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The electrons accelerated in a plasma-based accelerator undergo betatron oscillations and emit

synchrotron radiation. The energy loss to synchrotron radiation may seriously affect electron acceleration.

The electron dynamics under combined influence of the constant accelerating force and the classical

radiation reaction force is studied. It is shown that electron acceleration cannot be limited by radiation

reaction. If initially the accelerating force was stronger than the radiation reaction force, then the electron

acceleration is unlimited. Otherwise the electron is decelerated by radiative damping up to a certain

instant of time and then accelerated without limits. It is shown that regardless of the initial conditions the

infinite-time asymptotic behavior of an electron is governed by a self-similar solution providing that the

radiative damping becomes exactly equal to 2=3 of the accelerating force. The relative energy spread

induced by the radiative damping decreases with time in the infinite-time limit. The multistage schemes

operating in the asymptotic acceleration regime when electron dynamics is determined by the radiation

reaction are discussed.
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I. INTRODUCTION

The laser-plasma concept for charged particle accelera-
tion has been proposed more than 30 years ago [1]. Since
then the plasma-based methods of electron acceleration
demonstrate an impressive progress in the past ten years.
The quasimonoenergetic electron bunches are generated in
laser-plasma acceleration experiments [2–4]. The electron
energy in laser wakefield acceleration experiments exceeds
1 GeV for cm-scale acceleration length [5] and energy
doubling of 42 GeV electrons in a meter-scale plasma
wakefield accelerator is demonstrated [6]. Recently, the
physics of linear colliders based on laser-plasma accelera-
tors have been discussed [7–9].

It is generally believed that the next generation of lepton
colliders should achieve center-of-mass energy around
1 TeV. Today the conventional accelerator technology
provides a acceleration gradient which is not high enough
for the TeV lepton collider with reasonable size and cost.
Yet the plasma-based methods have attracted much atten-
tion because of the possibility of attaining a very high
acceleration gradient. The accelerating plasma structure
is a plasma wave generated behind the driver which can
be the laser pulse or the electron bunch. For plasma density
n ¼ 1015–1018 cm�3 the accelerating field is of the order
0:3–10 GV=m that is much stronger than that in the con-
ventional accelerating structures.

The physics considerations for optimal laser-plasma
accelerator parameters have been recently discussed
[7,8]. It has been shown that the quasilinear regime when
a0 � 1 and plasma density range n ¼ 1015–1018 cm�3 are
more favorable for ultrahigh energy laser-plasma accelera-
tion, where a0 ¼ eAL=ðmc2Þ � 8:5� 10�10�L½�m��
I1=2L ½W=cm2� is the peak amplitude of the normalized
vector potential of the laser field, AL is the amplitude of
the laser vector potential, IL is the laser intensity, �L is the
laser wavelength, andm, e, and c are the electron mass, the
electron charge, and the speed of light, respectively. a0 is
proportional to the transverse momentum of the electron in
the laser field. The laser pulse interacts with a plasma in the
bubble regime at a � 1 [10,11]. The plasma bubble, which
is almost free from the plasma electrons, is formed behind
the laser pulse in the bubble regime instead of plasma wave
excited behind of the laser pulse in the quasilinear regime.
It is generally believed now [7,8] that the bubble regime of
acceleration is less suited for lepton colliders than the
quasilinear regime, for example, because of unstable posi-
tron acceleration.
The strength of the accelerating plasma field excited by

the laser pulse is proportional to the laser ponderomotive
potential. It can be estimated as E0 ¼ Facc=e ¼ fmc!p=e,

where Facc is the accelerating force, !p ¼ ð4�e2n=mÞ1=2
is the plasma frequency, n is the density of the background
plasma, and f is the numerical factor determined by the
parameters of the driver and the plasma. For example, if the
driver is the linearly polarized Gaussian laser pulse with

duration TL then f ¼ �1=22�3=2a20!pTL expð�!2
pT

2
L=4Þ

[12]. The accelerating force peaks at the resonant laser

pulse duration TL;res ¼ 21=2=!p so that fmax � 0:35a20 [8].

To demonstrate the radiation reaction effect we will use in
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our paper the laser-plasma parameters, which are close to
optimal and derived in Refs. [7,8]: resonant laser pulse

duration, a0 � 21=2, f � 0:7, and n ¼ 1015–1018 cm�3.
There are a number of effects which limit the energy

gain in the plasma-based accelerators [12]. One of the main
limitations comes from the dephasing. The velocity of the
relativistic electrons becomes slightly higher than the
plasma wave phase velocity, which is determined by
the driver velocity. The accelerated electrons slowly outrun
the plasma wave and leave the accelerating phase. This
problem can be partially solved by the use of proper
longitudinal gradient of plasma density [13,14]. Another
limitation is caused by the driver depletion as the driver
energy converts into the energy of the plasma wave. The
driver evolution during acceleration (e.g., laser pulse dif-
fraction or electron bunch expansion because of Coulomb
repulsion) also imposes certain restrictions on the electron
energy gain. In the case of laser-plasma accelerators, the
laser pulse can be guided over long distances in the pre-
formed plasma density channel [15] or with relativistic
optical guiding when diffraction is compensated by rela-
tivistic self-focusing [16]. In order to accelerate electrons
far beyond the energy limited, for example, by the laser
depletion the multistage schemes can be used [7,8].
Recently, proton-driven acceleration schemes have been
proposed due to extremely large dephasing and depletion
length [17].

The electron acceleration in the plasma wave is accom-
panied with the transverse betatron oscillations caused by
the action of the focusing force on the electron from the
plasma wakefield. The focusing force acting on the rela-
tivistic electron near the driver axis can be approximated as
follows: F? ’ �m�2!2

pr, where r is the transverse dis-

placement of the electron from the driver axis, � are the
focusing constant determined by the parameters of
the driver and the plasma. Physically, � characterizes the
degree of the electron evacuation in the plasma wave.
�2 ’ 1=2 in the bubble regime when the plasma electrons
are completely evacuated in the accelerating region [11].
If the driver is the linearly polarized Gaussian laser pulse
with resonant pulse duration and a20 ¼ 2, then �2 ’ 0:11

[8]. The frequency of the betatron oscillations is !� ¼
!p��

�1=2, where � is the relativistic gamma factor of the

electron.
The accelerated electrons undergoing betatron oscilla-

tions emit synchrotron radiation [18–20]. The radiated
power can be estimated as follows: Prad ’
2re�

2F2
?=ð3mcÞ, where re ¼ e2=ðmc2Þ ’ 3� 10�13 cm

is the classical electron radius, c is the speed of light.
Since the power is proportional to the square of the electron
energy, the radiation losses can stop electron acceleration
at some threshold value of the electron energy. The thresh-
old energy can be estimated by balancing the accelerating
force and the radiation reaction force, Frrf ’ Prad=c, so that
�2
th ’ f=ð��4R2

�Þ, where R� ¼ kpr is the normalized

amplitude of betatron oscillations, � ¼ 2re!p=ð3cÞ and

kp ¼ !p=c. The threshold energy is �100 GeV for f ¼
0:7, n ¼ 1019 cm�3 and R� ¼ 1 and �2 ¼ 0:11. Therefore

the radiative damping may be a serious limitation of elec-
tron acceleration in the high-energy regime. However, the
self-consistent treatment is needed to study electron dy-
namics more accurately since the betatron oscillation am-
plitude determining radiation damping may evolve
significantly during acceleration.
The electron acceleration in plasma with the radiation

reaction effect has been studied theoretically [7,8,21,22].
The radiation reaction has been treated as a perturbation
[21]. The first-order radiative correction to the energy gain
of the accelerated electron bunch and the energy spread
induced by radiation emission have been derived for the
constant accelerating force. The dependence of the elec-
tron energy on time has been calculated in the plasma
channel without the accelerating force and with the radia-
tion reaction force [22]. Here we study the electron accel-
eration treating the radiation damping unperturbatively and
analyzing the infinite-time limit. We show that regardless
of the initial conditions the infinite-time asymptotic behav-
ior of an electron is governed by a self-similar solution
providing that the radiative damping becomes exactly
equal to 2=3 of the accelerating force.

II. BASIC EQUATIONS

We start from the relativistic equation for electron mo-
tion in an electromagnetic field with the radiative reaction
force in Landau-Lifshitz form [23]

�
dui

dt
¼ cre

e
Fikuk þ 2r2e

3mc
ðFi

1 þ Fi
2 þ Fi

3Þ; (1)

Fi
1 ¼ ðe=reÞ @F

ik

@xl
uku

l; (2)

Fi
2 ¼ �FilFklu

k; (3)

Fi
3 ¼ ðFklu

lÞðFkmumÞui; (4)

where Fik is the electromagnetic field tensor, uk is the
4-velocity of the electron. The first term in the right-hand
side (rhs) of Eq. (1) corresponds to the Lorentz 4-force and
the second one corresponds to the radiation reaction
4-force. Equation (1) is derived under the assumption
that the absolute value of the first term is larger than that
of the second term. However, some spatial components of
radiation reaction force can be larger than that of the
Lorentz force. Therefore the radiative damping can domi-
nate over acceleration.
We assume that the ultrarelativistic electrons (� � 1)

are accelerated along the x axis by the force Facc �
F?v?=c and undergo betatron oscillations driven by the
focusing force F? ’ �m�2!2

py along the y axis. Under
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our assumptions, F3 � F1; F2 and the focusing forces
make a major contribution to the energy losses through
radiation. Therefore Eq. (1) can be reduced to the form

dpy

dt
¼ �m�2!2

py� 2re
3c

�4!4
py

2

c2
py�; (5)

dy

dt
¼ py

m�
; (6)

d�

dt
¼ f!p � 2re

3c

�4!4
py

2

c2
�2: (7)

The first term on the rhs of Eq. (7) describes the action of
the longitudinal component of the Lorentz force that pro-
vides electron acceleration, while the second term de-
scribes the radiation reaction force, Frrf . The obtained
equations describe the betatron oscillations with radiative
damping. When the force of radiative friction is disre-
garded (re ¼ 0), the first two equations are equivalent to
the equation of linear oscillator with a slowly varying
frequency. The solution of the equation in WKB approxi-
mation is [21]

y ’ C
ffiffiffiffiffiffiffiffiffiffiffiffi

!�ðtÞ
q

sin

�

Z

!�dt

�

; (8)

py ’
Cm�2!2

p
ffiffiffiffiffiffiffiffiffiffiffiffi

!�ðtÞ
q

cos

�

Z

!�dt

�

; (9)

!� ¼ !p
ffiffiffiffiffiffi

2�
p ; � ¼ �0 þ f!pt: (10)

It follows from the solution that the amplitude and !�

decreases in the course of acceleration.
It is convenient to introduce new variables as follows:

P ¼ py

mc
�1=2f1=2; (11)

Y ¼ ykpf
3=2�1=2; (12)

T ¼ !pt�
2

f
; (13)

G ¼ �
�2

f2
: (14)

Then Eqs. (5)–(7) take a form

dP

dT
¼ �Y � Y2PG; (15)

dY

dT
¼ P

G
; (16)

dG

dT
¼ 1� Y2G2: (17)

When the number of betatron oscillations is large, we
can use the averaging method [24]. To do this let us
introduce a new variable,

U exp

�

i
Z

G�1=2dT

�

¼ Y � iG�1=2P: (18)

Substituting Eq. (18) in Eqs. (15)–(17) and averaging over
the fast time related to the betatron oscillations yields the
averaged equations:

dU

dT
¼ � U

4G
� 1

16
GjUj2U; (19)

dG

dT
¼ 1� 1

2
jUj2G2: (20)

To derive Eq. (19) we have to use Eq. (7) before averaging
in order to exclude dG=dT. Assuming that 2S ¼ jUj2 ¼
Y2 þ P2=G ¼ R2

�f
3� ’ 2hY2i we can rewrite Eqs. (19)

and (20) as follows:

dS

dT
¼ � 1

2

S

G
� 1

4
GS2; (21)

dG

dT
¼ 1� SG2: (22)

In the next sections we will analyze the obtained system of
equations.

III. DYNAMICS OF THE ACCELERATED
ELECTRONS

As G> 0 and S > 0 then dS=dt < 0 and the amplitude
of the betatron oscillations always decreases with time.
This means that for arbitrary electron energy the betatron
oscillation amplitude will be small enough at a certain
instance of time to be radiation reaction force less than
the accelerating force.
Let us consider the solutions of Eqs. (21) and (22) in

some limiting cases. At the absence of the accelerating
force (f ¼ 0), it follows from Eqs. (21) and (22) that

SG�1=4 ¼ const and

� ¼ �0

�

1þ 5�R2
�;0�0

16
!pt

��4=5
; (23)

which is an agreement with the solution calculated in
Ref. [22], where R�;0 ¼ R�ðt ¼ 0Þ.
At the absence of the radiation reaction [the last terms in

the rhs of Eqs. (21) and (22) are absent] we obtain

G ¼ G0 þ T;
ffiffiffiffi

G
p

S ¼ const; (24)

which is in agreement with Eqs. (8) and (9). If the radiation
reaction force is much weaker than the accelerating one,
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then to the first order in the radiation reaction force the
normalized electron energy is

G ¼ G0 þ T � 2
5½1� ðG0 þ TÞ5=2�; (25)

which is an agreement with the result obtained in Ref. [21].
The closed-form solutions of Eqs. (21) and (22) are

rather complicated and can be implicitly expressed through
hypergeometric functions (see the Appendix). However,
the main properties of the solution can be analyzed without
the closed form. The system of Eqs. (21) and (22) has
integral of motion

I ¼ 1� 3SG2=2

S9=4ðSG2Þ3=4 ¼ const: (26)

Physically, G, S, and I mean the following. G is the

normalized electron energy, S1=2 is the normalized ampli-
tude of the betatron oscillations. I � S2G in the limit
SG2 � 1 and the conservation of I implies that the product

of betatron oscillation amplitude (�S1=2) and the trans-

verse momentum amplitude (�S1=2G1=4) is conserved.
The electron trajectories in the phase space S�G are

the integral lines determined by Eq. (26). The phase por-
trait of the system governed by Eqs. (21) and (22) is shown
in Fig. 1. It is seen from Fig. 1 that if initially the accel-
erating force is stronger than the radiation reaction force
(SG2 < 1) then the electron energy monotonically in-
creases with time. Otherwise the electron energy decays
up to the time instance when Facc ¼ Frrf (that corresponds
to SG2 ¼ 1) and then it monotonically increases with time.

We verify our analytical results by numerical simula-
tions. The exact equation (1) and the averaged equations of
motions (21) and (22) are integrated numerically for test
electrons for f ¼ 0:1 and n ¼ 1015 cm�3. For simplicity,
we consider the structure of the transverse electromagnetic

field similar to the bubble regime: �2 ¼ 0:5 and E? � H?.
The dependence of the normalized integral of motion In ¼
I�1ð��f2Þ�3 and � on !pt for initial condition �0 ¼ 2000

and R�;0 ¼ 0:8, py;0 ¼ 0 is shown on Fig. 2. It is seen from

Fig. 2 that the solution of the exact equations and that of the
approximate averaged are in a good agreement. Moreover,
the integral I is almost constant for the exact equations (1)
[see Fig. 2(b)].

IV. ASYMPTOTIC ACCELERATION

It is seen from Fig. 1 that all electron trajectories merge
in the limit t ! 1 so that G ! 1 and S ! 0. It follows
from Eq. (26) that S ¼ 2G�2=3 in this limit. We will call
the electron acceleration in this limit an asymptotic accel-
eration regime (AAR). To find asymptotic trajectory we
can solve Eqs. (21) and (22) by the perturbation method
with the assumption that I is small. To the first order in I
the solution is

S � 2
3G

�2; (27)

G / 1
3T: (28)

We can conclude that in the asymptotic acceleration re-
gime the radiation reaction force is equal to two-thirds of
the accelerating force:

FIG. 1. The phase portrait of the system governed by Eqs. (21)
and (22).

61.5 01×

a) 

b) 

1
0 710 72 01×

γ

tpω

0 710 72 01×
tpω

2960

2880

nI

FIG. 2. The dependence of (a) � and (b) In on !pt calculated
by solving the exact Eq. (1) (black solid lines) and by solving the
approximate Eqs. (21) and (22) (red dashed lines) for f ¼ 0:1,
�2 ¼ 0:5, n ¼ 1015 cm�3 and for initial conditions �0 ¼ 2000,
R�;0 ¼ 0:8, py;0 ¼ 0.
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Frrf ¼ 2
3Facc; (29)

so that the electron energy increases linearly with time
while the betatron amplitude is reversely proportional to
the time.

Equations (21) and (22) can be solved exactly (see the
Appendix). It follows from the exact solution that the
asymptotic acceleration regime is determined by the pa-

rameters Gtr ¼ Ttr ¼ I2=9 and Str ¼ I�1=9. The character-
istic time of transition to asymptotic acceleration is Ttr. To
derive the asymptotic solution the initial condition should
be applied. We assume that S0G

2
0 � 1 which is typical for

the initial parameters of the electron beam. For example,
this condition is fulfilled for the initial parameters
�0mc2 < 0:1 TeV, n < 1018 cm�3, R�;0 ¼ 1, f ¼ 0:7,

�2 ¼ 0:11. Therefore the normalized electron energy is
in the limit T � Ttr,

G ¼ �

3
Gtr þ 1

3
T; (30)

where � � 1:85 (see the Appendix).
The averaged equations of motions (21) and (22) are

integrated numerically for the test electrons with the same
parameters as for Fig. 2 for three values of the initial
betatron amplitude R�;0 ¼ 0:8; 0:2; 0:1. It is seen from

Fig. 3 that the asymptotic solution (29) is in good agree-
ment with the numerical results.

The radiation damping rate varies for the electrons with
different betatron oscillation amplitudes. This causes the
energy spread in the electron bunch accelerated in the
plasma wave. We assume that the betatron oscillation
amplitudes of the electrons in the bunch are initially uni-
formly distributed in the range Rmin <R�;0 < Rmax and

Rmax � Rmin. We also again assume that S0G
2
0 � 1.

Then the normalized mean energy and the normalized
square of the energy spread are in AAR:

hGi ’ 2

R2
max

Z Rmax

Rmin

GR�;0dR�;0 ’ Gmax�þ T

3
; (31)

	2
G ¼ hG2i � hGi2 ’ G2

max

�2

3

�

Rmax

Rmin

�

2=3
; (32)

where Gmax ¼ GtrðR�;0 ¼ RmaxÞ. It follows from Eqs. (31)

and (32) that the relative energy spread, 	G=hGi, decreases
with time in AAR.

V. DISCUSSION

Our model is derived under the conditions that F? gives
the main contribution to the radiative damping and
F3 � F1; F2. However, F? goes to zero in the limit
t ! 1. Therefore we should check: should the accelerating
force and terms F1; F2 be taken into account in the ex-
pression for radiation reaction force in this limit? First it is
significant that the radiation reaction force remains con-
stant in AAR because F? � R� ! 0 and � ! 1 for

t ! 1 in such way that R2
��

2 ¼ const. Making use of

Eq. (29) and relation vy �!�y we get F2=F3 � f� � 1

and F1=F3 � ð3=4Þ�2f��1=2�1=2 � 1, where we assume
that �� f� 1. The contribution from the accelerating
force (or from Ex) to F3 is of the order F2=F3 � 1.
Therefore our model defined by Eqs. (21) and (22) is valid
in AAR. The typical values of the ratios of F1=F3 and
F2=F3 obtained by numerical integration of Eq. (1) for
parameters used in Fig. 2 are less than 10�7 and 10�10,
respectively, which agrees with the estimations derived
above.
For high-energy electrons, quantum electrodynamics

(QED) effects can be important. The energy of the photon
emitted by the accelerated electron can be so high that the
quantum recoil becomes strong. The photon emission can

be treated in a classical approach if QED parameter 
¼
½ðmc�Eþ p�HÞ2 � ðp �EÞ2�1=2=ðmcEcrÞ ’ �F?=ðeEcrÞ
is much less than unity, where Ecr ¼ m2c3=ðe@Þ �
1:32� 1016 V=cm is the QED critical field [25].


 can be estimated in AAR as follows: 
�½ð2f=�Þ�
ð@!p=mc2Þ�1=2�1, where � ¼ e2=@c � 1=137 is the

fine structure constant. Therefore the classical approach
for the radiation reaction force is valid in the limit t ! 1
because, like for the corrections to the radiation reaction
force, the growth of � in 
 is compensated by decreasing
of F?.
Estimates show that the length passed by the laser pulse

to reach AAR is very large and much larger than dephasing
and depletion lengths for modern laser systems. However,
the multistage acceleration schemes for TeV lepton col-
liders are now discussed [7,8]. Each electron stage is
equipped with its own laser system. The stage length
should be smaller than the dephasing and depletion
lengths. The final stages where the energy of the acceler-
ated lepton reaches TeV level may operate in AAR.

0

3
2

1

7106×

1

γ

9101.2 ×
tpω

FIG. 3. The dependence of � on!pt in AAR: analytic solution
(red dashed lines) and numerical solution (black solid line) for
R�;0 ¼ 0:8 (lines 1), R�;0 ¼ 0:2 (lines 2) and R�;0 ¼ 0:1 (lines

3). The other parameters are the same as in Fig. 2.
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We estimate the transition length to AAR for the accel-
erator parameters close to that discussed in [8]. The dis-
tance passed by the electron before reaching AAR is

kpltr ’ ðf=�2ÞTtr ’ 1:6ð�2�0R
4
�;0f�

8Þ�1=3. For the initial

parameters n ¼ 1018 cm�3, R�;0 ¼ 1, �0 ¼ 2� 103,

f ¼ 0:7, �2 ¼ 0:11 the electron comes into AAR after
passing 7800 laser-driven acceleration stages with total
distance ltr ’ 73 m, achieving the energy �mc2 ’ 5 TeV
and R� ’ 0:008, where the stage distance is chosen to be

equal to the half dephasing length [8] and the distance
between the acceleration stages is neglected. For the rare-
fied plasma n ¼ 1015 cm�3, AAR is achieved in 78 stages
with ltr ’ 23 km, �mc2 ’ 48 TeV, and R� ’ 0:005. AAR

may be achieved within one acceleration stage in the
proton-driven acceleration schemes because of the very
large dephasing length [17].

In conclusion, we have shown that the electron accel-
eration is not limited by the radiative damping in plasma-
based accelerators. Even if the radiation reaction force is
stronger than the accelerating force at the beginning, then
acceleration eventually succeeds deceleration with time.
The damping of the betatron oscillations leads to the
transition to the self-similar asymptotic acceleration re-
gime in the infinite-time limit when the radiation reaction
force becomes equal to 2=3 of the accelerating force. The
relative energy spread induced by the radiative damping in
the accelerated electron bunch decreases with time in this
regime. This opens the possibility to use high density
plasma at the late stages of multistage plasma-based ac-
celerators despite the fact that the radiative damping is
enhanced as density increases. The high density plasma
can be favorable because it provides high accelerating
gradient and, thus, reduces the length of the acceleration
stages. The obtained results can be also applied to any
other accelerating systems with the linear focusing forces.
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APPENDIX: THE EXACT SOLUTION OF THE
AVERAGED EQUATIONS

We introduce new variables g ¼ G=Gtr, � ¼ T=Ttr, and

s ¼ ðS=StrÞðG=GtrÞ�1=4, where

Gtr ¼ Ttr ¼ I2=9; (A1)

Str ¼ I�1=9: (A2)

Then Eqs. (21), (22), and (26) take a form

ds

d�
¼ � 3

4

s

g
; (A3)

dg

d�
¼ 1� sg9=4; (A4)

s�3g�9=4 � 3

2
s�2 ¼ 1: (A5)

The obtained equations do not depend on any parameters.
Therefore the characteristic time of transition to asymp-
totic acceleration is T � Ttr and the electron is accelerated
in the asymptotic regime when T � Ttr. Expressing g
through s by Eq. (A5) and substituting it in Eq. (A3), we
have

ds

d�
¼ � 3

4
s13=9

�

s2 þ 3

2

�

4=9
: (A6)

The solution of the equation is

’ðsÞ � ’ðs0Þ ¼ ��; (A7)

’ðxÞ ¼ 24=9ð3þ 2s2Þ5=9s�4=9

� 213=935=9s14=92F1

�

7

9
;
4

9
;
16

9
;� 2s2

3

�

; (A8)

where 2F1ða; b; c; zÞ is the hypergeometric function [26]
and s0 ¼ sð� ¼ 0Þ. The asymptotic expansions of function
’ðsÞ are

’ðsÞ � 3

�

3s

2

��4=9
; s � 1; (A9)

’ðsÞ � �þ s�4=3; s � 1; (A10)

� ¼ � 27�ð� 1
3Þ�ð169 Þ

28�ð49Þ
� 1:85: (A11)

Thus, s� ��9=4 � 1 and g� � � 1 in the limit � � 1.
To derive the asymptotic solution the initial condition
should be applied. We assume that S0G

2
0 � 1 which is

typical for the initial parameters of the electron beam.
Making use of Eq. (A10), we obtain

9
4 s

�4=9 � �þ �: (A12)

Therefore the normalized electron energy and the square of
the normalized betatron amplitude are in the limit T � Ttr,

G ¼ �

3
Gtr þ 1

3
T; (A13)

S ¼ 2
3G

�2: (A14)

In AAR the electron energy increases linearly with time
while the betatron amplitude is reversely proportional to
the time.
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