offset error 50 
m (rms) after one to one
correction, as a function of the initial beam energy for the
downstream part of the ILC main linac. Results of tracking
simulation (circle), and the analytic formula. Contributions of
ð��2Þ1, ð��2Þ2, and ð��2Þ3 are also shown.

γ 2 ∆ε

γ ∆ε

γ ∆ε

∆(
γε

)

σ

FIG. 1. Contribution of each order of �2
E of ð��2Þ1, ð��2Þ2,

and ð��2Þ3 to expected growth of square of normalized emit-
tance [hð��Þ2i], with BPM offset error 50 
m (rms) after one to
one correction in the ILC main linac.

TABLE II. Relevant parameters of the ILC main linac.

Initial beam energy E0 15 GeV

Final beam energy Ef 250 GeV

Initial energy spread �E 0.16 GeV

Initial normalized emittance (��y) 2� 10�8 m
� at focusing magnet �F 
140 m
� at defocusing magnet �D 
40 m
Strength of focusing magnet kF �0:0286 m�1

Strength of defocusing magnet kD 0:0320 m�1

Acceleration per cavity Vc 
32 MV
Energy gain between quad magnets Eqq eVc � 26
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the linac end as a function of the initial energy spread,
comparing with the result of the formulas. Figure 5 shows
the average square of emittance growth at the linac end as a
function of the rms of BPM misalignment, comparing with
result of the formulas.

The only significant discrepancy between the tracking
simulations and the formulas can be seen for the highest

energy spread point of Fig. 4. This discrepancy is under-
standable because, for this point, the quantity
�E logðEf=E0Þ=Eqq � 1, which no longer satisfies the

condition that it be small compared to 1.
Except for this, all of the results confirmed good agree-

ment between the analytic formulas and the tracking
simulations.

VI. SUMMARYAND DISCUSSIONS

Formulas of emittance growth after a simple orbit cor-
rection (one to one steering) with random offset of beam
position monitors were derived. They were from exten-
sions of the formulas of orbit distortion and emittance
growth due to random misalignment of quadrupole mag-
nets and random tilting of accelerating cavities without
corrections, which had been reported in our past paper [1].
The results were compared with tracking simulations,
showing good agreement.
In the formulas, we expand expected growth of

emittance square by �2N
E (N ¼ 1; 2; 3; . . . ). Taking lower

orders will be a good approximation in cases
½�E logðEf=E0Þ=Eqq�2 	 1.

For our formulas, we made some assumptions shown in
Table I. The possibility of modifications of the assumptions
was discussed.
The possibility of extension of our method for a more

complicated correction (DFS) was also discussed.
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FIG. 4. Average growth of square of emittance [hð��Þ2i] at the
linac end, with BPM offset error 50 
m (rms) after one to one
correction, as a function of the initial beam energy spread.
Results of tracking simulation (circle), and the analytic formula.

∆(
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)

µ

FIG. 5. Average growth of square of emittance [hð��Þ2i] at the
linac end after one to one correction as a function of BPM offset
error (rms). Results of tracking simulation (circle), and the
analytic formula.
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