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The transverse bunch spectrum and the transverse decoherence/recoherence following an initial bunch

offset are important phenomena in synchrotrons and storage rings, and are widely used for beam and

lattice measurements. Incoherent shifts of the particles betatron frequency and of the synchrotron

frequency modify the transverse spectrum and the bunch decoherence. In this study we analyze the

effects of transverse space charge and of the rf nonlinearity on the decoherence signals. The transverse

bunch decoherence and the resulting coherent spectra are measured in the SIS18 synchrotron at GSI

Darmstadt for different bunch parameters. The frequencies of the bunch head-tail modes provide a direct

measure for the self-field space charge tune shift. Particle tracking simulations together with an analytical

model are used to describe the modifications in the decoherence signals and in the coherent spectra due to

space charge and the rf bucket nonlinearity.
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I. INTRODUCTION

Transverse coherent oscillations of bunches induced by
a fast kicker magnet are routinely used in synchrotrons or
storage rings to measure, for example, the tune or other
ring parameters, see e.g. [1]. The transverse offset of a
bunch, averaged over the bunch length, can be recorded
every single turn. The spectrum is then concentrated
around the base-band Qf0f0, where Qf0 is the fractional

part of the betatron tune Q0 and f0 is the revolution
frequency. This diagnostics is usually used for time-
resolved and very accurate measurements of the tune Qf0.

Transverse bunch decoherence is a process of a turn-to-
turn reduction of the total bunch offset signal after an
initial bunch displacement. In a linear focusing lattice the
bunch decoherence is a manifestation of the lattice chro-
maticity � where the synchrotron dynamics also plays an
important role, causing the signal recoherence exactly after
the synchrotron period. Other damping mechanisms, as
due to lattice nonlinearities, additionally damp the trans-
verse oscillations. Transverse decoherence is often used as
a machine diagnostics tool. Undesired transverse bunch
oscillations can also appear after the bunch-to-bucket
transfer between synchrotrons. In order to use transverse
decoherence as a diagnostics tool for intense bunches
of arbitrary length and also to control undesired oscilla-
tions of such bunches, it is important to understand the

decoherence in the presence of transverse space charge and
nonlinear synchrotron oscillations.
We demonstrate that the decoherence signal can be

explained in terms of the transverse head-tail bunch
mode spectrum. For finite chromaticity also the k > 0
head-tail modes contribute to the bunch coherent spectrum.
The shift of the head-tail mode frequencies due to space
charge and wall currents can be well explained in terms of
the analytical expressions for an airbag bunch distribution
[2,3]. The head-tail mode frequencies are also modified by
changes in the individual particle synchrotron frequency.
In long bunches, one has to account for the spread of the
synchrotron frequencies. Both transverse space charge and
nonlinear synchrotron oscillations are important to under-
stand the decoherence signals and transverse spectra. We
demonstrate that, once the spectrum and decoherence mod-
ifications are understood, they can be used to extract useful
information about the bunches.
In this paper we describe measurements of transverse

bunch spectra and decoherence signals obtained in the

heavy-ion synchrotron SIS18 at GSI Darmstadt. The ob-

served modification of the head-tail spectrum and of the

decoherence signal caused by transverse space charge and

nonlinear synchrotron oscillations are explained in terms

of our theoretical approach. This approach is based on an

expansion of an analytical theory for head-tail modes in

combination with particle tracking simulations.
In Sec. II we use theoretical and numerical approaches

to analyze the effects of space charge and nonlinear syn-
chrotron motion on the transverse spectra and on the bunch
decoherence signal. We show that a simple model for the
head-tail mode frequencies with fitting parameters can be
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used to explain the numerically obtained spectrum mod-
ifications as well as the bunch decoherence as a function of
the chromaticity. In Sec. III the results of measurements
performed at the SIS18 synchrotron are presented. The
space charge tune shifts determined from the transverse
spectra are summarized, the role of nonlinear synchrotron
motion is demonstrated and transverse bunch decoherence
signals measured for different bunch conditions are pre-
sented and explained. The work is concluded in Sec. IV.

II. THEORYAND NUMERICAL SIMULATIONS

The Fourier transformation of the transverse bunch sig-
nal provides peaks at frequencies which represent the
bunch eigenmodes, also called head-tail modes. For short,
low-intensity bunches (the synchrotron frequency fs ¼
Qsf0 does not depend on the amplitude, no collective
effects), the transverse spectrum has peaks at �Q ¼ Q�
Qf0 ¼ 0 for k ¼ 0, �Q ¼ �Qs for k ¼ �1, �Q ¼ �2Qs

for k ¼ �2, and so forth. Collective effects, like transverse
space charge or ring impedances, change the bunch eigen-
frequencies and thus shift the peaks in the transverse
spectrum.

Transverse space charge effects are described by the
characteristic tune shift,

�Qsc ¼
�0rpR

�3�2"?
; (1)

where R is the ring radius, � and � are the relativistic
parameters, rp ¼ q2ion=ð4��0mc2Þ is the classical particle

radius, �0 is the peak line density (at the bunch center), and
"? is the transverse total emittance. This tune shift corre-
sponds to a round cross section with a transverse K-V
distribution, with the dispersion zero, and is defined as
the modulus of the negative shift. In a rms-equivalent
bunch with the Gaussian transverse profile, i.e., the trans-
verse rms emittance is "x ¼ "?=4, the maximum space
charge tune shift is twice this value, �Qmax

sc ¼ 2�Qsc. In
the case of an elliptic transverse cross section with the rms
emittances "y, "x, the parameter "? in Eq. (1) should be

replaced by

"? ¼ 2

�
"y þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"y"x

Q0y

Q0x

s �
; (2)

here for the vertical (y) plane, for the horizontal plane
correspondingly. The tune ratio Q0y=Q0x stems from the

average along the ring of the beta function ratio, variations
of which should be taken into account for a more accurate
tune shift calculation for a specific lattice. The parameter
for the effect of space charge in a bunch is defined as a ratio
of the characteristic space charge tune shift Eq. (1) to the
small-amplitude synchrotron tune,

q ¼ �Qsc

Qs0

: (3)

A. Longitudinal dipole frequency

An important parameter for head-tail bunch oscillations
in long bunches [4–6] is the effective synchrotron fre-
quency which will be different from the small-amplitude
synchrotron frequency in short bunches. We will show that
in long bunches the longitudinal dipole frequency Qdipf0
can be chosen as a substitute for the small-amplitude
incoherent synchrotron frequency Qs0f0. The longitudinal
coherent dipole frequency can be accurately measured
from the bunch signal, as we will show in the experimental
part of this paper. It should be however mentioned that
other choices for the characteristic synchrotron frequency
in long bunches are possible and can be useful depending
on the consideration contents. The frequency of small-
amplitude dipole oscillations can be calculated as [4,6]

Q2
dip

Q2
s0

¼ 2R

Nph

Z �max

0

Vrf

V0

�0ð�Þd�; (4)

where for the single rf the voltage form is Vrf ¼ V0 sinð�Þ,
h is the rf harmonic number,Np is the particle number, � ¼
zh=R is rf bucket radian, and � is the line density. The
small-amplitude bare synchrotron tune is given by

Q2
s0 ¼

qionV0hj�j
2�m��2c2

; (5)

where � is the machine slip factor. The dependence ofQdip

on the rms bunch length 	z for a Gaussian bunch is shown
(red curve) in Fig. 1. The bunch length 	z is dimensioned
in radians of the rf bucket, i.e. 	z ¼ Lrmsh=R, where Lrms

is the rms bunch length in meter.
In a realistic bunch in experiment, the bunch profile is

normally different from an analytic model, thus we con-
sider here another bunch form for comparison. For a para-
bolic longitudinal distribution (or elliptic bunch) with the

total half-length �p ¼ ffiffiffi
5

p
	z one obtains the analytic ex-

pression [6],
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FIG. 1. The longitudinal dipole oscillation frequency as a
function of the rms bunch length. The red curve is obtained
using Eq. (4) for a Gaussian bunch, the blue dashed curve is
given by Eq. (6), and the back chain curve is given by Eq. (7).

VLADIMIR KORNILOVAND OLIVER BOINE-FRANKENHEIM Phys. Rev. ST Accel. Beams 15, 114201 (2012)

114201-2



Q2
dip

Q2
s0

¼ 2�p � sinð2�pÞ
4 sinð�pÞ � 4�p cosð�pÞ ; (6)

which can be approximated in the case of a short bunch as

Qdip

Qs0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	2

z

2

s
: (7)

From the comparison in Fig. 1, it follows that for short
bunches with 	z & 0:6 rad the approximation Eq. (7) is
sufficient. For long bunches with 	z * 1 rad the dipole
frequencies for Gaussian and parabolic bunches start to
differ.

B. Spectrum of a long bunch with space charge

We use particle tracking simulations [7,8] in order to
investigate the combined effect of space charge and non-
linear synchrotron motion on transverse head-tail oscilla-
tions. The numerical codes have been validated [9] using
analytic results [2]. For the transverse space charge force, a
frozen electric field model is used, i.e., a fixed potential
configuration which follows the center of mass for each
bunch slice. This approach is justified in the rigid-slice
regime and can be considered as a reasonable approach for
moderate and strong space charge [10,11]. The applicabil-
ity for complicated processes as Landau damping, espe-
cially for the weak/moderate space charge, should be
studied in further papers. A round transverse cross section
and a Gaussian transverse beam profile were used in the
simulations in this work.

Figure 2 demonstrates differences in the transverse
mode frequencies for bunches of different lengths, and
with all the other parameters kept identical, including the
space charge parameter q ¼ 8. The three lowest-order

modes can be seen very well; the modes of the longer
bunch are shifted closer to the bare betatron tune than those
of the shorter bunch. In order to describe the bunch spec-
trum for arbitrary bunch length and space charge strength,
simulation scans over different parameters have been per-
formed. Our simulation results suggest that the airbag
bunch model [2] can be applied to the head-tail modes in
a long Gaussian bunch,

�Qk

Qs0

¼ �q

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
þ k2q2�

s
; (8)

where q� ¼ Qs�=Qs0 is a characteristic parameter depend-
ing on the bunch length and the nonlinear synchrotron
oscillations. In our case q� is used as a fitting parameter.
Keeping the space charge parameter constant, the bunch
length has been varied and the resulting eigenfrequencies
analyzed, see Fig. 3 for a scan with q ¼ 8. We observe
substantial changes in the bunch mode frequencies with
increasing bunch length. The parameter q� has been ob-
tained from these simulation scans. Figure 4 shows a
comparison between simulation results and the model
Eq. (8) for a fixed bunch length and for different space
charge parameters. The plot demonstrates that the model
Eq. (8) is fairly accurate over the parameter range of the
interest. As we additionally show in Fig. 4, there is a small
difference between transverse Gaussian bunch profiles
(with nonlinear transverse space charge) and transverse
K-V distributions (with linear space charge). In our simu-
lations we use the more realistic Gaussian profile.
The chain curves in Fig. 3 show that it would be not

correct to use the longitudinal dipole tune Qdip for the

parameter Qs�. An interesting observation is that the type
of the dependence of the mode frequencies on the bunch
length is similar to Qdip, being however slightly different.

Also, the scale factor betweenQdip and the real�Q is quite

different for k ¼ 1 and k ¼ 2. The bare synchrotron tune,
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FIG. 2. Example transverse spectra of long bunches from
particle tracking simulations, with space charge and nonlinear
synchrotron motion taken into account. Bunches with two differ-
ent rms length 	z are assumed, the space charge parameter
q ¼ 8 and the bare synchrotron tune Qs0 is kept constant. The
spectra clearly show the head-tail modes k ¼ 0, k ¼ 1, and k ¼
2. The tune shift �Q is related to the bare betatron tune as �Q ¼
Q�Qf0.
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FIG. 3. Results of a simulation scan (circles) over the rms
bunch length for a bunch with space charge parameter q ¼ 8.
Red corresponds to the k ¼ 1 head-tail mode and blue to k ¼ 2
modes. For comparison, the chain curves show an estimation
using Eq. (8) with q� ¼ Qdip=Qs0.
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which would mean q� ¼ 1, is not an adequate value, too,
�Q would then be a constant for changing bunch length
and it would correspond to the value of the chain curve at
small 	z.

Simulation results for practical usage are presented in
Fig. 5. These q� values can be included in Eq. (8) in order
to estimate the space charge tune shift of the bunch eigen-
frequencies for a given bunch length. The chain line dem-
onstrates again the difference betweenQs� which describes
the tune shift and the longitudinal dipole frequency.

C. Transverse decoherence

1. Linear decoherence

First, we discuss the linear transverse decoherence due
to chromaticity, i.e., the only source of the tune shift is the

linear dependence of the betatron tune shift on the mo-
mentum shift �Q�=Q ¼ ��p=p. As a result of an initial

transverse displacement xð�Þ ¼ A0, a bunch oscillates in
the corresponding plane (here x). As we consider the linear
case, all the particles have the identical synchrotron fre-
quency Qsf0. The betatron phase shift related to the bare
tune Q0 has a harmonic dependency along a synchrotron
period. Hence, after one synchrotron oscillation, the beta-
tron phase shift is exactly compensated and the transverse
amplitude is equal to the initial displacement A0. Assuming
the Gaussian momentum distribution, the amplitude of the
bunch offset evolves with the turn number N as [12]

AðNÞ ¼ A0 exp

�
�2

�
�Q0
p

Qs

sinð�QsNÞ
�
2
�
; (9)

here 
p is the normalized rms momentum spread. Figure 6

shows an example for bunch decoherence after a rigid kick.
It demonstrates that a higher chromaticity provides a faster
decoherence, and that after the synchrotron period Ns ¼
1=Qs the initial offset amplitude appears again, which is
called recoherence.

2. Decoherence with space charge

Transverse space charge causes a betatron frequency
shift, which depends on the particle transverse amplitude
and on the longitudinal particle position in the bunch. The
decoherence behavior is thus very different from the linear
decoherence at low bunch intensities Eq. (9). Figure 7
shows examples of the bunch oscillations after a rigid
kick for three different values of the space charge parame-
ter. The chromaticity corresponds to �b ¼ 4:5, where
�b ¼ Q0�Lb=ð�RÞ is the chromatic phase shift over the
full bunch length Lb; the bunch rms length is 	z ¼
1:06 rad. We observe the periodic recoherence with the
periodicity 770 turns (q ¼ 7, top), 1270 turns (q ¼ 12,

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0.6  0.7  0.8  0.9  1  1.1  1.2

q ∗
 =

 Q
s∗

 / 
Q

s0

σz (radian)

k=1

k=2

FIG. 5. Summary of the simulation scans for the effect of the
bunch length on the eigenfrequencies of the head-tail modes k ¼
1 and k ¼ 2 with space charge. For comparison, the chain curve
shows the longitudinal dipole frequency from Eq. (4) for a
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FIG. 6. A particle tracking simulation for a Gaussian bunch
after an offset kick �xð�Þ ¼ const without space charge and for a
linear rf bucket, Qs ¼ Qs0 ¼ 0:01. The full lines show the time
evolution of the bunch offset for the chromaticities �Q0 ¼ �4:3
(blue) and �Q0 ¼ �12:5 (red), the dashed lines are analytical
results and are given by Eq. (9).
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FIG. 4. Results of a simulation scan over the space charge
parameter for a bunch with the rms length 	z ¼ 1:06 rad. The
crosses show the eigenfrequencies of the modes k ¼ 1 and k ¼ 2
for bunches with a transverse K-V distribution, while the circles
are for bunches with a Gaussian transverse profile. The chain
curves are given by Eq. (8) with the coefficients q� ¼ 0:95 for
k ¼ 1 and q� ¼ 0:83 for k ¼ 2, which corresponds to the results
summarized in Fig. 5.
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middle), and 1640 turns (q ¼ 16, bottom), while the low-
intensity recoherence would have a periodicity of 100 turns
for the same parameters.

The key in understanding the decoherence for a bunch
with transverse space charge is the representation of the
initial kick as a superposition of the bunch head-tail eigen-
modes,

A0 ¼
X
k

ak exp

�
�i

�b�

�b
þ i�k

�
�xkð�Þ; (10)

where we have extracted the chromatic phase shift along
the bunch with the corresponding phase �k for each ei-
genfunction. The second key is the fact that the different
eigenmodes are prone to Landau damping mechanisms, but
with different intensity thresholds and damping rates.
Landau damping due to the space charge tune spread along
the bunch [11,13,14] is the most important mechanism in
the beam parameter regime considered in the simulations
of this work. In the presence of space charge especially the
negative and the high-k eigenmodes present in the initial
kick Eq. (10) are quickly suppressed, so that after a tran-
sition period a mixture of the survived eigenmodes con-
tinues to oscillate.

In Ref. [15] we have discussed in detail the case q ¼ 1,
where all the head-tail modes k � 1 are strongly sup-
pressed by Landau damping such that the mode k ¼ 0 is
left alone. For stronger space charge, as in Fig. 7, the
modes k � 2 are damped and the resulting oscillation is
the mixture of the k ¼ 0 and k ¼ 1 modes. The recoher-
ence periodicity seen in Fig. 7 corresponds exactly to the
frequency difference between these two modes, as it is the
case for the wave beating. In a real machine there are often
nonlinear damping mechanisms which would further sup-
press the k ¼ 0 and k ¼ 1 modes, but in the simulation we
only have the space charge induced Landau damping
which is zero for the k ¼ 0 mode and is very weak for
the k ¼ 1 mode at these q parameters.
It is obvious, and can be seen in Eq. (10), that the

composition of the eigenmodes after a rigid kick depends
on the chromaticity. This is also demonstrated in Fig. 8
which shows a comparison of the bunch decoherence for
three different chromaticities. The bunch parameters cor-
respond to Fig. 7; the space charge parameter is chosen as
q ¼ 7. We see that the periodicity of 770 turns does not
change. It corresponds to the frequency difference �Q ¼
Qk¼1 �Qk¼0 ¼ 0:13Qs0. The reason for the different os-
cillation amplitudes in Fig. 7 is the increasing contribution
of higher-order modes k � 2 with growing � in the eigen-
mode mixture of the initial rigid bunch offset [see Eq. (10)
]. Recall that these modes are quickly suppressed for the
parameters of the bunch and the resulting recoherence is a
beating of the remaining k ¼ 0 and k ¼ 1 modes.
The airbag [2] eigenmodes �xkð�Þ ¼ A cosðk��=�bÞ can

be taken as a reasonable approximation [14] of the
eigenfunctions in a Gaussian bunch. The rigid offset
decomposition Eq. (10) can then be solved and the
resulting mode coefficients are a0 ¼ 2=�b sinð�b=2Þ,

FIG. 8. Transverse bunch decoherence for a bunch with space
charge parameter q ¼ 7 from particle tracking simulation for
different chromaticities. The black curve: �b ¼ 3, the red curve:
�b ¼ 4:5, and for the blue curve: �b ¼ 6. The recoherence
results from a mixture of the k ¼ 0 mode and k ¼ 1 mode,
�Qk¼1 ¼ 0:13Qs0 (periodicity 770 turns).

FIG. 7. Transverse bunch decoherence from particle tracking
simulations for a Gaussian bunch after a rigid kick �xð�Þ ¼ const
for different space charge parameters. Top plot: q ¼ 7, middle
plot: q ¼ 12, and for the bottom plot: q ¼ 16. The bare syn-
chrotron tune is Qs0 ¼ 0:01, i.e., the low-intensity recoherence
has a periodicity of 100 turns. After the transition period of
higher-order mode damping, the periodicity always corresponds
to the frequency difference �Q ¼ Qk¼1 �Qk¼0. Top plot:
�Qk¼1 ¼ 0:13Qs0 (periodicity 770 turns), middle plot:
�Qk¼1 ¼ 0:079Qs0 (periodicity 1270 turns), and for the bottom
plot �Qk¼1 ¼ 0:061Qs0 (periodicity 1640 turns).
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a1 ¼ 4�b=j�2
b � �2j cosð�b=2Þ, and a2 ¼ 4�b=j�2

b �
4�2j sinð�b=2Þ. The negative modes have the same coef-
ficients but can be disregarded in the case of a bunch with
space charge [11,14], because of their large damping rates.
These coefficients are plotted in Fig. 9, where we see that
for the chromaticity range of interest the relative part of the
k ¼ 2 mode increases with growing �b. The higher-order
modes follow this trend. The contribution of the k ¼ 0 and
k ¼ 1 modes thus decreases as we also can observe in the
simulations, see Fig. 8. A perfect agreement with the
coefficients in Fig. 9 cannot be expected, since the analyti-
cal model is for an airbag [2] bunch.

III. MEASUREMENTS

Transverse decoherence experiments have been per-
formed in the heavy-ion synchrotron SIS18 [16] at GSI
Darmstadt. Bunches of Ar18þ40 ions were stored at the

energy of 100 MeV=u and kicked transversally with a
kick duration of one turn. The rf harmonic number was
h ¼ 4 and all the four bunches had generally an identical
behavior. The beam position monitors (BPMs) provide a
higher quality signal in the vertical plane than in the
horizontal one due to a smaller plate gap, thus we use the
vertical BPM signals in the results presented here. The
vertical bare tune was around Q0 ¼ 4:31 although it could
vary for different intensities and machine parameters.
SIS18 general parameters are R ¼ 34:492 m, �t ¼ 5:45,
and � � �1:4.

Similar to the theory section, first we discuss the longi-
tudinal coherent dipole frequency. Figure 10 demonstrates
the bunch spectrum obtained from the sum BPM signal.
The satellites of the central frequency are well resolved;
the peaks are equidistant which provides the longitudinal
dipole frequency. The longitudinal dipole frequency deter-
mined in this way is Qdip ¼ 2:5� 10�3; the peak rf volt-

age was V0 ¼ 9 kV here. The bare synchrotron tune can
also be accurately determined using Eq. (5) and it isQs0 ¼
3:24� 10�3 in this case. Note the large difference between

the bare synchrotron frequency and the dipole frequency.
Using the curves from Fig. 1 we can obtain the rms bunch
length 	z ¼ 1:0 rad, which is a typical length in the ex-
periments at SIS18.
The first example for the decoherence measurements

is presented in Fig. 11 and 12. Figure 11 shows the turn-
per-turn transverse bunch offset after the kick. Figure 12
demonstrates the spectrum of these bunch oscillations;
the frequency on the horizontal axis is normalized by
the bare synchrotron tune. The red line is for the spec-
trum of the whole bunch and shows mainly peaks of two
modes which we can identify as the k ¼ 0 mode and the
k ¼ 2 mode. If we calculate a Fourier transform for the
bunch head, its spectrum (the blue line) clearly reveals
other peaks, so that we can identify five head-tail
modes, see Fig. 12. The spectrum is very different
from the case without collective effects: the lines are
not equidistant, the negative modes (k < 0) are sup-
pressed. The fact that the mode tune shifts are consistent
with the space charge model can be proved by calculat-
ing the space charge parameter,
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q ¼ k2q2� � ð�Qk=Qs0Þ2
�Qk=Qs0

; (11)

which corresponds to the model Eq. (8). The synchro-
tron oscillation parameter q� for the modes k ¼ 1 and
k ¼ 2 is obtained from the results given in Fig. 5. �Qk

is the tune shift of the bunch mode from the measured
spectrum. Here and for the examples to follow we
summarize the space charge parameters q obtained
from the different eigenfrequencies of the spectra in
Fig. 13. The relevant bunch parameters are summarized
in Table I. The values for the modes from Fig. 12 are
shown in Fig. 13 with the blue circles, q � 10. Since
this was a rather short bunch, 	z ¼ 0:66 rad, the q�

parameter was close to 1.0 and thus it was possible to
estimate the space charge parameter for the k ¼ 3 mode
as well.
Figure 13 demonstrates a certain consistency between

different head-tail modes for the space charge parameter,
that, however, cannot be expected to be perfect. The model
Eq. (8) is based on the airbag [2] bunch which is reason-
able, but still an approximation, for a Gaussian bunch [14].
The bunch spectra are also weakly affected by the facility
impedances, image charges, and nonlinear field compo-
nents neglected in our analysis. Finally, in our simulations
Gaussian bunch profiles in the transverse and in the longi-
tudinal plane have been assumed. It is a good, but not
exact, description for the bunches in the machine
experiments.
The space charge parameter q ¼ �Qsc=Qs0 can be addi-

tionally estimated using Eq. (1) and the measured bunch
parameters. The particle number and the bunch length
could be measured with a reasonable accuracy. The trans-
verse beam radius, which enters the space charge tune shift
as squared ("y ¼ a2yQ0y=R, ay is the vertical rms radius)

and is thus especially important, could not be determined
with a satisfactory precision, as it was also the case in
the previous coasting-beam measurements [17] at SIS18.
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FIG. 13. Summary for the space charge parameter determined
from the coherent head-tail spectra of different Ar18þ40 bunched

beams in the SIS18 synchrotron. The method is given by Eq. (11)
, with the coefficients q� corresponding to Fig. 5. The spectra are
shown in Fig. 12 (blue circles), Fig. 15 (red squares), Fig. 18
(black crosses), and in Fig. 20 (cyan triangles).

TABLE I. Bunch parameters for the signals shown in this
paper and the space charge parameter q obtained from the
transverse spectra. The q values from the different head-tail
modes for every bunch are summarized in Fig. 13. In the
first case the rf voltage was V0 ¼ 14 kV; in the last three cases
V0 ¼ 9 kV.

Signals

Symbols in

Fig. 13

	z,

rad

�b Qdip,

10�3

Qs0,

10�3 q

Figs. 11 and 12 Blue circles 0.66 � 3 3.63 4.0 � 10

Figs. 14 and 15 Red squares 1.15 � 5 2.35 3.24 � 9

Figs. 17 and 18 Black crosses 1.2 � 5 2.28 3.24 � 4:5

Figs. 19 and 20 Cyan triangles 1.0 � 0 2.5 3.24 � 4
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FIG. 14. Time evolution of the bunch offset in the vertical
plane at SIS18 after a transverse kick. The recoherence period-
icity corresponds to the mix of the dominating head-tail modes
k ¼ 0 and k ¼ 2 with �Qk¼2 ¼ 0:91� 10�3, giving the peri-
odicity of 1100 turns.
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FIG. 12. Transverse coherent spectrum for the bunch from
Fig. 11, Qs0 ¼ 4:04� 10�3. The red spectrum is obtained
from a frequency analysis of the complete bunch offset, while
the blue spectrum is a result of a frequency analysis for the
bunch head. In the complete bunch spectrum the mode k ¼ 2
dominates, and the bunch head spectrum reveals the uneven
modes k ¼ 1, k ¼ 3 but also the mode k ¼ 4. The frequencies
of the head-tail modes provide the space charge parameter q �
10, see blue circles in Fig. 13. The bunch length corresponds to
	z ¼ 0:66 rad, �b � 3.
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As an example, here we provide an estimation for the
bunch presented in Figs. 11 and 12. The transverse rms
emittances were �y ¼ 6:2 mmmrad, �x ¼ 8:4 mm rad,

number of ions per bunch was 5:1� 109. Using these
parameters, the bunch length, and the bare synchrotron
tune (see Table I), we obtain from Eqs. (1) and (2)
qest � 7. In this work we make no claim on a perfect
agreement of the q values obtained from the transverse
spectra with the q estimations provided by the bunch
parameters and Eq. (1), mainly due to the uncertainty in
the transverse beam size measurements at SIS18.

In the next example we show a longer bunch, 	z ¼
1:15 rad, due to a lower rf voltage, see Table I. The
transverse bunch oscillations after the kick are shown in
Fig. 14 and the corresponding spectrum is shown in Fig. 15.
In comparison to the previous example (Figs. 11 and 12),
the bunch here is longer, but the particle number is higher
and the synchrotron tune is larger, thus the space charge
parameter is similar, q � 9. As we can see in Fig. 15, the

spectrum is dominated by two modes, the k ¼ 0 mode at
the bare tune, and another one at �Q ¼ 0:91� 10�3,
which gives the periodicity of the bunch recoherence, see
Fig. 14. The mode k ¼ 1 is suppressed as is the case in the
previous example, and it is to be expected that here we have
the k ¼ 2 mode again. Additionally, this could be proved
as follows. Plotting the bunch vertical traces and subtract-
ing the total bunch offset, thus reducing the contribution of
the k ¼ 0 mode, we observe a clear two-knot structure of
the k ¼ 2 modes, see Fig. 16. The frequencies of the
further peaks in Fig. 15 correspond rather well to the space
charge model with q � 9.
In the next example we demonstrate a bunch decoher-

ence dominated by a mixture of the k ¼ 0 mode with the
k ¼ 1 mode; the bunch oscillations are shown in
Fig. 17, the spectrum is shown in Fig. 18. The horizontal
chromaticity was partly compensated, by a half of the
natural value, the associated nonlinearities probably
contributed to establishing of the longer bunch and to a
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FIG. 16. Traces of the transverse bunch signal for 100 con-
secutive turns for the bunch from Figs. 14 and 15. This result
proves that the mode k ¼ 2 dominates during the process of
bunch decoherence.
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FIG. 17. Time evolution of the bunch offset in the vertical
plane at SIS18 after a transverse kick. The recoherence period-
icity corresponds to the mix of the dominating head-tail modes
k ¼ 0 and k ¼ 1 with �Qk¼1 ¼ 0:68� 10�3, giving the peri-
odicity of 1470 turns.
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FIG. 18. Transverse coherent spectrum for the bunch from
Fig. 17, Qs0 ¼ 3:24� 10�3. The mode k ¼ 1 dominates, the
spectrum shows clearly the mode k ¼ �1, with the eigenfre-
quency corresponding well to the model Eq. (8). The frequencies
of the head-tail modes provide the space charge parameter
q � 4:5, see black crosses in Fig. 13. The bunch length corre-
sponds to 	z ¼ 1:2 rad, �b � 5.
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FIG. 15. Transverse coherent spectrum for the bunch from
Fig. 14, Qs0 ¼ 3:24� 10�3. Head-tail modes up to k ¼ 5 are
well seen, except for the modes k ¼ 1. The frequencies of the
head-tail modes provide the space charge parameter q � 9, see
red squares in Fig. 13. The bunch length corresponds to 	z ¼
1:15 rad, �b � 5.
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stronger damping of the k ¼ 2 mode. The recoherence is
thus quite slower, nearly one and a half thousand turns (see
Fig. 17), which is given by the frequency of the k ¼ 1
mode in good agreement with the bunch spectrum, Fig. 18.
Another outstanding feature of this spectrum is the clear
presence of the k ¼ �1 mode, with the frequency shifted
strongly downwards, in a good quantitative agreement with
the space charge model, see black crosses in Fig. 13. The
strong negative shifts for the k < 0 modes have been
predicted by the space charge models [2,11] and observed
in the numerical simulations [3,9]. For strong space charge,
due to nearness of the negative head-tail modes to the
incoherent tune these modes are strongly Landau damped.
In part, the presence of the k ¼ �1 mode was probably
possible here due to rather moderate space charge q � 4:5
in this case.

The transverse decoherence observed in the case pre-
sented in Figs. 19 and 20, is very different from the third
example, Fig. 17, although the space charge parameter is
similar, q � 4, as well as the bunch length, see Table I. We
see that the recoherence periodicity is quite faster which is
due to the dominance of the k ¼ 2 mode as it is confirmed
in the bunch spectrum, see the red line in Fig. 20. More
remarkable, the bunch decoherence in Fig. 19 shows a
much weaker amplitude drop between the recoherence
peaks. The reason is the compensated vertical chromaticity
to nearly zero, according to the set parameters. This is
predicted by the linear theory Eq. (9), also shown in
Fig. 6. According to the interpretation of the mode mixture,
at a small chromaticity the part of the k ¼ 0 mode is very
large, see Fig. 9. The spectrum from the measurements in
Fig. 20 confirms this. The relatively small part of the k ¼ 2
mode provides the periodicity of a weak recoherence.
For the determination of the space charge parameter, the
eigenfrequency of the k ¼ 1 mode is needed which could
be obtained by a frequency analysis of the bunch head

oscillations, see the blue line in Fig. 20, and the resulting q
values in Fig. 13 (cyan triangles).

IV. CONCLUSIONS

The transverse decoherence and coherent eigenspectra
in long bunches with space charge have been studied using
measurements at the SIS18 heavy-ion synchrotron and
particle tracking simulations.
A model Eq. (8) for the combined effect of space charge

and nonlinear synchrotron oscillations has been formu-
lated, with the fitting parameter q� obtained from the
particle tracking simulations for the low-order head-tail
modes. The space charge parameter q ¼ �Qsc=Qs0 of
the bunch can be determined for every head-tail
mode from the corresponding frequency shift �Qk, see
Eq. (11), according to the given bunch length.
The transverse decoherence in bunches with space

charge has been observed experimentally and quanti-
tatively explained, using simulations and analytic models.
An initial rigid bunch offset can be decomposed into head-
tail modes. The chromaticity determines the contribution
of the different head-tail modes. Using the airbag [2]
eigenmodes as an approximation for the bunch head-tail
modes, the relative amplitudes can be found analytically,
see Fig. 8.
Different head-tail modes experience also different

Landau damping rates. After a transition period the bunch
oscillation is a combination of the remaining modes. For
example, it can be a mix of the k ¼ 0 mode and k ¼ 1
mode. The periodicity of the bunch recoherence corre-
sponds then to the frequency difference between these
two modes. Our simulation examples demonstrate this
explanation of the bunch decoherence for different space
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FIG. 19. Time evolution of the bunch offset in the vertical
plane at SIS18 after a transverse kick. The vertical chromaticity
was compensated for this beam to �y � 0. The recoherence

periodicity corresponds to the mix of the dominating head-tail
modes k ¼ 0 and k ¼ 2 with �Qk¼2 ¼ 1:86� 10�3, giving the
periodicity of 540 turns.

10-5

10-4

10-3

10-2

10-1

100

-1 -0.5  0  0.5  1  1.5  2  2.5  3

S
pe

ct
ru

m
 P

ow
er

 (
ar

b.
 u

ni
ts

)

∆Q / Qdip

k=0 1 2

FIG. 20. Transverse coherent spectrum for the bunch from
Fig. 19, Qs0 ¼ 3:24� 10�3. The red spectrum is obtained
from a frequency analysis of the complete bunch offset, while
the blue spectrum is a result of a frequency analysis for the
bunch head. The mode k ¼ 0 highly dominates, in the complete
bunch spectrum the mode k ¼ 2 is stronger, and the bunch head
spectrum reveals the uneven modes k ¼ 1, k ¼ 3. The frequen-
cies of the head-tail modes provide the space charge parameter
q � 4, see cyan triangles in Fig. 13. The bunch length corre-
sponds to 	z ¼ 1:0 rad, �b � 0.
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charge parameters and for different chromaticities, see
Figs. 7 and 8. An important Landau damping mechanism
in bunches with space charge is due to the variation of the
space charge tune shift along the bunch [11,13,14].

Experimental observations of the transverse bunch de-
coherence with space charge in the SIS18 heavy-ion syn-
chrotron at GSI are presented. The space charge parameter
q has been determined from the bunch spectra for different
head-tail modes, summarized in Fig. 13. The work is
focused on the frequency positions of the bunch spectrum
peaks; the peak widths in our observations were dominated
by the Fourier window so the physical peak width is out of
the work scope. With increasing bunch length we observe
that nonlinear synchrotron oscillations modify the head-
tail mode frequencies. The bunch decoherence always
corresponded to the mix of the dominating modes, in our
case the k ¼ 0 and k ¼ 1 modes or the k ¼ 0 and k ¼ 2
modes. Compared to the simulation it is more difficult to
predict which modes would be faster suppressed due to
additional damping mechanisms in a real machine. In the
experiment the oscillations are further damped after the
transition period, possibly due to the nonlinear magnet
field errors. The periodicity of the recoherence was exactly
confirmed by the mode frequencies from the spectra. A
direct comparison of the first two examples (Figs. 11 and
12 vs Figs. 14 and 15) demonstrates the role of the
bunch length. A comparison of the fourth example
(Figs. 19 and 20) with the others demonstrates the role of
the chromaticity: at a nearly zero chromaticity the mode
k ¼ 0 dominates the bunch decoherence alone. The third
example (Figs. 17 and 18) shows a decoherence with a
pronounced flat between the recoherence peaks, corre-
sponding to the mix of the k ¼ 0 and k ¼ 1 modes.

The results of this work apply to the evolution of a
possible transverse injection offset during bunch-to-bucket
transfer from one ring to another. Transverse coherent
spectra can be used not only to measure the betatron
tune, the head-tail mode frequencies can be used to extract
useful information about the long intense bunches, for
example the incoherent space charge tune shift. The effects
of space charge and rf nonlinearity have also direct con-
sequences for the chromaticity measurements which use
the decoherence/recoherence after a kick [18]. As we have
previously discussed in Ref. [15], Landau damping due to
space charge suppresses the k � 1 modes with different
damping rates and makes the head-tail phase shift within
the bunch inapplicable for a chromaticity measurement.
Only in the case when the eigenmode k ¼ 0 continues to

oscillate alone is it possible to extract the chromaticity
using a different (from the no-space-charge case [18])
expression. However, in a general case a combination of
the eigenmodes survives during the first recoherence peri-
ods, and the methods from [15,18] do not provide a useful
chromaticity calculation, as we have also observed for the
signals presented in this paper. Hence, the decoherence
with space charge and rf nonlinearity should be analyzed
in detail in future papers.
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