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Estimating emittance growth is important for evaluation of performance of linear accelerators,
especially where stable and low emittance beam is required, such as linear colliders. Usually, estimation
of emittance growth is performed using tracking simulations, including the Monte Carlo method, which
tend to take a long time. We have developed a much faster and simpler method of quantitative estimation.
Formulas of orbit and emittance due to random misalignment without corrections were reported in our
previous paper [K. Kubo,Phys. Rev. ST Accel. Beams 14, 014401 (2011)]. Here, formulas of emittance
growth after a simple orbit correction are reported. This method is valid for very long linacs with many
components, where statistical treatment is justified. It is shown that the results from the method agree well
with tracking simulations for the International Linear Collider main linac.
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L. INTRODUCTION

In a linear accelerator with misalignment of its
components, certain orbit corrections need to be applied,
where the beam is steered based on measured beam posi-
tions along the beam line. Usually, estimation of emittance
growth after such corrections needs tracking simulations,
including the Monte Carlo method, which tend to take a
long time. We have developed a much faster and simpler
method of quantitative estimation. For deriving the formu-
las given here, we extended the method for the formulas for
orbit change and emittance growth without corrections,
which were reported before [1].

This method is valid for very long linacs with many
components, where statistical treatment of errors is justi-
fied. It is shown that the results from the method agree
well with tracking simulations for the International Linear
Collider (ILC) main linac.

We assume a linear accelerator consists of quadrupole
magnets, steering magnets, beam position monitors
(BPMs), and accelerating cavities. One quadrupole magnet
is assumed to have a steering magnet and a BPM attached.

In the following sections, we derive formulas of emit-
tance growth due to dispersive effect, after a simple orbit
correction (one to one steering), with transverse offset error
of BPMs. Then, results are compared with tracking simu-
lations for the ILC main linac.

We do not consider effects of a wakefield in this
report. We also do not consider transverse kicks by accel-
erating cavities, which can be caused by tilting misalign-
ment of cavities and geometrical asymmetries of couplers
attached to cavities. Steering magnets and beam offset at
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quadrupole magnets are the only considered sources of
transverse kicks.

For simplicity, the linac is assumed to be straight, though
it is following the curvature of the earth in actual ILC
design. Also for simplicity, we only consider one trans-
verse direction, denoting y. It is straightforward to include
the other direction.

Some past studies on analytic and semianalytic estima-
tions of orbit change and emittance growth are introduced
in our previous paper [1]. Reference [2] extensively studied
analytic estimation of emittance growth in high-energy
linear accelerators. Though it gave some formulas, its
assumptions are not valid in the case of the ILC main linac.
Our method and formulas for emittance growth are new,
which can be applied to the ILC main linac.

In this paper, only a simple orbit correction (one to
one steering) is assumed, though more complicated beam
based orbit corrections will be applied in actual accelera-
tors, such as dispersion-free steering (DFS) [3,4], ballistic
steering [5], and so on. Extending our formulas for these
corrections will need further studies. However, an idea
of extension of our method assuming DFS is briefly
discussed later.

II. EMITTANCE GROWTH BY
DISPERSIVE EFFECT

A. Emittance with dispersion

First, we derive an expression for emittance growth due
to dispersion, similar as in our past paper [1].

A dispersive effect is estimated from orbit difference
between particles with different energies. Let us assume
that position and angle deviation depend on energy devia-
tion are as follows:

8y = > m.(8E/E)", 8y = m,(SE/E)", (1)
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where SE/E is relative energy deviation of a particle, n,
and 7/, are the nth order dispersion and angle dispersion,
respectively.

Square of emittance with the deviations is expressed as

e€=G-9 X - -[0-»0 -yF
= (yo + 8y — Jo — 6y)* X (yh + 5)’/—%_5_)’/)2
— (o + 8y — 5o — 8Y) 0 + &Y' — 7 — )
2)

where y, and y;, are position and angle without the devia-
tions due to the dispersion, and the overlines denote aver-
age over all particles in the beam.

After some manipulations, we will have

€2 =€+ (Ae?), + (A€),, 3)

where

(Ae) =€ Y H,,[(BE/Ey"*" — (SE/E)" (SE/E)"]

m,n=1
“4)
and
A =3 3 (= m)mamh — mm)
k,l,m,n=1
X [(5E/EV*" — (6E/E) (GE/EV"]
X[(BE/E" — GE/EY GE/EL ()

where €, is the emittance without dispersion, and we
defined

H o =vyMumn + a,(0umly + 0,m0) + Bynunh, (6)

where «,, B,, and y, are the Twiss parameters, and
we used

(Vo — F0)* = €By (7)
(o — F0) o — Fo) = —€oay (®)
0o — J0)* = €07, 9)

For evaluating emittance growth in the following
sections, we calculate H ,,,, and (1;m) — ) (N0 —
1,7, at the end of the linac.

In the following evaluations, we assume the energy
deviation has the normal distribution and for a positive
integer N,

—_—e 2N — 1)
(SE/E)™N = m(aE/E)ZN

- (10)
(BE/EPN"! =0,

where o is the energy spread. With this assumption, only
terms of m + n = even contribute (A€?); and only terms
of k + [ + m + n = even contribute (A€?),.

III. ONE TO ONE STEERING WITH BPM OFFSET

In this section, we consider a simple orbit correction, so
called “‘one to one steering.” We assume every quadrupole
magnet in a linac has a steering magnet and a BPM within a
very short distance. (Let us call a set of a quadrupole
magnet, a steering magnet and a BPM ‘““‘magnet unit”.)
In the one to one steering, the beam is steered using steer-
ing magnets to make the reading of every BPM zero. Since
length of a magnet unit is assumed to be very small, kick by
a steering magnet and transverse offset of a quadrupole
magnet have an equivalent effect, and misalignment of
quadrupole magnets has no important effect. Here, we
estimate emittance growth due to random and independent
offset error of BPM. The beam orbit follows the offset error
of each BPM.

Any effects of accelerating cavities to transverse
beam motion (such as tilting of cavity and wakefield) are
ignored here.

Let a; be offset error of the ith BPM with respect to
the designed straight beam line. Kick angle of the beam
center (particles with design energy), due to this offset
error, at the ith magnet unit after one to one steering
will be

div1 —2a; +a;-

01':
L

: (1)

qq

where L, is the distance between magnet units, which is
assumed to be constant along the linac.

The deviation of the kick angle due to relative energy
deviation SE/E at the ith magnet unit is

50, = e,.(m -1)

~ 0,[—(8E/E); + (SE/E)?/2 + ---].  (12)

IV. DERIVATION OF FORMULAS

A. Expressions of dispersion

Position and angle deviations at the end of the linac up to
the first order of the energy deviation are

8y = m(BE/E); = Y Rip(i— )86, (13)
8y = MBE/E); = ¥ Rp(i— f)6,  (14)
then

E
n = Z(—ei)Rlz(i—’f)Fj_c, (15)
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E
= > (=0)Rnli = ), (16)

where R,,,,(i — f) is the m-n element of the transfer matrix
from the ith magnet unit to the end of the linac, E; is the
designed beam energy at the ith magnet unit, and E is the
final beam energy. 6 E for each particle is assumed to be
constant along the linac.

The transfer matrix can be expressed as

E.
Ri(i— f) = \/;—-;V,Biﬁf sing; ¢ (17)

and

Ry(i— f) = \[; L —(cos; s — aysing; ),  (18)

where ¢, ; is the betatron phase advance from the ith
magnet unit to the linac end.

We can take the second order term in Eq. (12) and have
the second order dispersion and angle dispersion from this
term as

2

29 Rp(i—

2E2’ (19)

E2
e = DORnli = f) 5 5. (20)

For the second order dispersion, we need to include
another effect as follows. If the first order dispersion at
the i,th quadrupole magnet is 7, ;,, its position dependent
field induces second order dispersion. The position devia-
tion at the magnet is 7, ;,(§E/E);, and its quadrupole field
kicks the particle as

1
kiymi i, OE/E)i, ——m7o
i M,i,(8E/E);, 1+ (8E/E);,

~ ki,n1:,(8E/E);, — kiz”’h,iz(ﬁE/E)%z' (2D

The first term is already included, for the first order dis-
persions downstream, in Egs. (15) and (16). The second
term is the deviation of the kick angle at the magnet
proportional to (8E)?, which contributes second order dis-
persions downstream.

71, 1s obtained by replacing f in Eq. (15) by i,, and we
will have the second order dispersion and angle dispersion
at the linac end from this effect as

2
b = Zklz( 0; )R 15(iy — iRy (s —’f) E- . (22)
inia 11 ip

2
Ny, = Zkiz(_eil)RIZ(il — i))Rn (i _)f)E- g , (23)
i =i

iy,ip 2

where the summation is over magnet units with the con-
straint i; < iy, or the i;th magnet unit is downstream of the
i;th magnet unit.

Comparing Eq. (22) and (23) with Egs. (19) and (20),
1, and nb, have additional summations over the magnet
units. Since we assume a long linac with a large number of
magnets, 7,, and 7}, are expected to be much larger than
12, and 7}, respectively, and we ignore 7,, and 7}, in the
following evaluations. Further calculations show that this
approximation is good if the energy gain between two
magnet units is much smaller than the initial beam energy,
which is true in the case of the ILC main linac.

For higher order dispersions, we consider that (n — 1)th
order dispersion at a quadrupole magnet induces nth order
dispersion downstream. Then, we have expressions for nth
order dispersion and angle dispersion as

N =~ Z (=0;) l_[[kt],RIZ(lp 1=, R, (i, — f)

ll ln
En

X —f’
n E

p=1"1,

(24)

N, = Z (—6;) l_[[kipRzz(ipﬂ = i) R0, = f)
[yeeniy p=2
X oo, (25)
l-[p:l Ei,,
where the summation is over magnet units with the con-
straint iy <ip, <---<i,.
Using expressions for the transfer matrix like Egs. (17)

and (18),
,8, l,Bl Sln¢l Jip
( 9[1) 1 ) 4
- S o g )
X E’;f“/z’\/,@_f sing; . (26)
IBI k’pB’p nql)’ﬁ bip n—(1/2)
m= 3 o) u T )e
Z T [Hz 7

o Sil’ld)in,f), (27)

1/7

1
X ——=(cos¢ inf —

VBs

where ¢; ; denotes the betatron phase advance from the ith
magnet unit to the jth unit.
From these, we have

-3 S 00 EE
nm LY
el J1o- EllEjl

% l—[(ki,,,gi,, SElllld’i,,_,,i,,) l—[(quﬂjq SEié¢jq-1,jq)

p=2 p q=2 Jq
X cosg; ; EF (28)
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and

MMy = MM =

S 3 00
i ]
ST P SRy L EllEjl

ki,lgi)Sin¢i,,1,i,
X l_[( p Ei / /)

]):2 P
>< ﬁ k/qﬁ./q S1n¢jq*l’jq

E.

q=2 Jq

X sing, ; Epml (29)

modn = f

B. Expected emittance growth

We will evaluate the expected value (average of many
linacs) of H ,,,, assuming the offset of error of each BPM
is independent. We use

<aiaj> = 51']“2, (30)

() = mm )y, — M0m)

ke, Bg,sindy o

/n

where () denote average over many sets of BPM offset
errors and a the root mean square (rms) of the error.

Then, from Egs. (11) and (28), expected F ,,, due to
BPM offset error can be expressed as

~ BIIB]]
(H ) Léql,zm,lz II,IV\/F_E_

kip:Bip Sln(ﬁi,,,l,i,,
U

p:2 Iy

"ok, B; sing;

Jq'" Jq Ja-1Jq +n—1

X n(—E )cosd)im,an}" =
q=2 Jq

(3D
Here we defined

Ai,' = 51’*2/ 46 + 65 45,’+1,j + 5i+2,j’ (32)

i—1,j

where §; ; is the Kronecker delta.
Also, from Egs. (11) and (29), we have

Z DY D (A A A A A A, )Y R VB B Bi Bj,

‘1’181 w8k Moy i1y 1,

E EhlEllEjl

x]'[( 5

p=2 8p

X ﬁ(kjsﬁ./: Sin¢j5*]:j:
§s=2

Ej

Here, we used an approximation,
<ag1ah ><al1 j1> + <ag1ai1><ahlajl>

+ <ag| ]]><ah]all (34)

Using Egs. (3), (10), (31), and (33), we can calculate
emittance growth, up to desired order of energy spread.

<aglahlall Jl>

C. Analytic formula

Though the expressions in the previous subsection are
suitable for numerical calculation using a computer, we
can a derive simpler formula using some further approx-
imations as follows.

Assumptions and approximations used in this article are
listed in Table I.

The assumption “‘energy deviation, 0 F, is constant for
each particle” is essential for our formula. It means energy
gain of all particles are the same and the energy spread is
dominantly determined as the initial condition. We will
discuss possible modification of this assumption later.

We also assume the linac is with a uniform FODO lattice
(iteration of focusing quadrupole magnet—drift space—
defocusing quadrupole magnet—drift space), where beta
function at every other magnet unit is B (at focusing

) ﬁ(khqﬁhq Sin¢hq1,hq) lﬂ[(ki,ﬁi, Sin(f’i,-,,i,)
E,, E,

r=2 tr

q=2

k+1+m+n— 2
) Sln¢gk hl Sln(blm JnE (33)

quadrupole magnet) and at the others B, (at defocusing
quadrupole magnet), and betatron phase advance between
magnet units is constant ( = ¢,,). We write the strength of
quadrupole magnets as kx(<0) (focusing quadrupole mag-
net) and kp(>0) (defocusing quadrupole magnet).

Then, taking the average over many magnet units, we
can make replacements,

Bi N BiBi+2 — (Br + Bp)/2(= P),
\/ﬂi,3i+1 - \/,BF,BD(E B)y (35)
kiBi — (kpBr + kpBp)/2(= kP).

TABLE 1.
formula.

List of assumptions and approximations for analytic

Energy deviation, §E, is constant for each particle

Same mean square of offset error for all BPM, following a
normal distribution

Uniform FODO lattice

Large number of components, for taking averages

Same energy gain in all cavities

Initial beam energy (E,) > energy gain between magnets (E,,)
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We also assume that the energy gain between two magnet units is small compared with the beam energy and take
approximation E;.,;+; = E; for any i. The summations can be replaced by integrations as

E
Z _’E" [ dE; f dE;, - j; ‘f dE,; , (36)

,,,,, Iy In—1

where E, is the energy gain between magnet units and E, the initial beam energy.
Then, the energy part in Eq. (31) becomes

Z Z Ailj] ﬁ( 1 )lil(l)Em+n—l_)E}n+n lede [Edel ..fEf dE‘i"’fEde‘jz...-/‘Ef &A .
] ,_E,E qu f E:/n(;—” 1 El7 Eim E;, E‘j2 E. Ejn e

e J 1500 1= p=2 q=2 B Jn—1
Ef

A, (EflOgE0>m+nl 37

(m—l)'(n—l)'(m+n+l) E, '

Similarly, for the energy part in Eq. (33), we have
z z z Z glhl i1Jj1 l—[( )ﬁ(i) ﬁ(i) lil(L)Ek-%—l-Fm-%—n—Z
o8k Mo Ay Tl 15 VE E EllEjl p=2 gp q=2 th r=2 Eir s=2 Ejs /
E
Agon A, (Ef lOgE—'£>k+l+m+n2 38)
(k— D= Dm—Dn—DIk+ 1+ Dm+n+ 1)\ E, '

For the part of trigonometric functions, considering summations over many different phases, we ignore summation of
oscillating terms as

ZSin¢i,j sing . = ZSin('»[/j — )sin(fy — ;) = Z%[— cos(ify — ;) +cos(ipy + o — 24 )] — — 1 coseh; 3.
7 7 J J

(39)

and
Zsm«b,]cosdnk = Zsm — ) cos(hy — ) =S [sin(gry — ¢b)) = sin(y + ¢ — 240))] = § singh ;3.
J J

(40)

Here, ¢ ; denotes the betatron phase at the jth magnet unit.
Applying the above replacements subsequently to the part of trigonometric functions in Eq. (31),

Z z n(squ,p llp)l_[(smd>]q via Jcosg, ;i — —(—I)HT'"G)W” zcosd),]]l Z Z (if n+m=even). (41)

i """ lm/l jnp ’ ’m./l J

Note that {,,, with odd m + n does not contribute to the emittance growth, from Egs. (3) and (10).
Similarly, for the part of trigonometric functions in Eq. (33) we use

( ki kti=
(1% (3) sm«ﬁglhl 33 kD= (oddodd]

w8k hy,

_(—1)%@) e cosd)ghh] z z [(k,[) = (odd, even)]

h[

Z D l_[(smqﬁgp " )n(Sln¢h ) SN = A
,,,,, e 1 (_1)7(%) cosdon, L5 [(k, 1) = (even, 0dd)]

w8k hy,

(= 1)%(%)“[7 sing, m Z > [(k, ) = (even, even)].
- S8k hy ey
(42)

Now we can derive an expression for the average of H ,,, as
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2 E vlogﬁ
(H o) ~ 4% F(m, n)(M
L(I(/ qq9

where we defined

)m+n71(@)m+n72[5(1 + C052¢qq) — 2[;’ COS(/)qq]

(n + m = even), (43)

Fim, n) = (])m+n*2 —(=1"" )
™= m+n—D0m—Dln—1D
and used
ZA,-]J]‘/B,-[,BJ»I cosep; j, — 4[B(1 + cos’,,) — 2B cosd)qq]Z. (45)
,J1 i
From a little more manipulations, we also have
(e = )y — nam)) = 0 [if (k + I, m + n) = (even, even)] (46)
and
ot at Eflog% kblbmtn=2
((nem; = )y, — ) = (—1) ”8LT( B “) (k)< trmen=42F(k, [)F(m, n)
qq
+ F(k, n)F(m, 1) + F(k, m)F(l, D} B(1 + cos’¢,,) — 2B cose,, I
[if (k + L m + n) = (odd, odd)], 47)

where we used Eq. (45) and

Agl)ilAhlvjl nglﬁhlﬁilﬁjl Sin¢81,h| Sin¢i1,j1

= _Agl,lehhil VIB8|Bhlﬁilﬁj| Sin¢glxhl Sin¢il)j] (48)

and
Z Agl)ilAh])jl ng]Bh]BiIBj] COS(]Sg]’h] COS¢I~]J1 = Z Agl)j]Ah])il Vﬁglﬁhlﬂilﬁj] Cos¢gl,h| COS(]Si],j]
grhuin grhuin
— 8[B(1 + cos?¢,,) — 2B cosep,,, I (49)

Note that only terms of k + [ + m + n = even contribute
the emittance growth, from Egs. (3) and (10).

Now, we have an analytical expression of average
of emittance growth, from Eq. (3), substituting Egs. (10),
(43), and (47) for (SE/E)", 3., and (mem) — mym}) X
(MM = M M), respectively.

D. Effect of second order dispersion to orbit correction

So far, we used Eq. (11) as the kick angle at each magnet
unit, assuming the orbit of the on-momentum (designed
energy) particle is steered as going through centers of all
BPMs. However, orbit correction is based on the position
of center of mass of the beam, which will be distorted by
even order dispersions as

¥ =750+ > mn(SE/EPV. (50)
N

From here, we consider the lowest order of this effect
(N =1).

Additional kick angle due to second order dispersion at
the ith magnet unit is, similar to Eq. (11), expressed as

_ Ay +2Ay; — Ay

qu

A9, 51)

where deviation of the center of mass of the beam at i is

Ay; = ﬂz,i(UE/Ei)2- (52)

Similarly to Egs. (15) and (16), this additional kick
induces additional dispersion and angle dispersion at the
end of the linac as

E
Amy = Y (—A6)R(i — ), (53)

E
A} = 3 (—A6)Rnli — ). (54)
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An, =

1 .., OiE o S N .

Z —(=0;)Ry(i; — ,2)571‘1%[_&2(,2 — i3+ 1) + 2R 5(i; — i3) — Ryp(iy — i3 — DRy (i5 — f),
i1,i,i3 qu EilEiin%

Anj Z T(_ail)Rl2(ll — i) —k
ininiz g

(55)
E,E,E;

L~ R2(iy = i3 + 1) + 2R15(iy = i3) — Ryp(iy — i3 — 1)]Ry(i3 — f).

For the lowest order of energy spread to the emittance growth, we modify H |, as

(56)
Hy+AH = y,(p + An)? + 2a,(n, + An))(n} + Anh) + B, (0} + An))?
~ 3y, + 2Ly, mAn + a,(mAny + niAn) + ByniAnil (57)
Equation (3), which is expressing emittance growth, should have an additional term as
(Ae?); = A | (0p/Ep) (58)
From the above expressions, the average of AZH |, can be evaluated as
0:,0;) \Bi B; ki,Bi
<A.’]‘[“>%2 Z < 1 J> lglﬂj 2'82
i1,00,13,] L

g EiE; ELE;

ozE;sing; Sin¢i2,i3<_\/,3i3,3irl cosj; -1 + 2B, cosd;;.
- \/,353,8:'3“ COS¢;,,’3+1>

—2 3 &y, VPP kb
3 i,
ibmilaa " EyEj ELE;

o3Essing; sin¢,~2,i3<—w/3,~3ﬂ,’3_1 cos i -1 + 2B, cosd; ;.
- \/,31'3,31'3“ 005¢j,i3+1>-

Using further approximations and some manipulations, we have an expression for the expected A |, as

(59)
8 a? 0'% 1 gg_ﬁ 3~ o ~ 5 ~
I = =5 15 T2 () BB — Beosd,)IB(L + cos’,,) — 2Bcosd) (60)
3Ly Ef\Egq
E. Summary of the formula
Let us write down the obtained formula, which is from Egs. (3), (10), (43), (47), and (60). Defining
_ (m+n—1) B (m—1)! (n—1) _
Gl ) = S BT n /2 — 17 27 (mj2 — D1 27 gz — 1yt )~ (even even)]
(m+n—1)
= ,n) = (odd, odd
TP [ 4 w2~ 13 L) = (0dd 0dd)]
=0 (m+n=odd), (61)
the formula is

(e2) — €6 = (Ae?); + (Ae?), + (Ae?)s,

(62)
5 a2 logg—g min=lgg - 5 -
A =e 3 A Fm Gl n)(a'E = ) TE RBY" 2B + cos’hy,) — 2B eosd,, ] (63)
m,n(m-+n=even) 99 99 f
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4 oploght k+l+m+n—2 g2
ae),=4 ¥ (—DF 2 Gk, m)G( n)(EigEO) TE (RB)<+1+m n 42 F (k, 1)F(m, n)
k,1,(k+1=0dd) m,n,(m+n=o0dd) L‘I‘I qu Ef
+ F(k, n)F(m, ) + F(k, m)F(L, n)}{ B(1 + cos’¢,,) — 23 cosep,, I, (64)
2 8 Cl2 OFf log% 3 ~ - 2 ~
(AG )3 = _605 L—3 E_<UE E 0) kB(IB - BCOS¢qq)[ﬁ(1 + cos ¢qq) - 218 Cos¢qq]' (65)
qq = f qq

The function F is defined as Eq. (44).

(A€?); and (A €?), are summations of series proportional
to [oplog(Es/Eg)/E.I*N (N =1,2,...). Therefore, in
cases oglog(E;/Ey)/E,, < 1, taking some lower terms

is a good approximation. For the ILC main linac this factor
is about 0.23.

F. Possibility of modifications

For the formulas, we made some assumptions as in
Table 1. Let us consider if we can extend the formula to
more general cases.

One assumption we used for the analytic formulas is a
simple FODO lattice. It will not be difficult applying our
method for other lattice designs. For example, in the case
Br and B are not constant but simple functions of beam
energy, we will obtain formulas with modified energy
integrations. For more complicated lattice designs, instead
of using analytic formulas, we can use Eqgs. (31), (33), and
(59), for numerical calculations. Such calculations do not
need Monte Carlo simulations and will be much faster than
tracking simulations.

The essential approximation for our formula is “‘energy
deviation, SF, is constant for each particle.” It means
energy gain of all particles are the same and the energy
spread is dominantly determined as the initial condition.
This is a good approximation for the ILC main linac using
superconducting accelerating cavities, with weak longitu-
dinal wakefield and relatively low rf frequency, which
make longitudinal position dependent energy gain very
small. However, this assumption may not be used for
most accelerators using normal conducting -cavities,
because of strong wakefield and high rf frequencies (sig-
nificant slope of rf voltage in a beam bunch).

We can consider cases in which the opposite extreme
assumption is valid, where the initial energy spread can be
ignored and the energy spread is dominantly induced in
the acceleration. The deviation of the energy gain of a
particle (from longitudinal wakefield and rf voltage slope)
will depend only on the relative longitudinal position in a
beam bunch, and we may assume SF of a particle at any
location is proportional to the design energy at the location.
Modification of our formulas with such an assumption is
straightforward, by replacing S E at location i by (8E/E)E;,
assuming (8 E/E) is constant for each particle. We will have
different dependences on the final beam energy.

The evaluation will be more complicated if the initial
energy spread and the induced energy spread are compa-
rable. In such cases, it will be difficult to derive simple
analytic formulas. However, we will still have formulas for
numerical calculations by replacing 6F at location i by
S8Eiy + (OE/E)ingE;, where SEj,;, (initial energy devia-
tion) and (8 E/ E);q (induced relative energy deviation) are
constant for each particle.

G. Possibility of extension for DFS

In this paper, we assumed only a simple orbit correction
method (one to one steering). Extending our formulas for
more complicated corrections will need further studies.
However, there is an idea of extension of our method for
dispersion-free steering (DFS) as follows.

Assuming DFS, the first order dispersion will be mea-
sured at every BPM location. Therefore, the first order
dispersion will be corrected with accuracy determined by
the error of dispersion measurement. Residual first order
dispersion at a quadrupole magnet will induce the second
order dispersion downstream (just like orbit offset at a
quadrupole magnet induces the first order dispersion).
Then, the second and higher order dispersion at the end
of a linac assuming DFS will be expressed as a function of
the errors of dispersion measurement. This is just like the
formula that we obtained, which is expressing the first and
higher order dispersion assuming one to one steering as a
function of the BPM offset errors. In such a way, a formula
of emittance growth including the higher order dispersion
will be derived.

V. COMPARISON WITH TRACKING
SIMULATIONS

For checking validity of the derived formulas, tracking
simulations are performed for the ILC main linac, setting
similar conditions to Ref. [1]. The simulation code SLEPT
[6] was used. Relevant parameters of the ILC main linac
are listed in Table II [7]. For simplicity, we simulated a
straight linac, while the actual ILC main linac is designed
to be curved following the earth’s curvature.

Though the code SLEPT could include various sources of
emittance dilution, the following effects were turned off in
the tracking simulations for comparing with the formulas;
transverse wakefield, tilting misalignment of cavities, and
transverse kicks in accelerating cavities due to geometrical
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TABLE II. Relevant parameters of the ILC main linac.
Initial beam energy E, 15 GeV
Final beam energy E; 250 GeV
Initial energy spread og 0.16 GeV
Initial normalized emittance (vey) 2X 1078 m
B at focusing magnet Br ~140 m
[ at defocusing magnet Bp ~40 m
Strength of focusing magnet kp —0.0286 m™!
Strength of defocusing magnet kp 0.0320 m™!
Acceleration per cavity V. ~32 MV
Energy gain between quad magnets E,, eV, X 26

asymmetries of couplers. On the other hand, effects of
bunch length, longitudinal position dependent energy dif-
ferences which are induced during acceleration, were
included in the tracking simulations, while our formulas
ignore the effects. Also, it is obvious that the tracking
simulation included many orders of dispersion (the highest
order is the same as the number of quadrupole magnets in
the linac).

For taking average, the simulation for each condition
was performed with 1000 different sets of random numbers
(random seeds).

Root mean square (rms) of BPM offset error was set as
50 pm as nominal error.

First, we compared contributions of several lowest
orders of 0% to (A€?); and (A€?),. Figure 1 shows con-
tributions of (A€?); and (A€?), of each order of o2, to the
((ye)?) (square of normalized emittance) growth. It
shows that it will be good enough to take three lowest
orders for each of (A€?), and (A€?),. The figure also shows
the contribution of (A€?); (we only evaluated the lowest
order), which cannot be ignored. In the following calcu-
lations, we take up to 0§ order for (A€?); and up to ol
order for (A€?),.

8X10'16 T T T ; : .
i ~ @y 2(Ae?
6x10"°[ @ VA, ]
L '.l -O_ 2 2
£ -16 |
~ I 252 ]
4x10 I - v (Ae )3
N/\ 3
g »
qé 2x10°7° | 1
Y | i o\
! .
or PR o-N@__-O--0 |
2x10M0 L e ,
1 2 3 4 5 6
Order of o
FIG. 1. Contribution of each order of U% of (A€?),, (A€d),,

and (A€?); to expected growth of square of normalized emit-
tance [{(y€)?)], with BPM offset error 50 wm (rms) after one to
one correction in the ILC main linac.

Tracking Simulation
s | Formula, total
1x10 Mo, 5 5 T T
Formula, Y'(AS‘)1
8x10'¢[| ~ ~ Formula, yz(Asz)2 4
R Fromula, Yz(Aiiz)3
E 6x10M [ .
A
N~
W
S 4x1070 | .
~
\
2x107° | .
0 I = 1 I
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FIG. 2. Average growth of square of normalized emittance
[{(y€)?)] with BPM offset error 50 wm (rms) after one to one
correction, as a function of beam energy along the ILC main
linac. Results of tracking simulation and the analytic formula.
Contributions of (A€?);, (A€?),, and (A€?); are also shown.

In Fig. 2, we compare results of tracking simulations and
the formula for square of emittance growth along the linac,
starting from the beam energy 15 GeV. The contribution of
each of (A€?);, (A€?),, and (A€?); is also shown.

Figure 3 shows the square of emittance growth as a
function of initial beam energy. For higher initial beam
energy, the downstream part of the linac is used, keeping
the energy gain per length constant. The final beam energy
is 250 GeV.

We also performed tracking simulations with different
initial energy spread and rms of BPM misalignment.
Figure 4 shows the average square of emittance growth at

® Tracking Simulation

“’Ii ----- Formula, total ]
8x10 v | Formula, yz(Aez)1 il
| = = Formula, y*(A€?) ]
< ex10™C L ? 1
g '.‘ """ Fromula, “{Z(Asz)3 1
A “
Q a0l ]
< N
v L. 1
2x10°7° | ~e i
\ a\.\ |
\.\ \‘*-‘._\
i T P I I el
50 100 150 200 250
E  (GeV)

init

FIG. 3. Average growth of square of emittance ({(ye€)?)) at the
linac end, with BPM offset error 50 wm (rms) after one to one
correction, as a function of the initial beam energy for the
downstream part of the ILC main linac. Results of tracking
simulation (circle), and the analytic formula. Contributions of
(A€?);, (A€?),, and (A€?); are also shown.
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FIG. 4. Average growth of square of emittance [{(y€)®)] at the
linac end, with BPM offset error 50 wm (rms) after one to one
correction, as a function of the initial beam energy spread.
Results of tracking simulation (circle), and the analytic formula.
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FIG. 5. Average growth of square of emittance [{(ye€)?)] at the
linac end after one to one correction as a function of BPM offset
error (rms). Results of tracking simulation (circle), and the
analytic formula.

the linac end as a function of the initial energy spread,
comparing with the result of the formulas. Figure 5 shows
the average square of emittance growth at the linac end as a
function of the rms of BPM misalignment, comparing with
result of the formulas.

The only significant discrepancy between the tracking
simulations and the formulas can be seen for the highest

energy spread point of Fig. 4. This discrepancy is under-
standable because, for this point, the quantity
oglog(Es/Ey)/E,, = 1, which no longer satisfies the
condition that it be small compared to 1.

Except for this, all of the results confirmed good agree-
ment between the analytic formulas and the tracking

simulations.

VI. SUMMARY AND DISCUSSIONS

Formulas of emittance growth after a simple orbit cor-
rection (one to one steering) with random offset of beam
position monitors were derived. They were from exten-
sions of the formulas of orbit distortion and emittance
growth due to random misalignment of quadrupole mag-
nets and random tilting of accelerating cavities without
corrections, which had been reported in our past paper [1].
The results were compared with tracking simulations,
showing good agreement.

In the formulas, we expand expected growth of
emittance square by o2 (N = 1,2,3,...). Taking lower
orders will be a good approximation in cases
[O'E log(Ef/EO)/E,M]Z < 1.

For our formulas, we made some assumptions shown in
Table I. The possibility of modifications of the assumptions
was discussed.

The possibility of extension of our method for a more
complicated correction (DFS) was also discussed.
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