
Counting 1D free electron laser growing modes in the presence of space charge

G. Wang,1,* V.N. Litvinenko,1,2 and S. Webb3

1Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
2Department of Physics & Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA

3Tech-X Corporation, 5621 Arapahoe Avenue Suite A, Boulder, Colorado 80303, USA
(Received 14 September 2012; published 17 December 2012)

Knowing the number and structure of the free electron laser’s (FEL) growing modes is of fundamental

importance to its theoretical description and its applications. The one-dimensional FEL dispersion

relation, including the space-charge effects, is well established in the FEL theory, but questions remain

about the number of the growing solutions (modes). In this paper, we provide the definite answers to the

latter question and identify the amplification bandwidth of these modes.
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I. INTRODUCTION

Free electron lasers (FELs) are known to amplify coher-
ent radiation near its resonant wavelength of

�0 ffi �w

2�2
ð1þ a2wÞ � �w

2�2
z

; (1)

where �w is the FEL’s wiggler period, aw is the dimen-
sionless wiggler parameter, and � ¼ E0=mc2 is the elec-
tron beam’s relativistic factor.

By assuming the electron beam has a uniform density
distribution, electrons move along identical trajectories,
and the amplified wave is a monochromatic plane wave,
the FEL process can be described by a set of self-consistent
linear 1D FEL equations, i.e., the set of Maxwell equations
and the linearized Vlasov equation.1 The most general
method of solving these equations was developed by
Saldin et al. [2]. These authors also introduced a set of
normalized variables, many of which we use in this paper.
Specifically, all lengths are normalized as ẑ ¼ �z, using
the 1D FEL gain parameter2
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;

where c is the speed of light, j0 is the electron beam current
density, IA ¼ mec

3=e is the Alfvén current, and ! ¼
2�c=� is the FEL’s radiation frequency. The space-charge
effects are described by the dimensionless plasma-wave
parameter

�̂ p � 1

�

�
4�j0
�2
z�IA

�
1=2

while the dimensionless detuning from the FEL resonance
is described by3

�̂ � � 1

�

�
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c
� !

vz

�
; (2)

where kw ¼ 2�=�w and vz ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��2

z

q
is the effective

longitudinal velocity of electrons in the FEL wiggler.
The method developed in [2] consists of reducing the set

of equations to a single linear integrodifferential equation,
and then applying the Laplace transformation:

fðsÞ ¼
Z 1

0
fðẑÞe�sẑdẑ; (3)

where ẑ is the normalized coordinate along the FEL’s axis.
This technique reduces the solution of the self-consistent
1D FEL equations to finding the solutions of the dispersion
relation (DR):

s ¼ Dðs; �̂Þ
1� i�̂2

pDðs; �̂Þ ; (4)

where
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1The applicability region of the 1D FEL model is "? <
�=ð4�Þ, LG < LR ¼ �w2

0=�, and Le > Nu�, where "? is the
transverse electron beam emittance, � is the radiation wave-
length, LG ¼ ��1 is the 1D gain length, w0 is the electron beam
radius, and Le is the electron beam bunch length [1]. In addition,
linearization of the Vlasov equation requires that the perturba-
tion of the electrons’ phase space density distribution due to the
FEL process is small compared with that of the unperturbed
distribution.

2For a planar wiggler, the JJ term [2] should be included,
which does not change the FEL’s dispersion relation, i.e. the
focus of this paper.

3Here we change the sign of notation used in [2] to �̂ � �Ĉ
for high frequencies to correspond to positive detuning �̂> 0.
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Dðs; �̂Þ �
Z 1

�1
dP̂

dF̂ðP̂Þ
dP̂

1

sþ iðP̂� �̂Þ for ReðsÞ> 0

(5)

is defined by the electrons’ energy-distribution function,

F̂ðP̂Þ, and the dimensionless energy deviation is defined as

P̂ � ðE=E0 � 1Þ=�, with � ¼ �2
z�c=! being the Pierce

parameter. The resulting evolution of the electron density
modulation as well as the radiation field in the FEL can be
described as a direct sum of the modes

fðz; �̂Þ ¼ X
i

fið�̂Þesið�̂Þẑ;

where si are the solutions of the dispersion relation (4) and
fi are defined by the initial conditions (see [2]). The
growing solutions with ReðsiÞ> 0 are of most interest for
the FELs since they dominate the nongrowing solutions in
a high-gain FEL [3].

Saldin and colleagues [2] derived the dispersion relation
(4) for a 1D FEL with collinear propagation of the electron
and FEL’s plane wave of radiation. In our recent paper [4],
we expanded this derivation to include the plane waves
propagating at an angle with respect to the motion of the
electron beam, i.e.,

~k ¼ kz ~ez þ ~k?:

We showed that Eqs. (4) and (5) remain correct with our
substitution of

�̂ 3D � �̂þ k̂2?; (6)

where
~̂k? �

ffiffiffi
�
2

q
~k?
�z�

. Hence, solving the DR for a 1D FEL is

equivalent to finding its solution for a noncollinear FEL
with a spatially uniform electron beam.

In our recent paper [3], taking an approach of the
Nyquist plot [5], we developed a method of determining
the number of growing modes and calculating their
high-frequency cutoff for 1D FEL in the absence of the

space-charge effect. In this paper, we extend our approach
to study in detail the 1D FEL’s dispersion relations, includ-
ing the space-charge effects. We derive constraints on the
maximal number of growing modes and upper frequency
cutoff for a FEL with a spatially uniform electron beam
having an arbitrary energy distribution.4

II. THE METHOD

Any solution of Eq. (4) with ReðsÞ> 0 corresponds
to a growing mode whose amplitude increases as
� exp½ReðsiÞẑ�, with ReðsiÞ being the growth rate of

mode i. For compactness, later in the text we drop �̂
from the DR expressions and its roots, while assuming

their implicit dependence on �̂. To explore the roots of
Eq. (4), we define a complex function,

wðsÞ � s�DðsÞð1þ is�̂2
pÞ; (7)

and consider a mapping of a contour C, shown in Fig. 1(a),
from the complex s plane to the complex wðsÞ plane. The
contour C comprises a vertical straight line parallel to the
imaginary axis, C1, and a semicircle in the right-half com-
plex plane, C2. A contour D shown in Fig. 1(b) is one of
the possible maps of C, whereD1 andD2, respectively, are
the maps of C1 and C2. If wðsÞ is a meromorphic function
in the right-half plane of ReðsÞ> 0 with no poles or zeros
along C, the argument principle (the change in the argu-
ment of a complex function along a closed contour) states
that the following expression gives the winding number:

W � 1

2�

I
dfarg½wðsÞ�g ¼ Z� P; (8)

where Z is the number of roots and P is the number of poles
of wðsÞ, enclosed by the contour C, counting multiplicity.
As we discussed in our previous paper [3], the poles ofwðsÞ

FIG. 1. Mapping from s to wðsÞ as defined in Eq. (7). The map from C2 to D2 approaches an identity map when jsj ! 1.

4See the constraints on energy distributions in the following
section.
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are identical to those of DðsÞ and located in the left-half
plane of ReðsÞ< 0.5

We can prove directly, following the method indicated in
[6], that for energy distributions satisfying

Z 1

�1

��������
d

dP̂
F̂ðP̂Þ

��������dP̂ <1;

since the derivative of DðsÞ for ReðsÞ> 0,��������
d

ds
DðsÞ

�������� ¼
��������
Z 1

�1
dP̂

dF̂ðP̂Þ
dP̂

1

½sþ iðP̂� �̂Þ�2
��������

� 1

ReðsÞ2
Z 1

�1
dP̂

��������
dF̂ðP̂Þ
dP̂

��������;

is bounded, it ensures that DðsÞ is an analytic function in
the right-half plane.6 Hence, wðsÞ does not have poles in
the right-half plane and the winding number is equal to the
number of growing roots7

Z ¼ W: (9)

III. UPPER LIMIT ON THE NUMBER OF
GROWING ROOTS

According to Eq. (9), counting the number of growing
roots of DR is reducible to finding the winding number of
contour D. Let us first discuss the properties of D2. We

previously proved that for an energy distribution, F̂ðP̂Þ,
satisfying

F̂ðP̂Þ � F̂max

1þ P̂2=q̂2
for 8 P̂ 2 R;

where F̂max and q̂ are some positive numbers, the disper-
sion function (5) is diminished at infinity [3]:

lim
jsj!1

jD̂ðsÞj � ffiffiffi
2

p
�q̂F̂max limjsj!1

1

jsj2
�
1þ q̂

ReðsÞ
�
: (10)

Hence, the difference between the map of Eq. (7) and an
identity map wðsÞ ¼ s vanishes at jsj ! 1:

lim
jsj!1

jð1þ is�̂2
pÞDðsÞj � lim

jsj!1
jDðsÞj þ �̂2

p lim
jsj!1

jsjjDðsÞj
¼ 0; (11)

i.e., the contour D2 is identical to C2. The contour C1 can
be parametrized as

s ¼ "þ þ it; (12)

with "þ being an infinitesimal positive number and t being
a real number changing from 1 to �1. Hence, taking the
limit "þ ! 0 at C1 yields

8

DðitÞ ¼ �i
Z 1

�1
dP̂

dF̂ðP̂Þ
dP̂

1

t� �̂þ P̂

¼ �
dF̂ðP̂Þ
dP̂

��������P̂¼�̂�t
�iPV

Z 1

�1
dP̂

dF̂ðP̂Þ
dP̂

� 1

t� �̂þ P̂
; (13)

and the following expression describes the map from
C1 to D1:

wðitÞ ¼ i

�
tþ ð1� t�̂2

pÞPV
Z 1

�1
dP̂

dF̂ðP̂Þ
dP̂

1

t� �̂þ P̂

�

� ð1� t�̂2
pÞ�dF̂ðP̂Þ

dP̂

��������P̂¼�̂�t
: (14)

As t monotonically changes from 1 to �1, D1 inter-
sects with the imaginary axis when Re½wðitÞ� ¼ 0, i.e., at
points where

ð1� t�̂2
pÞF̂0ð�̂� tÞ ¼ 0: (15)

Following from the first multiplier in Eq. (15), one of the
intersection points is independent of detuning and always
occurs at a fixed point with

t ¼ t0 ¼ �̂�2
p ; (16)

and

wðit0Þ ¼ i�̂�2
p : (17)

All other intersecting points are determined by the ex-
trema of the energy-distribution function:9

F̂ 0ðpnÞ � dF̂ðP̂Þ
dP̂

��������pn

¼ 0; n ¼ 1; . . . ; N; (18)

i.e., at

5As discussed in [6], this is a general property of susceptibility
due to the causality.

6The analytical function is meromorphic by definition and
hence, the argument principle is applicable.

7As the contour C stays in the right-half plane where wðsÞ is
analytic, there is no pole along C. Assuming that all zeros of wðsÞ
at the imaginary axis of s plane are isolated, there also are no
zeros along C. Further, if a root has multiplicity N, it corresponds
to N growing solutions, which generally are the product of a
polynomial of order N � 1, and a growing exponent.

8If the energy-distribution function, F̂ðP̂Þ, is a smooth upper-
bounded function, the principal value integral always converges
(Appendix A).

9Whether D1 crosses into the other half plane at the intersect-
ing point is determined by the following expression:

d

dt
Re½wðitÞ�jt¼tn ¼ �̂2

pðpn þ �̂�2
p � �̂Þ�d2F̂ðP̂Þ

dP̂2

��������P̂¼pn

:

As an extrema requires the second derivative to be nonzero, D1
always crosses into the other half plane at the intersecting points
for pn � �̂� �̂�2

p . In the case of pn ¼ �̂� �̂�2
p , the fixed

intersecting point merges with the intersecting point at tn, and
since the above derivative vanishes, D1 stays in the same half
plane after intersecting with the imaginary axis.
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t ¼ tn ¼ �̂� pn: (19)

Hence, the number of extrema of the energy-distribution

function determines the number of intersections. If F̂ðP̂Þ is
a smooth function satisfying F̂ðP̂ÞP̂!�1 ! 0 (i.e., a physi-
cally valid distribution), then tn always are discrete num-
bers. When the number of extrema, N, is finite, it is always

odd since F̂ðP̂ÞP̂!�1 ! 0 requires the number of minima
to be equal to that of maxima, M, minus one, i.e.,10

N ¼ 2M� 1: (20)

Adding the fixed intersecting point of Eq. (16) makes the
total number of the intersections ofD1 with the imaginary
axis even and equal to 2M. Since each clockwise or coun-
terclockwise winding requires the contour to intersect
twice with the imaginary axis, the maximal winding num-
ber cannot exceed half of the number of intersections.
Thus, we proved the following theorem.

Theorem 1.—For a 1D FEL driven by an electron beam
with energy distribution described by a smooth function,

F̂ðP̂Þ 2 C1, with M maxima, if the energy-distribution
function satisfies the following constraints:

Z 1

�1

��������
d

dP̂
F̂ðP̂Þ

��������dP̂ <1; (21)

and

F̂ðP̂Þ � F̂max

1þ P̂2=q̂2
; 8 P̂ 2 R (22)

for some positive number F̂max and q̂, the number of
growing roots of its dispersion relation, Z, is no larger
than M, i.e.,

Z � M: (23)

IV. COUNTING THE NUMBER
OF GROWING ROOTS

Equation (14) suggests that the location of the intersec-
tions, and therefore the winding number, depends upon
detuning from the resonance. As we detail later, by inves-
tigating where D1 intersects with the imaginary axis, we
can determine the frequency regions for FEL instability. To
proceed, we enumerate the extrema of the distribution in
the ascending order,

p1 < p2 < 	 	 	<pn < pnþ1 < 	 	 	<p2M�1; (24)

which makes tn a descending sequence. We note that the
odd numbers of n correspond to the maxima, and the even
ones to the minima.

We emphasize that the values of the dispersion function
(13) at the intersection points are constants, fully deter-
mined by the energy-distribution function:

D½ið�̂� pnÞ; �̂� ¼ �iPV
Z 1

�1
dF̂ðP̂Þ
dP̂

dP̂

P̂� pn

� iDn;

for n ¼ 1; . . . ; 2M� 1: (25)

Hence, the values ofwðitnÞ � iwn at the intersection points

are linear functions of the detuning �̂, with

wn ¼ An�̂� Bn for n ¼ 1; . . . ; 2M� 1; (26)

An ¼ 1þ �̂2
pDn; (27)

and

Bn ¼ Anpn þDn: (28)

To determine the topology ofD1, we start by investigat-
ing its locations at t ! �1. At t ! þ1, Im½wðitÞ� ! 1
and

Re½wðitÞ� ¼ �ð�̂2
pt� 1ÞF̂0ð�̂� tÞ> 0;

for t >maxð�̂�2
p ; �̂� p1Þ

(29)

since F̂0ðP̂Þ> 0 for P̂ < p1. Similarly, at t ! �1,
Im½wðitÞ� ! �1, and

Re½wðitÞ� ¼ �ð�̂2
pt� 1ÞF̂0ð�̂� tÞ> 0;

for t <minð�̂�2
p ; �̂� p2M�1Þ

(30)

since F̂0ðP̂Þ< 0, for P̂ > p2M�1. Thus, when t changes
from þ1 to �1, D1 crosses from the upper-right-half
plane into the left-half plane, intersects with the imaginary
axis 2M times11 and returns to the lower-right-half plane.
While the relative sequence of the tn remains unchanged

with the detuning �̂, they move together with respect to t0
as the detuning changes, and each tn passes t0 at the
detuning of

�̂ ¼ �̂n � �̂�2
p þ pn (31)

with the point of the passing in the wðsÞ plane given by

wnð�̂nÞ ¼ w0 ¼ �̂�2
p : (32)

There are 2M detuning intervals separated by �̂n and

we assign an index lð�̂Þ to each of them with lð�̂Þ deter-
mined by

10While mathematically valid, distribution functions with infi-

nite number of extrema, such as a 1þcosðkP̂Þ
1þP̂2=q2

, are only of academic

interest and so are not considered further in this paper.

11That is except for a degenerated case with any intersecting
point merging with the fixed intersecting point. Then, the con-
tourD1 touches the imaginary axis without crossing it, reducing
by one the maximal winding number, however, it does not
change the overall sequence of intersections.
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lð�̂Þ ¼ X2M�1

n¼1

�ð�̂� �̂�2
p � pnÞ; (33)

where �ðxÞ is the Heaviside step function defined as

�ðxÞ ¼
�
0; for x < 0
1; for x 
 0:

For a series of intersections occurring at t with a descend-
ing sequence of

t1; . . . ; tl; t0; tlþ1; . . . ; t2M�1; (34)

the winding number is determined by the following
expression (Appendix B):

Wð�̂Þ ¼ ð�1Þlð�̂Þ þ X2M�1

n¼1

ð�1Þnþ�½lð�̂Þ�n��ðAn�̂� BnÞ:

(35)

For �̂ ! �1 and for An � 0, the sequence of Eq. (34) is
ft0; t1; . . . ; t2M�1g and

W� ! 1þ X2M�1

n¼1

ð�1Þn�ð�AnÞ: (36)

Similarly, for �̂ ! þ1 and An � 0, the sequence
ft1; . . . ; t2M�1; t0g yields

Wþ ! �1þ X2M�1

n¼1

ð�1Þnþ1�ðAnÞ: (37)

Thus, for An � 0 the number of the growing modes at
very large detuning is determined fully by the set of the

signs of the An. In the case of all An ¼ 1þ �̂2
p 	Dn > 0,

Eqs. (36) and (37) reduce to

W� ¼ 1; Wþ ¼ 0; (38)

signifying that the FEL amplification has a high-frequency
cutoff.

According to Eq. (35), a change of the Wð�̂Þ value
seemingly could happen when t0 advances within the
sequence of Eq. (34). However, according to Eq. (32),

when tlð�̂Þ passing t0, Im½wlð�̂lÞ�> 0 and the change in

the value of Wð�̂Þ at �̂l ¼ �̂�2
p þ pl vanishes:

�Wl ¼ ½Wð�̂l þ "Þ �Wð�̂l � "Þ�"!oþ

¼ 2ð�1Þlf1� �½Imwlð�̂lÞ�g ¼ 0: (39)

Consequently, the changes of W occur only when the

imaginary part of wðitnÞ, An 	 �̂� Bn, changes sign at12

�̂ ¼ �̂þ
n � Bn

An

¼ pn þ Dn

1þ �̂2
pDn

; (40)

that entail a change in winding number by

�Wn ¼ fWð�̂þ
n þ "Þ �Wð�̂þ

n � "Þg"!0þ

¼ ð�1Þnþ�ðl�nÞ½�ðAnÞ � �ð�AnÞ�: (41)

If all �̂þ
n differ, the winding number always jumps a step

of one unit as the detuning varies. In the case of degenera-

tion, i.e., when two or more �̂þ
n coincide, viz. �̂þ

n1 ¼
�̂þ

n2 ¼ 	 	 	 ¼ �̂þ
nk , the jump is a direct sum of the terms

in Eq. (41):

�Wdeg ¼
Xk
j¼1

ð�1Þnjþ�ðl�njÞ½�ðAnjÞ � �ð�AnjÞ�: (42)

The number of such jumps, K, is less than or equal to the
number of extrema, i.e.,

K � 2M� 1: (43)

Next, we define a new series, dm for m ¼ 0; 1; 2; . . . ;

K þ 1, that includes all �̂þ
n in ascending order with �1

and þ1 being, respectively, its first and its last element:

d0 ¼ �1< d1 � 	 	 	 � dK < dKþ1 ¼ 1:

There are K þ 1 detuning intervals separated by the ele-
ments of series dm, and within each interval, the number of
growing roots remains constant, i.e.,

Wm ¼ Wð�̂Þ for �̂ 2 ½dm; dmþ1Þ: (44)

It follows from the definition that W0 ¼ W� and WKþ1 ¼
Wþ, with W� defined in Eqs. (36) and (37) for An � 0.
From these analyses, for an arbitrary smooth distribution

function having M maxima, the following steps could be
taken to determine the number of growing modes as a
function of the detuning: (i) calculate the location of the
2M� 1 extrema pn; (ii) Evaluate the dispersion values,
Dn, from Eq. (25) at these points; (iii) determine the K þ 1

set of intervals by calculating and sorting the values of �̂þ
n

using Eq. (40); (iv) assess the number of growing modes in
each interval using Eq. (35).
Figure 2 shows the typical shape of the dependence of

the number of growing modes on detuning for an FEL with

FIG. 2. A typical dependence of the number of growing modes
on detuning for an FEL with an energy distribution having two
maxima.

12The case of An ¼ 0 is trivial, as there is no change of the sign
and, naturally, no corresponding change occurs.
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energy distribution with two maxima. It has four segments
of detuning where W remains constant. At large negative
detuning, the FEL has a single growing mode; in a second
interval it has two growing modes; and, in the third interval
their number is reduced to one. Finally, in the fourth

interval, at large positive detuning �̂> d3, there is no
growing mode. Thus, d3 will determine the high-frequency
cutoff for such a FEL.

In the following sections, we present some cases and
examples, where the conclusions can go beyond those
established in this section.

V. ENERGY DISTRIBUTION WITH
ONE MAXIMUM

The theorem we developed in previous sections provides
the strongest limitation for a FEL driven by electron beam
with a bell-shaped energy distribution.13 There, the maxi-
mal number of growing modes is one and the high-
frequency cutoff of FEL amplification can be obtained.
As derived in Eqs. (16) and (19), one intersection occurs

at t0 ¼ �̂�2
p with w0 ¼ �̂�2

p and the other at t1 ¼ �̂� p1

with

w1ð�̂Þ ¼ ð1þ �̂2
pD1Þ�̂� ð1þ �̂2

pD1Þp1 �D1: (45)

Since F̂0ðP̂Þ> 0 for P̂ < p1 and F̂0ðP̂Þ< 0 for P̂ > p1, it
follows that

D1 ¼ �PV
Z 1

�1
dP̂

dF̂ðP̂Þ
dP̂

1

P̂� p1

> 0 (46)

and, hence, w1ð�̂Þ is a growing function of �̂. As �̂

increases, the sign of w1ð�̂Þ changes from negative to
positive at

�̂ ¼ �̂þ � p1 þ D1

1þ �̂2
pD1

: (47)

As �̂þ splits detuning into two regions with no changes of

winding number in each region, we can insert �̂ ¼ �1
into Eq. (35) and obtain

W ¼
�
1 for �̂< �̂þ

0 for �̂> �̂þ:
(48)

The schemes drawn in Fig. 3 clarify the conclusion of
Eq. (48). We note that for an energy distribution with one
maximum,

t1 > t0 , Im½wðit1Þ�> Im½wðit0Þ�; (49)

and hence, as t decreases, D1 always passes the upper
intersection point first as illustrated in Fig. 3.14

To summarize, we formulate the case of a 1D FEL
driven by an electron beam with bell-shaped energy distri-
bution as the following theorem.
Theorem 2.—There is a positive value of detuning,15

�̂þ ¼ p1 �
PV

R1
�1 dP̂ dF̂ðP̂Þ

dP̂
1

P̂�p1

1� �̂2
pPV

R1
�1 dP̂ dF̂ðP̂Þ

dP̂
1

P̂�p1

; (50)

indicating the high-frequency cutoff of a 1D FEL amplifi-
cation with bell-shaped electrons’ energy distribution. For
values of detuning below the threshold, the FEL has one
growing mode, i.e., it always is unstable. Above the thresh-
old none of the modes are growing.
Equation (50) combined with Eq. (2) gives us the maxi-

mal frequency amplified by a 1D FEL,

!þ � kw þ ��̂þ

v�1
z � c�1

; (51)

FIG. 3. Schematic drawing of possibleD1 mapping when F̂ðP̂Þ has only one extrema. (a) Low or negative detuning yields a winding
number of 1, i.e., one growing mode. Part (b) corresponds to the cutoff frequency for FEL instability. (c) Above the threshold the
winding number is 0, i.e., there are no growing modes.

13We define the bell-shaped function as a smooth, positive,
bounded function diminishing at infinity with a single maximum.

14This is not always true for energy distribution with multiple
maxima.
15When F̂ðP̂Þ depends solely on ðP̂� p1Þ2, typically, there are
no singularities in the integrand, and hence no need to take the
principal value of the integration.
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with collinear propagation of the TEM wave and the
electron beam. According to Eq. (6), in a 1D FEL where
the TEM wave is traveling noncollinearly with the electron
beam, this frequency can be generalized to

!þðk?Þ � kw þ �ð�̂þ � k̂2?Þ
v�1
z � c�1

: (52)

Table I gives the expressions for the cutoff detuning pa-
rameters calculated from Eq. (50) for various frequently
used energy distributions with the maximum located at

P̂ ¼ p1 ¼ 0. The general dependence of high-frequency
cutoff on the energy spread and space-charge parameter

has the form �̂� ¼ ða�2 þ �̂2
pÞ�1, with the coefficient a

determined by the specific form of the energy distribution.
As a specific example, we consider a Gaussian energy

distribution:

F̂ðP̂Þ ¼ 1ffiffiffiffiffiffiffi
2�

p
�
e�ðP̂2=2�2Þ: (53)

Inserting Eq. (53) into Eq. (14) yields

wðitÞ ¼ i

�
t� 1� t�̂2

p

�2

�
1� ffiffiffiffi

�
p �

�̂� tffiffiffi
2

p
�

�
Erfi

�
�̂� tffiffiffi
2

p
�

�
e½ð�̂�tÞ2=2�2�

��
� ð1� t�̂2

pÞ�dF̂ðP̂Þ
dP̂

��������P̂¼�̂�t
; (54)

where we used the relation

PV
Z 1

�1
xe�x2

x� a
dx ¼ ffiffiffiffi

�
p � �aErfiðaÞe�a2 : (55)

Figure 4 shows the evolution of contourD1 with detuning,
denoting that the winding number, and hence, the number
of growing modes, changes from 1 to 0 as the detuning
increases above 0.8. Figure 5 illustrates the numerical
solution of the dispersion relation, Eq. (4), with the dis-
persion integral given by [2]

DðsÞ ¼ i

�2
� i

ffiffiffiffiffiffiffiffiffi
�=2

p
�3

�
�
s� i�̂

�
exp

�ðs� i�̂Þ2
2�2

��
1� Erf

�
s� i�̂ffiffiffi

2
p

�

��
:

(56)

There are full agreements between the numerical solutions
and our theoretical conclusion on the number of growing
modes and the cutoff frequency as shown in Table I.

0.4 0.4 0.8
Re w

4

2

2

4

6
Im w

0.4 0.4 0.8
Re w

4

2

2

4

6
Im w

0.2 0.2 0.4 0.6
Re w

4

2

2

4

6
Im w

(a) (b) (c)

FIG. 4. Plots wðitÞ calculated from Eq. (54). The following parameters are used in these plots: �̂p ¼ 0:5, � ¼ 1, and �̂ ¼ 0; 0:8; 1:5
(from left to right).

TABLE I. Cutoff frequency of FEL with bell-shaped energy distributions.

Distribution function Formula �̂�

Lorentzian F̂ðP̂Þ ¼ 1ffiffi
2

p
��ð1þP̂2=2�2Þ

1
2�2þ�̂2

p

�-n F̂ðP̂Þ ¼ �ðnÞffiffiffiffiffiffiffi
2�n

p
�ðn�1=2Þ

1
�ð1þP̂2=2n�2Þn

2n�1
2n�2þð2n�1Þ�̂2

p

Gaussian F̂ðP̂Þ ¼ 1ffiffiffiffiffi
2�

p
�
e�ðP̂2=2�2Þ 1

�2þ�̂2
p
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VI. ENERGY DISTRIBUTION WITH
MULTIPLE EXTREMA

For an energy distribution having multiple extrema, the
number of growing roots of DR strongly depends on the
distribution’s specific form. To proceed, we take an energy
distribution of the following form:

F̂ðP̂Þ ¼ Affiffiffiffiffiffiffi
2�

p
�1

exp

�
�ðP̂� P̂1Þ2

2�2
1

�
þ 1� Affiffiffiffiffiffiffi

2�
p

�2

� exp

�
�ðP̂� P̂2Þ2

2�2
2

�
: (57)

Inserting Eq. (57) into Eq. (14) gives

wðitÞ ¼ it� ið1� t�̂2
pÞ½AFI

1ðtÞ þ ð1� AÞFI
2ðtÞ�

� �ð1� t�̂2
pÞ½AFR

1 ðtÞ þ ð1� AÞFR
2 ðtÞ�; (58)

with

FR
j ðtÞ���̂�t�P̂jffiffiffiffiffiffiffi

2�
p

�3
j

exp

�
�ð�̂�t�P̂jÞ2

2�2
j

�
for j¼1;2;

and

FI
jðtÞ �

1

�2
j

�
ffiffiffiffiffiffiffiffiffi
�=2

p
�3

j

ð�̂� t� P̂jÞErfi
�
�̂� t� P̂jffiffiffi

2
p

�j

�

� exp

�
�ð�̂� t� P̂jÞ2

2�2
j

�
for j ¼ 1; 2:

Figure 6 depicts the contour D1 with the energy distri-
bution shown in Fig. 7(a), as calculated from Eq. (58), for
three different detuning states. As determined from the
winding number, the numbers of growth roots are Z ¼ 1

for �̂ ¼ �1, Z ¼ 2 for �̂ ¼ 0:6, and Z ¼ 0 for �̂ ¼ 4,
agreeing with the numerical solutions of the dispersion
relation, Eq. (4), as shown in Fig. 7(b). In obtaining that
figure, we employed the following relation:

DðsÞ ¼ A

�
i

�2
1

� i
ffiffiffiffiffiffiffiffiffi
�=2

p
�3

1

�
s� i�̂þ iP̂1

�

� exp

�ðs� i�̂þ iP̂1Þ2
2�2

1

��
1�Erf

�
s� i�̂þ iP̂1ffiffiffi

2
p

�1

���

þð1�AÞ
�
i

�2
2

� i
ffiffiffiffiffiffiffiffiffi
�=2

p
�3

2

�
s� i�̂þ iP̂2

�

� exp

�ðs� i�̂þ iP̂2Þ2
2�2

2

��
1�Erf

�
s� i�̂þ iP̂2ffiffiffi

2
p

�2

���
:

Next, we followed the steps developed in Sec. IV to assess
the number of growing modes as a function of detuning.
The extrema of the distribution in Fig. 7(a) are located at

P̂ ¼ pn ¼ f0:0060; 1:3708; 2:4998g; (59)

and the corresponding Dn are obtained from Eq. (25):

4 2 2 4 6
Re w

10

8

6

4

2

2

4
Im w

1 1 2 3
Re w

6

4

2

2

4
Im w

6 4 2 2 4 6 8
Re w

5

5

10

15
Im w

(a) (b) (c)

FIG. 6. Contour plots ofwðitÞ as calculated from Eq. (58) for the energy distribution shown in Fig. 7(a). In all three, we used �̂p ¼ 1.

(a) The winding number for �̂ ¼ �1 is W ¼ 1, and hence, there is one growing root. (b) The winding number for �̂ ¼ 0:6 is W ¼ 2,

and hence, there are two growing roots. (c) The winding number for �̂ ¼ 4 is W ¼ 0, and accordingly, there are no growing roots.
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FIG. 5. Numerical solution of FEL growth rate for a Gaussian
energy distribution. The growth rate was obtained by numeri-

cally solving Eq. (4) with �̂p ¼ 0:5 and � ¼ 1.
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Dn ¼ f2:7230;�0:5676; 0:1705g: (60)

Inserting �̂p ¼ 1 and Eq. (60) into Eq. (40) yields

�̂þ
n ¼ f0:7374; 0:0582; 2:6455g: (61)

Equation (61) shows the values of detuning where the
number of growing mode changes. Applying Eq. (35)

with �̂p ¼ 1 and Dn given in Eq. (60), we obtained the

number of growing modes as a function of detuning
(Fig. 8); they fully agree with the direct numerical solu-
tions of the dispersion relation illustrated in Fig. 7(b).

VII. SUMMARY

In this paper, we show that if the energy distribution of

the electron beam, F̂ðP̂Þ, is a smooth function and satisfies
constraints listed in Eqs. (21) and (22), the maximal num-
ber of growing modes of the 1D FEL cannot exceed the

number of maxima of the energy distribution. In addition,

if F̂ðP̂Þ has a bell-shaped form, there always is a single
growing mode for frequencies (detuning) below a thresh-
old, while there are none above the threshold. This thresh-
old value is given by Eq. (50).
We developed steps for calculating the number of

growing roots of the 1D dispersion relation for a general
energy distribution. Our findings fully agree with the
direct numerical solutions of the dispersion relation for
all energy distributions considered here. For an electron
energy distribution with more than one maximum, the
high-frequency cutoff ceases to exist when the Penrose
criterion is reached and the space-charge parameter is
greater than certain value [7].
These results are directly applicable to an FEL with

noncollinear propagation of radiation in a uniform electron
beam.
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APPENDIX A: ON THE CONVERGENCE OF THE
PRINCIPAL VALUE INTEGRAL

Here we derive the condition wherein the principal value
integral in Eq. (25) will be finite. We have an integral of the
type

I ¼ PV
Z 1

�1
F0ðxÞ dx

x� p
: (A1)

Equation (A1) can be rewritten as

– 4 – 2 2 4

0.5

1.0

1.5

2.0

W

FIG. 8. The number of FEL growing modes calculated from
Eq. (35) for an electron beam with the energy distribution shown

in Fig. 7(a), and �̂p ¼ 1.
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FIG. 7. Energy distribution with three local extrema and its corresponding FEL growth rate. (a) The energy distribution as described
in Eq. (57) with A ¼ 0:7, �1 ¼ 0:5, P̂1 ¼ 0, �2 ¼ 1, and P̂2 ¼ 2:5. (b) The FEL growth rate for the energy distribution shown in (a)

with �̂p ¼ 1.
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I ¼
Z 1

p
F0ðxÞ dx

x� p
�

Z �1

p
F0ðxÞ dx

x� p

¼
Z 1

0
½F0ðpþ xÞ � F0ðp� xÞ�dx

x
: (A2)

Next, we divide the integration interval into (0, 1]
and (1, 1):

I ¼ I1þ I2 (A3)

with

I1 ¼
Z 1

0
½F0ðpþ xÞ � F0ðp� xÞ� dx

x
; (A4)

and

I2 ¼
Z 1

1
½F0ðpþ xÞ � F0ðp� xÞ� dx

x
: (A5)

Using the mean value theorem of integrals yields

jI1j �
Z 1

0
jF0ðpþ xÞ � F0ðp� xÞjdx

x

¼ 2
Z 1

0
jF00ðx�Þjdx for x� 2 ½p� x; pþ x�: (A6)

Assuming there exists a positive number Fð2Þ
max such that

jF00ðxÞj � Fð2Þ
max; 8 x 2 ½p� 1; pþ 1�; (A7)

we obtain the upper limit of I1 as

jI1j � 2Fð2Þ
max: (A8)

After integration by parts, Eq. (A5) becomes

I2 ¼
Z 1

1
½F0ðpþ xÞ � F0ðp� xÞ�dx

x

¼ Fðp� 1Þ � Fðpþ 1Þ
þ

Z 1

1
½Fðpþ xÞ � Fðp� xÞ�dx

x2
: (A9)

Since FðxÞ 
 0, I2 has the following upper limit:

jI2j ¼
��������Fðp� 1Þ � Fðpþ 1Þ

þ
Z 1

1
½Fðpþ xÞ � Fðp� xÞ�dx

x2

��������
� Fðp� 1Þ þ Fðpþ 1Þ

þ
Z 1

�1
½Fðpþ xÞ þ Fðp� xÞ�dx

� Fðp� 1Þ þ Fðpþ 1Þ þ 2: (A10)

Combining Eqs. (A8) and (A10) leads to

jIj ¼ jI1þ I2j � jI1j þ jI2j
� 2Fð2Þ

max þ Fðp� 1Þ þ Fðpþ 1Þ þ 2: (A11)

Hence, if FðxÞ is finite and has finite second derivatives, the
P.V. integral is finite.

APPENDIX B: DERIVATION OF THE EQUATION
TO CALCULATE WINDING NUMBER

For each detuning segment in Eq. (33), we can define the
sequence of intersections:

tli ¼ ft1; . . . ; tl; t0; tlþ1; . . . t2M�1g for i ¼ 1; 2; . . . ; 2M:

(B1)

Here, we introduce a new index, i ¼ 1; 2; . . . ; 2M, for the
sequence to include t0. In addition to the index i of a pair of
successive intersections, ftli; tliþ1g, the signs of ImwðtliÞ and
Imwðtliþ1Þ determine the clockwise or counterclockwise
winding of the contour segment starting from t ¼ tli and
ending at t ¼ tliþ1. The contour segment with ending points
ftli; tliþ1g does not affect winding number, provided that the
signs of ImwðtliÞ and Imwðtliþ1Þ are the same. On the
contrary, if they are opposite, the contour segment changes
the winding number by �W ¼ �1=2. Figure 9 illustrates
the change in the winding number for odd and even i. The
first and last segments, with ending points f1; tl1g and
ftl2M;�1g respectively, may also contribute to the change
in the winding numbers as illustrated in Fig. 10. The total

(a) (b) (c) (d)

ww ti
l( )

w ti+1
l( )

ww ti
l( )

w ti+1
l( )

w

w ti
l( )

w ti+1
l( ) w

w ti
l( )

w ti+1
l( )

W = + 1

2
W = + 1

2
W = 1

2
W = 1

2

FIG. 9. The pairs of intersections that affect the winding number of the contour. Parts (a) and (b) are the odd pair, i ¼ 2j� 1.
Parts (c) and (d) are the even pair, i ¼ 2j.
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winding number of the full contour D is the sum of two
parts; viz. from theD1 and theD2. The latter is included in
Figs. 10(a) and 10(b). The overall contribution rule can be
expressed as a simple formula:

�W0 ¼ 1

2
�½Imwðtl1Þ�

�Wi ¼ ð�1Þiþ1

2
f�½ImwðtliÞ� � �½Imwðtliþ1Þ�g;

i ¼ 1; 2M� 1; �W2M ¼ � 1

2
�½Imwðtl2MÞ�;

(B2)

where �W0 is contribution from the first and �W2M is that
from the last segment.

Summing up the three terms in Eq. (B2) gives

W ¼ X2M
i¼1

ð�1Þiþ1�½ImwðtliÞ�; (B3)

with its implicit dependence both on l and �̂. Substituting
tli ¼ ft1; . . . ; tl; t0; tlþ1; . . . t2M�1g into Eq. (B3), we obtain a
general equation for the winding number:

Wð�̂Þ ¼ ð�1Þlð�̂Þ þ X2M�1

n¼1

ð�1Þnþ�½lð�̂Þ�n��½ImwðtnÞ�

lð�̂Þ ¼ X2M�1

n¼1

�ð�̂� �̂�2
p � pnÞ;

(B4)

wherein we took into account that �½Imwðt0Þ� ¼
�ð�̂�2

p Þ ¼ 1. We can make the formulas for the winding

number even more explicit using Eq. (26):

Wð�̂Þ ¼ ð�1Þlð�̂Þ þ X2M�1

n¼1

ð�1Þnþ�½lð�̂Þ�n��ðAn�̂� BnÞ:

(B5)

APPENDIX C: EXAMPLE FOR BI-LORENTZIAN
ENERGY DISTRIBUTION

We present here an example of applying the method
developed in Sec. III to calculate the number of growing
roots for a bi-Lorentzian energy distribution, and to dem-
onstrate the absence of a high-frequency cutoff for large
space-charge. In previous sections, we show that for elec-
tron energy distribution having a single maximum, the

– –

–

–

(a) (b)

FIG. 11. The number of growing modes for an electron beam with bi-Lorentzian energy distribution as described in Eq. (C1). (a) The
abscissa represents the normalized detuning and the ordinate is either the winding number (red solid curve) or the normalized growth

rate (blue dashed curves). The winding number was calculated from Eq. (35) for 	 ¼ ffiffiffi
3

p
, �̂p ¼ 0:5, and � ¼ 0:5. The blue curves are

growth rate obtained by solving Eq. (4) with the dispersion integral given by Eqs. (C5) and (C6). (b) The number of growing modes as
a function of the space-charge parameter and the normalized detuning as calculated from Eq. (35) for 	 ¼ ffiffiffi

3
p

and � ¼ 0:5.

(a) (b) (c) (d)
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FIG. 10. The contribution from the first- and the last-intersecting points to the winding number of the contour. Parts (a) and (b)
represent contributions from the first intersection. Parts (c) and (d) are contributions from the last intersection.
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growing solution of the dispersion relation has a high-
frequency cutoff. However, for a distribution with multiple
extrema, the high-frequency cutoff may not exist. For
simplicity, we consider the energy distribution of the fol-
lowing form:

F̂ðP̂Þ ¼ 1

2��

�
1

1þ ðP̂� � 	Þ2 þ
1

1þ ðP̂� þ 	Þ2
�
: (C1)

The extrema of Eq. (C1) are located at

p1 ¼ ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 	2

q
� 1� 	2

r
; (C2)

p2 ¼ 0; (C3)

and

p3 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 	2

q
� 1� 	2

r
: (C4)

The dispersion function then can be evaluated at the ex-
trema by inserting Eqs. (C2)–(C4) into Eq. (25) as

D1¼D3¼ 1

�2

1þ	2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2þ	4

p
4ð1þ	2Þð1þ2	2�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2þ	4

p Þ
; (C5)

and

D2 ¼ 1

�2

1� 	2

ð1þ 	2Þ2 : (C6)

Inserting Eqs. (C5) and (C6) into Eq. (40) and using
Eq. (35), we obtain the number of growing roots of the

dispersion relation as a function of detuning for 	 ¼ ffiffiffi
3

p
,

�̂p ¼ 0:5, and � ¼ 0:5 as shown in Fig. 11(a), that also

shows the roots found by direct numerical solution, which
fully agree with the calculations from Eq. (35).
In Fig. 11(b), the number of growing modes is plotted as

a function of the space-charge parameter �̂p and the

normalized detuning �̂, showing that the high-frequency
cutoff ceases to exist when the space-charge parameter
is greater than certain value. The absence of the high-
frequency cutoff is related closely to the two-stream insta-
bility of electron plasma when the Penrose instability
criterion is reached.
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