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Independent component analysis (ICA) is a powerful blind source separation (BSS) method. Compared

to the typical BSS method, principal component analysis, ICA is more robust to noise, coupling, and

nonlinearity. The conventional ICA application to turn-by-turn position data from multiple beam position

monitors (BPMs) yields information about cross-BPM correlations. With this scheme, multi-BPM ICA

has been used to measure the transverse betatron phase and amplitude functions, dispersion function,

linear coupling, sextupole strength, and nonlinear beam dynamics. We apply ICA in a new way to slices

along the bunch revealing correlations of particle motion within the beam bunch. We digitize beam signals

of the long bunch at the Los Alamos Proton Storage Ring with a single device (BPM or fast current

monitor) for an entire injection-extraction cycle. ICA of the digitized beam signals results in source

signals, which we identify to describe varying betatron motion along the bunch, locations of transverse

resonances along the bunch, measurement noise, characteristic frequencies of the digitizing oscilloscopes,

and longitudinal beam structure.
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I. INTRODUCTION

Independent component analysis (ICA) is a powerful
blind source separation (BSS) method [1]. ICA’s major
advantage over the typical BSS method, principal compo-
nent analysis (PCA), which is the BSS foundation of the
well-known model independent analysis (MIA) [2], is that
it is more robust to noise, coupling, and nonlinearity [3–5].
Because of its robustness and generality, ICA has been
widely applied in different fields, such as image feature
extraction, audio separation, brain imaging, telecommuni-
cations, and econometrics [1], but using ICA for beam
analysis is relatively new [3–8].

ICA and PCA separate data into source signals without a
beam dynamics model or knowledge of measurement de-
tails. In PCA, the separated source signals are uncorrelated,
while the source signals from ICA are independent, which
mathematically is a much stronger property. It is easy to
show that uncorrelatedness is not sufficient to cleanly
separate source signals [1], especially in the presence of
coupling and nonlinearity [3–5].

We are aware of post-BSS processing techniques that
complete separation of mixed sources resulting from PCA
such as those described in Refs. [9,10]. However, these
techniques are not BSS methods. They require additional
information from a model and additional assumptions of
the source signals other than the original PCA assumption

of uncorrelatedness. We choose to use ICA for two rea-
sons: no imposed data model and no additional assump-
tions of the source signals other than independence.
ICA and PCA model data as a linear combination of

independent components (ICs) and principal components
(PCs), respectively. Each IC consists of a spatial mode and
a temporal mode describing a source signal’s strength in
space and time. Likewise, each PC possesses a spatial
pattern and a temporal pattern that is associated with a
source signal’s strength in space and time.
Previous application of ICA to beam analysis uses the

conventional multibeam position monitor (BPM) scheme,
where turn-by-turn position data from multiple BPMs
yields information about cross-BPM correlations. Multi-
BPM ICA has been used to measure the transverse betatron
phase and amplitude functions, dispersion function, linear
coupling, sextupole strength, and nonlinear beam dynam-
ics [3–5].
We apply ICA in a new way to slices along the single

beam bunch in the Los Alamos Proton Storage Ring (PSR,
see Table I for relevant parameters). We digitize beam
signals of the long PSR bunch with a single device (BPM
or fast current monitor) for an entire injection-extraction
cycle, nominally 1745 turns. Sufficiently digitized signal
bins are spatially distributed along the beam bunch, giving
adequate spatial structure and providing ICA with enough
raw data. ICA of the digitized beam signals yields corre-
lations of particle motion within a beam bunch and pro-
vides a new perspective to investigate beam dynamics
within the bunch.
In this paper, we adopt the ICA algorithm second order

blind identification (SOBI) [11] that utilizes the time struc-
ture of measured beam signals and deciphers the source
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signals by simultaneous diagonalizing multiple autocovar-
iance matrices, see Appendix C.

We organize this paper as follows: The formalism of
ICA and PCA and the nomenclature used in this paper are
introduced in Appendices A, B, and C. We describe slices
along the bunch and our data collection in Sec. II. In
Sec. III, we discuss results of ICA applied to slices along
the bunch, including identification and experimental veri-
fication of several source signals. The conclusions regard-
ing ICA of slices along the bunch are given in Sec. IV.

II. ICA OF SLICES ALONG LONG BUNCH BEAMS

In previous applications to beam analysis, ICA is ap-
plied to data frommultiple BPMs [3–6]. We apply ICA in a
new way to slices along the bunch [6–8]. We digitize beam
signals from a single device (BPM or fast current monitor)
for a full injection-extraction cycle. We divide the digitized
signal into slices of equal length using the 0.5 ns digitiza-
tion bin length. The long digitized signal vector is stacked
turn by turn to form the data matrix x,

xðtÞ ¼

x1ð1Þ x1ð2Þ . . . x1ðNÞ
x2ð1Þ x2ð2Þ . . . x2ðNÞ
..
. ..

. . .
. ..

.

xMð1Þ xMð2Þ . . . xMðNÞ

0
BBBBBB@

1
CCCCCCA; (1)

such that each rowofx is beam signal froma single slice and
each column of x is beam signal from a single turn. In this
picture, turn number is the temporal variation, and slice
number is the spatial variation. The last turn beam profile
plotted in Fig. 1 is an example of the last column of x.

The slices are located at a fixed longitudinal phase or
position along the bunch. The spatial mode describes the
IC’s strength along the bunch. The ICs produced by ICA
applied to slices along the bunch describe longitudinal
beam structure and motion that varies along the bunch.

In time series ICA, source signal independence trans-
lates to source signals with nonoverlapping power spectra
[11]. Source signals with overlapping power spectra lead to
redundant singular values (SVs). The SVs from the SOBI
algorithm whitening, Eq. (C5), form a continuum of SVs
with small but significant magnitude, Fig. 2. There is no

obvious cutoff threshold �c to limit the redundancy of the
data, and some source signals possess SVs in the contin-
uum, so we must include many SVs from the continuum in
our analysis. This is quite different than applications of
multi-BPM ICA and multi-BPM PCA, where only a few
SVs are significant [2–6].
We digitize beam signals from a fast current monitor,

SRWC41 [12], and a short stripline BPM with 400 MHz
peak frequency response, SRWM41. We digitized
SRWM41’s horizontal and vertical sum and difference
signals for ICA. The integral of the sum and difference
signals are calculated offline and also analyzed by ICA.
ICA can be applied to individual beam signals or com-

binations of signals to investigate coupling between
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FIG. 1. The last turn beam profile as an example of the last
column of the data matrix x in Eq. (1). The PSR’s revolution
period is 358 ns corresponding to 716 slices.
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FIG. 2. A typical SV distribution when applying ICA to slices
along the bunch. The SVs are calculated during the whitening
portion of the SOBI algorithm, Eq. (C5).

TABLE I. PSR relevant parameters.

Typical accumulation 1745 turns (625 �s)
Extended accumulation 3420 turns (1250 �s)
Optional storage 558 turns (200 �s)
Betatron tune (�x; �y) (3.19, 2.19)

LANSCE linac frequency 201.25 MHz

Subharmonic

(linac frequency/revolution frequency)

72.07

Revolution frequency 2.792 MHz

Revolution period 358 ns
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horizontal and vertical planes. In this paper, we only report
results of ICA applied to a single beam signal. We typically
ran our analysis for L ¼ 30 SVs, K ¼ 50 time lags, and as
many turns as possible.

III. INDEPENDENT COMPONENTS

We apply ICA to the digitized beam signals from
SRWC41 and SRWM41. The ICs resulting from ICA
need to be related to a physical source. Since the longitu-
dinal dynamics in the PSR are very complex and ICA is a
numerical procedure, there is no analytical model to assign
ICs to a physical source. We resort to measurements to gain
understanding of the ICs. In this section, we identify and
experimentally verify several ICs from ICA applied to
slices along the bunch.

The ICs presented in this section are represented by a
series of graphs; see Fig. 3 as an example. The top left
graph plots the spatial mode (blue) with the last turn beam
profile (green).

The bottom left graph plots the fast-Fourier-transform
(FFT) of the spatial mode (top left) and reports the peak
integer revolution harmonic. The spatial mode FFT is over
one revolution, so the resolution is limited to an integer ð1=1Þ.

The top center graph plots the integrated spatial mode
(top left) (blue) and the last turn beam profile (green).
Integrating the spatial mode can lead to better IC interpre-
tation. We plot the integrated spatial mode only for ICs
derived from SRWM41’s sum and difference signals.

The bottom center graph plots the correlation of the IC’s
mean-zero signal constructed via Eq. (C11) and each time-
lagged, whitened data matrix zðt� �Þ. The SV from
Eq. (C5) is reported.

The top right graph plots the temporal mode, where turn
�1 is the last turn. The fractional revolution harmonic
result from a sinusoid fit is quoted.

The bottom right graph plots the FFT of the temporal
mode (top right) and indicates the peak fractional revolu-
tion harmonic. The temporal mode FFT resolution is equal
to one over the number of turns ð1=NÞ.
The IC’s total revolution harmonic is the sum of the

integer and fractional revolution harmonics. The frequency
of the IC’s signal is the product of total revolution har-
monic and revolution frequency.

A. Betatron ICs

ICA’s ability to obtain quality ICs representing betatron
motion is well established in previous applications ofmulti-
BPM ICA [3–5]. It is of interest to examine ICA’s betatron
motion result when applied to slices along the bunch. The
beammust undergo coherent betatron oscillation, which we
induce with a vertical single-turn kick 50 �s into a store
time after extended accumulation. The beam is stored for
420 turns (150 �s) after the single-turn kick.
The IC in Fig. 3 is derived from SRWM41’s vertical

difference signal and is identified as betatron motion be-
cause the fractional revolution harmonic (bottom right) is
close to the operating fractional betatron tune value and
because the temporal mode (top right) is only nonzero for
turns after the single-turn kick. For betatron motion ICs,
the fractional revolution harmonic equals the fractional
betatron tune, but the integer revolution harmonic is not
equivalent to the integer betatron tune.
The spatial mode (top left) has units proportional to the

derivative of current and indicates the strength of the
0.1805 fractional betatron tune oscillation along the beam
bunch. In this case it is easier to interpret the integrated
spatial mode (top center) because it has units proportional
to current. The integrated spatial mode maximums indicate
that the majority of particles undergoing coherent betatron
motion with a fractional tune of 0.1805 are located sym-
metric about the bunch center at slices 237 and 474 and
represent the coherent space charge tune shifted beam. The
fast oscillation slightly forward of the bunch center de-
scribes mixing of betatron tunes for the central time slices.
In theory, each slice possesses a slightly different fre-

quency due to the coherent space charge tune shift. If the
analysis includes ample time lags, ICA could recover a
distinct IC for each slice. From our analysis using 30 SVs
and 50 time lags, we identify 15 betatron ICs.
Wewish to compare the betatron ICs with the data matrix

FFT. We define the greatest strength location to be the frac-
tional revolution harmonic and slice where an IC is stron-
gest. The slice coordinate is determined by the integrated
spatial mode (top center) maximum. We calculate a leading
and trailing edge greatest strength location for each IC.
In Fig. 4, we compare the greatest strength locations of

the first 30 ICs with the tune distribution given by the data
matrix FFT along turn for each slice. The greatest strength
locations of the 15 betatron ICs reproduce the tune distri-
bution. The spatial mode (top left) in Fig. 3 replicates the
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FIG. 3. A typical betatron IC resulting from ICA of
SRWM41’s vertical difference signal for a single-turn kick.
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0.1805 fractional tune contour along the bunch of the tune
distribution in Fig. 4. There is no one IC that describes the
entirety of the coherent space charge tune shift. Although
the betatron ICs do not represent independent motion, they
do describe real beam motion. The betatron ICs must be
viewed in concert as in Fig. 4 to obtain the full picture of
the coherent space charge tune shift along the bunch.

Previous applications of multi-BPM ICA result in a
single tune measurement. ICA applied to slices along the
bunch yields a fuller picture of the particle dynamics for
long bunch beams.

Now for comparison, we apply PCA to the same data
matrix. A betatron PC is plotted in Fig. 5, which plots
similar quantities as the IC graphs. The IC (Fig. 3) and PC
are both component number 2 and possess the same SV, but
this does not imply that they describe the same source
signal. The PC in Fig. 5 describes a 0.1751 fractional
tune oscillation along the bunch.

The integrated spatial pattern indicates that the greatest
strength location of the 0.1751 fractional tune oscillation is
at the bunch center. The strength of the PC decays sym-
metrically about the peak current.

The full width half maximum of the temporal pattern
FFT (bottom right) peak is twice the ICA result in Fig. 3
(0.0063 compared to 0.0032) indicating that PCA is less
able to separate nearby frequencies.

The most significant difference between the ICA and
PCA result is that all of the betatron PCs are mixed with
other source signals. An example of coupling can be seen
in the temporal pattern FFT (bottom right) in Fig. 5, which
shows two distinct peaks at fractional revolution harmonics
0.1751 and 0.38. The source signal mixing is small in Fig. 5

as indicated by the temporal pattern FFT and has little
effect of the spatial pattern. Sometimes the coupling is
not small as for the PC plotted in Fig. 6.
The PC shown in Fig. 6 has dominant fractional revolu-

tion harmonic (bottom right) 0.46. The broad betatron peak
in the temporal pattern FFT (fractional revolution harmon-
ics 0.16–0.20) indicates that this PC mixes with much of
the tune continuum. The spatial pattern (top left) is a
mixture of betatron motion and the dominant source signal,
which we will describe latter in Sec. III D 1. The substance
of this PC is corrupted by the incomplete source separation
of PCA.
We compare the PCA result with the data matrix FFT in

Fig. 7, which is similar to Fig. 4 except plots the greatest
strength locations for the first 30 PCs. We include in Fig. 7
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FIG. 5. A typical betatron PC resulting from PCA of
SRWM41’s vertical difference signal for a single-turn kick.
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both PCs dominated by betatron motion like in Fig. 5 and
PCs dominated by a source signal and coupled with beta-
tron motion like in Fig. 6. All betatron PCs have peak
strengths located near the bunch center where the vertical
difference signal is largest because PCA is unable to
diagonalize the frequency continuum beyond its peak
strength and average location. It is clear from Fig. 7 that
PCA is unable to recover the coherent space charge tune
shift along the bunch.

B. Resonance ICs

We also identified resonance ICs from the single-turn
kick experiment. The resonance ICs are labeled component
number 21 and 22 in Fig. 4, where the fifth order resonance
island is located between slices 470 and 510. IC number 21
is plotted in Fig. 8.

We identify the IC as a fifth order resonance because the
temporal mode (top right) grows exponentially and be-
cause of the sharp 0.2 temporal mode FFT peak (lower
right). An oscillation with fractional tune of 0.2 has period
of 5 turns, which is observed in the correlation between the
resonance IC’s constructed signal and the time-lagged,
whitened data (bottom center). The correlation maximizes
every five time lags (each time lag is one turn) as the
whitened time-lagged data shifts in and out of phase with
the resonance IC’s constructed signal. The decay in the
correlation with time lag is due to weaker resonance
strength for earlier turns.

The spatial mode (top left), which is a good representa-
tion of the 0.2 fractional tune contour from the tune
distribution in Fig. 4, locates the majority of particles
undergoing resonance on the trailing edge for slices
470–510, coincident with the resonance island.
The exponential growth time constant T for the reso-

nance IC can be estimated by fitting an exponential func-

tion (en=T , where n is a turn index) to the temporal mode
envelope. Applying the exponential fit to turns after the
single-turn kick yields T ¼ 150 turns or 54 �s. T is the
time constant for the entire motion described by the reso-
nance IC, which contains frequencies of the 0.2 sidebands
of revolution harmonics 10–65 in proportions represented
by the spatial mode FFT (lower left). The time constant
calculated by ICA is a more complete picture than that of a
single frequency calculated by FFT.

C. Noise ICs

Not all ICs represent beam motion, some describe mea-
surement noise. An example noise IC from SRWM41’s
integral vertical sum signal is plotted in Fig. 9. We identify
the IC as noise because the correlation of the IC’s con-
structed signal and the time-lagged, whitened data (bottom
center) only possesses significant correlation with the zero
time-lagged data and because the temporal mode FFT
(bottom right) results in a frequency spectrum with no
distinct frequency peaks. Noise ICs also possess a large
spatial mode (top left) for time slices where beam is not
present and a constant amplitude temporal mode (top right),
confirming that the IC does not represent beam motion.
Using a PCA result, we can estimate the rms standard

deviation of the noise source from the SV. The SV from
PCA of random, mean-zero, Gaussian noise is

�i ¼ �i

ffiffiffiffi
N

p
; (2)
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SRWM41’s vertical difference signal for a single-turn kick.
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where � is the SV, � is the noise source’s rms standard
deviation,N is the number of turns, and i is the index of the
ith noise source. A SVof 4.226 (bottom center) yields � ¼
0:0949 arbitrary units. � has the same units as all spatial
modes derived from the same beam signal.

D. Oscilloscope ICs

Sources of oscilloscope ICs originate from the digitizing
oscilloscope. Oscilloscope ICs contain constant amplitude
sinusoidal spatial and temporal modes, which indicate that
they do not represent beam motion. They also possess
oscillatory correlation with the time-lagged, whitened
data. Oscilloscope ICs possess unusually sharp peaks in
both their spatial and temporal mode FFTs indicating that
they describe constant frequency components of the digi-
tized signal.

Oscilloscope ICs are always produced in pairs. ICA
regards a phase shifted sinusoidal signal as two sources
as in the sine angle addition formula,

sin½2�fnðtÞþ�ðxÞ�
¼ cos½�ðxÞ�sin½2�fnðtÞ�þsin½�ðxÞ�cos½2�fnðtÞ�; (3)

where f is a frequency, the turn index n is a function of
time t (temporal mode), and the phase � is a function of
space x (spatial mode). The phase shift describes a slippage
in the source signal’s initial phase each turn since the beam
signal is stacked according to the revolution frequency,
which in general is not an integer subharmonic of the
source signal. The pair ICs possess identical spatial and
temporal mode FFTs. The pair ICs’ spatial and temporal
modes only differ by a phase associated with a cosine and
sine-type oscillation.

Since their strength is an order of magnitude or more
weaker compared to the strongest source signal, the

interesting aspect about the oscilloscope IC result is
ICA’s capability to separate weak independent source
signals.

1. Oscilloscope clock ICs

We identify the IC in Fig. 10 as an oscilloscope clock IC
for reasons that will become clear later. The oscilloscope
clock IC is only produced from beam signals digitized by
our Lecroy LC684DXL oscilloscope.When the same beam
signals are digitized with our Lecroy LC584AXL oscillo-
scope, the oscilloscope clock IC is not observed. This
suggests that the oscilloscope clock IC represents some-
thing internal to the Lecroy LC684DXL oscilloscope.
Concluding the oscilloscope clock IC describes internal

workings of the oscilloscope helps to explain the precise
nature of the sinusoidal spatial mode (top left). The spatial
mode performs just under 11.5 oscillations in a turn. The
number of oscillations per turn may also be calculated by
adding the integer (bottom left) and fractional revolution
harmonics (bottom right).
We need to consider the ambiguity of the fractional

revolution harmonic with respect to the half integer. In
this example the fractional revolution harmonic can be
verified visually from the spatial mode (top left), but in
general this ambiguity needs resolution before the total
revolution harmonic is obtained.
The best and most reliable manner of determining an

IC’s total revolution harmonic is to use the IC’s constructed
signal. However, if the IC is identified as a pair, construct-
ing the signal via Eq. (C11) will only yield half of the
source signal. We must combine Eqs. (C11) and (3) to
construct the signal described by the pair ICs,

z ICi;j
¼ ~Ai � ~si þ ~Aj � ~sj; (4)
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FIG. 10. A typical oscilloscope clock IC resulting from ICA of
SRWM41’s vertical sum signal.
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FIG. 9. A typical noise IC resulting from ICA of SRWM41’s
integral vertical sum signal.
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where i and j are pair ICs. Once zICi;j
is constructed, it must

be unstacked. An FFTof the ICs’ constructed signal vector
will yield the total revolution harmonic for both ICs.

An FFTof the oscilloscope clock ICs’ constructed signal
vector yields a total revolution harmonic of 11.4599. The
frequency of the oscilloscope clock IC, calculated bymulti-
plying the revolution frequency by 11.4599, is an exact
32 MHz, indicating precision expected of a digital elec-
tronic system. The 32 MHz source internal to the LeCroy
LC684DXL oscilloscope is most likely a 32MHz bus clock
the processor uses to make 96 MHz [13].

Direct evidence of the 32 MHz oscilloscope clock IC is
found in the FFT of the digitized beam signal, Fig. 11,
which shows the revolution harmonics separated by the
revolution frequency. The pattern is broken by the peak at
32 MHz. The FFT confirms that the 32 MHz signal is an
independent source signal, possessing a nonoverlapping
power spectrum. The 32 MHz signal is not a revolution
harmonic or harmonic of another IC.

The 32 MHz signal has been observed for several years
in FFTs of SRWM41’s sum and difference signals, which
are traditionally digitized with the LeCroy LC684DXL
oscilloscope, but its source was not identified because the
FFT signal analysis approach only provides the source
signal frequency. With the additional spatial and temporal
mode information provided by ICA, we identify the source
of the oscilloscope clock IC with a 32 MHz clock internal
to the LeCroy LC684DXL oscilloscope.

2. Oscilloscope digitizer ICs

The oscilloscope digitizer IC is also associated with the
digitizing oscilloscope. An oscilloscope digitizer IC pro-
duced from ICA of SRWC41’s fast current signal is plotted
in Fig. 12. The oscilloscope digitizer IC shows some
dependence on the beam intensity and results from ICA
of every beam signal.

We use the procedure described in Sec. III D 1 to
resolve the fractional revolution harmonic’s ambiguity
about the half integer. The reconstructed data vector
FFT yields a total revolution harmonic of 89.5303. The
frequency of the oscilloscope digitizer IC, calculated by
multiplying the revolution frequency by 89.5303, is an
exact 250 MHz.
The beam signals are digitized at 2 GS=s on LeCroy

LC584AXL and LC684DXL oscilloscopes, which inter-
leave four 500 MHz digitizers to obtain the sampling rate.
The individual digitizer sample rate is 500 MS=s, and the
digitizer Nyquist frequency is 250 MHz. The oscilloscope
digitizer IC is an artifact of four 500 MHz digitizers
interleaving to obtain a 2 GS=s sample rate [13].

E. 201.25 MHz ICs

The 201.25 MHz IC is the first IC we identified. It
represents the 201.25 MHz longitudinal beam structure,
established by the LANSCE linac during acceleration, of
beam newly injected in the PSR. The 201.25 MHz IC is
produced by every beam signal but is best observed in
SRWM41’s vertical sum signal, Fig. 13.
The 201.25 MHz IC is identified by the character of its

temporal mode (top right), which has constant amplitude
for the first 1400 turns and suddenly reduces to noise for
the last 500 turns. The reduction coincides with the end of
accumulation and the beginning of storage, indicating that
the 201.25 MHz IC describes newly injected beam.
The 201.25 MHz ICs are produced in pairs, so we verify

the IC’s frequency using the procedure in Sec. III D 1. The
total revolution harmonic is 72.07136 as expected because
the PSR design revolution frequency is the 72.07 subhar-
monic of the 201.25 MHz linac frequency. Multiplying the
total revolution harmonic by the revolution frequency
yields exactly 201.25 MHz.
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FIG. 11. Frequency spectrum of the SRWM41 vertical sum
signal that produced the oscilloscope clock IC in Fig. 10.

0 200 400 600
−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

Slice

A
17

 (
A

rb
. U

ni
ts

)

wc41 e 9/25/2010

0 100 200 300
0

2

4

6

8

10

12

14

Integer Revolution Harmonic

|Y
(t

)|

Max 89

0 20 40
−1.0

−0.5

0.0

0.5

1.0

Time Lag

C
or

re
la

tio
n

SV = 1.360

−2000 −1000 0
−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

Turn

s1
7 

(A
rb

. U
ni

ts
)

Fit 0.4717

0 0.2 0.4
0.000

0.005

0.010

0.015

0.020

0.025

Fractional Revolution Harmonic

|Y
(t

)|

Max 0.4697

FIG. 12. A typical oscilloscope digitizer IC resulting from ICA
of SRWC41’s fast current signal.
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The power of ICA, which lies in the spatial mode (top
left), is most prominent for the 201.25 MHz IC. The spatial
mode is constant amplitude across the injection region and
zero outside. The spatial mode describes the injection
length each turn (pattern width). As we will show, the
spatial mode also describes the longitudinal phase of the
injected beam.

The spatial mode is a sinusoidal oscillation with period
5 ns, a 201.25 MHz period, and 58 peaks. Each peak
represents a single linac pulse (linac rf bucket) injected
into the PSR. The injection pattern width is 290 ns, which
divided by the 201.25 MHz period yields 58 linac pulses
injected per turn as indicated by the spatial mode peaks.

The spatial mode’s (top left) constant amplitude indi-
cates that the charge in each linac pulse does not vary
significantly across a turn. One might expect the spatial
mode to be positive like the newly injected beam current,
but the SOBI algorithm’s preprocessing constrains the
spatial mode to have an average of zero.

We now examine additional examples of the spatialmode
(top left) produced from beam signals collected under dif-
ferent injection schemes. The 201.25 MHz IC plotted in
Fig. 14 was produced from beam signal collected while
injecting a 50 ns patternwidth beam 120� early in the PSR’s
rf bucket. The spatial mode shows an injection region
100 slices wide, corroborating the pattern width.
Additionally, the spatial mode’s position has shifted for-
ward, confirming injection early in phase. The last turn
profile indicates that after 200 �s of storage the majority
of beam is located opposite in the rf bucket of where it was
injected.

The 201.25 MHz IC plotted in Fig. 15 was produced
from beam signals collected while injecting with a
‘‘notch’’ in the beam, illustrated by the spatial mode
(top left). In this example, we used the following notch

injection scheme: inject for 30 ns, no injection for
90 ns (notch), and inject for 30 ns. The spatial mode
describes an injection region as two widths of 60 slices
separated by 180 slices, thus replicating the notch injection
scheme.
The following is an example of the power of ICA and the

201.25 MHz IC. At the beginning of the 2010 LANSCE
production run cycle, we observed an unusual amount of
‘‘hash’’ noiselike structure on the PSR beam profile,
Fig. 16. The hashy beam profile is an operational concern
because it could excite longitudinal microwave instabilities
and other longitudinal space charge effects [14,15].
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FIG. 14. The 201.25 MHz IC resulting from ICA of
SRWM41’s vertical sum signal when injecting a 50 ns pattern
width beam 120� early in the PSR’s rf bucket.
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FIG. 13. A typical 201.25 MHz IC resulting from ICA of
SRWM41’s vertical sum signal.
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FIG. 15. The 201.25 MHz IC resulting from ICA of
SRWM41’s vertical sum signal when injecting beam with a
notch.
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ICA of the hashy beam signal yields the 201.25 MHz IC
plotted in Fig. 17, which is reminiscent of Fig. 13. The
obvious difference between the two ICs lies in the temporal
mode (top right). The IC plotted in Fig. 17 possesses such
a small fractional revolution harmonic (bottom right) that
the temporal mode’s sinusoidal behavior is observable. A
fractional revolution harmonic of 0.009 (bottom right)
describes an oscillation that repeats every 111 turns. The
slow injection rastering causes the hashy beam profile by
longitudinally stacking the beam upon itself more than
in nominal operations where the fractional revolution
harmonic is 0.07, corresponding to a rastering period of
14 turns.

The spatial mode (top left) in Fig. 17 has a depression in
the middle and different constant amplitudes on either side.
The depression is not due to an injection notch, but is most
likely caused by a quick decoherence of the accumulated
beam’s 201.25 MHz frequency structure. The spatial mode
amplitude difference on either side of center may indicate
whether the synchrotron motion of newly injected beam is
aligned or antialigned with the rastering injection pattern.
We calculate the PSR revolution frequency from the IC

plotted in Fig. 17. The unchanging 201.25 MHz linac
frequency is divided by the total revolution harmonic
72.009. This results in a revolution frequency of
2.7948 MHz. However, the PSR design revolution fre-
quency is 2.7924 MHz, Table I. The revolution frequency
differs from design by 2.4 kHz causing the hash on the
current profile.
The PSR revolution frequency is created by a frequency

generator. A number is typed into a computer to control
the revolution frequency. The number inputted into the
frequency generator computer was 2.7948 MHz, exactly
the number predicted by ICA.

IV. CONCLUSIONS

A new method applying ICA to slices along a long
bunch beam is adopted and tested with PSR beam signals.
We apply ICA to beam signals of a long bunch with a
single device (BPM or fast current monitor) for an entire
injection-extraction cycle. In this new method, ICA pro-
duces spatial modes describing the ICs’ strength along the
beam bunch and temporal modes describing the ICs’
strength in time (turn). The spatial and temporal modes
associated with each IC provide more information about
the source signal than an FFT analysis.
We determine that PCA is inadequate for the BSS prob-

lem of slices along the bunch because PCA is unable to
completely separate the source signals, yielding PCs de-
scribing a mixture of two or more source signals.
Six categories of ICs are identified by their spatial

and temporal modes and experimentally verified. These
include ICs describing the coherent space charge tune shift,
a fifth order resonance, measurement noise, a frequency
embedded in the digitized beam signal by the digitizing
oscilloscope’s clock, a signal corresponding to the Nyquist
frequency of the digitizing oscilloscope’s individual
digitizers, and the longitudinal structure of newly injected
beam.
We find ICA to be particularly adept at recovering

independent source signals from massive amounts of
data, even if the sources are weak and in the noise.
Lastly, because of its BSS nature, ICA is able to pick out

independent sources without use of a model and provides a
great tool for mitigating symptoms of unknown causes. We
give an example where ICAwas used at PSR to diagnose an
off-design revolution frequency, which caused the ob-
served hashy beam profile.
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FIG. 16. The last turn current profile of the PSR beam when
the revolution frequency is near an integer subharmonic of the
linac frequency.
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FIG. 17. The 201.25 MHz IC resulting from ICA of
SRWM41’s vertical sum signal when the revolution frequency
is near an integer subharmonic of the linac frequency.
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APPENDIX A: THE DATA MATRIX

Data collected from M monitors for N measurements is
organized in a data matrix of the form of Eq. (1). ICA and
PCA model x as a linear combination of ICs and PCs,
respectively. ICA and PCA of x result, respectively, in
modes and patterns, which are associated with the source
signal’s strength in space and time.

APPENDIX B: INTRODUCTION TO PCA

PCA identifies patterns in data and expresses the high-
dimensional data by highlighting the underlying structures
represented as PCs. The PCs are used to compress data by
reducing redundant dimensions without much loss of infor-
mation. PCA minimizes the redundancy measured by co-
variance, maximizes the signal measured by variance, and
results in uncorrelated PCs. Two random variable vectors ~y1
and ~y2 are uncorrelated if their covariance is zero,

cov ð ~y1; ~y2Þ ¼ h ~y1; ~y2i � h ~y1ih ~y2i ¼ 0; (B1)

where h� � �i is the expectation value. The core of PCA is
singular value decomposition (SVD). SVD of the data
matrix x (M� N) yields eigenvectors U (M�M) in col-
umn space and V (N � N) in row space connected by a
diagonal matrix of SVs � (M� N),

x ¼ U�VT: (B2)

The columns of U span column space, the
M-dimensional space of monitor number, and are called
spatial patterns. The columns of V span row space, the
N-dimensional space of measurement number, and are
called temporal patterns. The PCs are ordered by their
SVs, which represent their strength.

APPENDIX C: INTRODUCTION TO ICA

The objective of ICA is to calculate the L source signals
s (L� N) given the data matrix x (M� N), but the mixing
matrix A (M� L) is unknown,

x ¼ As: (C1)

ICA assumes independent source signals, a stricter re-
quirement than PCA. Two random variable vectors ~y1 and
~y2 are independent if the covariance of any function of ~y1
and any function of ~y2 is zero,

hfð ~y1Þ; gð ~y2Þi � hfð ~y1Þihgð ~y2Þi ¼ 0: (C2)

For time series data, source signal independence is
related to diagonality of covariance matrices [11]. The
autocovariance of a signal is cov½ ~yiðtÞ; ~yiðt� �Þ�, where
� is a time lag, � ¼ 0; 1; 2; . . . . Similarly, the covariance
between two signals is cov½ ~yiðtÞ; ~yjðt� �Þ�, where i � j.

Applying these two results to mean-zero signals for rea-
sons to become evident later, we write the time-lagged
covariance matrix

C yð�Þ ¼ hyðtÞyðt� �ÞTi: (C3)

Source signal independence requires the time-lagged
covariance matrices Csð�Þ ¼ hsðtÞsðt� �ÞTi be diagonal,

hsiðtÞsjðt��ÞTi¼0; i� j; �¼0;1;2; . . . : (C4)

It follows that A�1x must also possess diagonal time-
lagged covariance matrices. The BSS problem is solved
by obtaining a demixing matrix that diagonalizes the time-
lagged covariance matrices of x.
The zero time-lagged covariance matrix Cxð� ¼ 0Þ does

not contain enough information to obtain the mixing ma-
trix A. The key is to utilize the additional information
contained in the time-lagged covariance matrices Cxð�Þ.
Including more than one time lag improves ICA’s perform-
ance by resolving degenerate SVs, but it introduces an
additional complication of simultaneously diagonalizing
many Cxð�Þ. A technique for simultaneously diagonalizing
several matrices with Jacobi angles is discussed in Ref. [16].
Typically, 20–50 time lags are required to separate source
signals with close SVs [4,5]. We use the ICA algorithm
second order blind identification (SOBI) [11], which ac-
commodates multiple time lags, in our analysis and outline
the algorithm below.

1. Whitening

The data matrix x is preprocessed to obtain mean-zero,
whitened (yyT ¼ I) data. Mean-zero data, which simpli-
fies the covariance matrix calculation, is calculated by
subtracting the average over the temporal variation. SVD
is applied to the zero time-lagged covariance matrix of the
mean-zero data matrix �x,

C �xð0Þ ¼ h �xðtÞ �xðtÞTi ¼ ðU1;U2Þ
�1 0

0 �2

 !
UT

1

UT
2

 !
; (C5)

where �1 and �2 are diagonal matrices of SVs separated
by a cutoff threshold �c such that minðdiag½�1�Þ � �c �
maxðdiag½�2�Þ. The cutoff threshold �c is determined by
the number of SVs L included in the analysis. U1 and U2

are eigenvectors corresponding to�1 and�2, respectively.
The mean-zero, whitened data is calculated

z ¼ Y �x; (C6)

where hzzTi ¼ I, Y ¼ ��1=2
1 UT

1 , and ��1=2
1 indicates the

inverse square root of the diagonal elements individually.
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2. Joint diagonalization

The time-lagged covariance matrices of the mean-zero,
whitened data matrix z are calculated for a set of time lags
(�k; k ¼ 0; 1; . . . ; K)

C zð�kÞ ¼ hzðtÞzðt� �kÞTi: (C7)

Modified time-lagged covariance matrices �Czð�kÞ are con-
structed from Czð�kÞ,

�C zð�kÞ ¼ ½Czð�kÞ þCzð�kÞT�=2: (C8)

SVD is well defined, since �Czð�kÞ is real and symmetric,

�C zð�kÞ ¼ WDkW
T; (C9)

where W is the unitary demixing matrix and Dk is a
diagonal matrix. The Jacobi angle technique discussed in
Ref. [16] is used to find the demixing matrixW, which is a
joint diagonalizer for all �Czð�kÞ. The mixing matrix A and
the source signals s are calculated

A ¼ Y�1W and s ¼ WTY �x: (C10)

The columns of A span column space, the
M-dimensional space of monitor number, and are called
spatial modes. The rows of s span row space, the
N-dimensional space of measurement number, and are
called temporal modes. The ith IC represents the mean-
zero signal constructed by multiplying the ith column ofA
and the ith row of s,

z ICi
¼ ~Ai � ~si: (C11)
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