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An original method to determine the charged particle energy is developed. This method uses the

dependency of waveguide mode frequency on the Lorentz factor of particles. It is central to this technique

that the particle bunch generates Cherenkov radiation in a waveguide, and the mode frequencies depend

essentially on the Lorentz factor. Here, we consider the case when radiation is excited in a circular

waveguide with a dielectric layer. It is shown that structures with relatively thick layers are not convenient

for the particle energy measurement because the dependence of the first mode frequency on the Lorentz

factor is weak. In contrast, a structure with a thin layer is favorable for such a purpose because this

dependency is more essential. Analytical and numerical investigations are performed. It is shown that the

first mode amplitude is sufficient for measurements in the case of a pico-Coulomb bunch.
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I. INTRODUCTION

Cherenkov radiation (CR) is widely used for the detec-
tion of charged particles and the bunch diagnostics [1,2].
Usually, different open systems are applied for these pur-
poses, but properties of CR in waveguide structures are not
used. Meanwhile, CR in a waveguide is not an exotic
effect. For example, it is actively used for wakefield accel-
eration of charged particles [3–5]. In this technique, a large
bunch (driver) excites CR (so-called wakefield) in a wave-
guide loaded with a dielectric layer, and another (relatively
small) bunch is accelerated in this field. Owing to this
application, the techniques of CR generation in wave-
guides are well tested at present.

Here, we consider a method of bunch diagnostics
that uses the dependence of the waveguide mode frequen-
cies !m on the Lorentz factor of the bunch particles

� ¼ ð1� �2Þ�1=2 (� ¼ V=c, V is a bunch velocity, c is
the velocity of light). The particle energy is proportional to
the Lorentz factor (E ¼ mc2�); therefore, the determina-
tion of � is equivalent to the determination of the particle
energy (here, we assume that the bunch is practically
monoenergetic, i.e., the energy spread of particles in the
bunch is negligible).

For the method under consideration, it is critical that the
particle bunch generates CR in a waveguide. This can be
achieved in different ways, but it is obvious that the wave-
guide cannot be a simple regular structure with a perfectly
conductive wall. Different variants of waveguide structures
were offered for the indicated goals [6–13]. In Ref. [6], the
authors have recommended the use of the simplest variant:
a circular waveguide with a cylindrical layer of isotropic

nondispersive dielectric. A disadvantage of this variant is
that the dependency of the waveguide modes on the Lorentz
factor is usuallyweak. Therefore, the accuracy of the Lorentz
factor determination will be small, especially for the ultra-
relativistic case � � 1 (this peculiarity is typical for all
detectors based on the Cherenkov phenomenon). However,
it is possible to partially overcome this imperfection.
We have offered different ways to achieve an essential

dependency !mð�Þ both for some predetermined narrow
range of � values and for a sufficiently wide range of
� [5–11]. Here, we discuss the method, which is relatively
simple for experimental realization and, at the same time,
gives a sufficiently strong dependency of the mode fre-
quency on the Lorentz factor. As in Ref. [6], we considered
a waveguide with cylindrical dielectric layer. However, our
suggestion is to use a thin dielectric layer instead of a
traditional, relatively thick layer (this idea was mentioned
for the first time in Ref. [11]). Further advantages of this
approach will be shown.

II. ANALYTICAL INVESTIGATION

Consider a circular waveguide with a radius a that has a
cylindrical layer of dielectric material. The thickness of the
dielectric layer is d ¼ a� b , where b is a vacuum channel
radius (Fig. 1). A particle bunch possessing a charge q
moves along the waveguide axis (the z axis) with a velocity
~V ¼ c�~ez. The transverse dimension of the bunch is
assumed to be negligible, and the longitudinal distribution
of the charge is determined by the Gaussian function
exp½��2=ð2�2Þ�, where � ¼ z� Vt. Note that such
bunches are typical, such as for the technique of a wake-
field acceleration [3,5].
It is assumed that the charge velocity is more than the

phase velocity of electromagnetic waves in the layer ma-
terial: V > c=

ffiffiffi
"

p
, or "�2 > 1, where " is the permittivity

of the material (dissipation and dispersion are assumed to
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be negligible, and permeability is� ¼ 1). The expressions
for the components of the electromagnetic wave field are
well known [14]. They can be written in the following form
(cylindrical coordinates �, �, � are used):

Ez ¼ 4qð~"�2 � 1Þ
c2�2

�ð��ÞRe
�X1
m¼1

!mResmð�Þ

� exp½�!2
m�

2ð2V2Þ�1 þ i!m�V
�1�

�
;

E� ¼ � 4q

c�
�ð��ÞIm

�X1
m¼1

Resm

�
@�

@�

�

� exp½�!2
m�

2ð2V2Þ�1 þ i!m�V
�1�

�
;

H� ¼ c�E�;

(1)

where ~" ¼ " in the layer (at b < �< a) and ~" ¼ 1 in the
vacuum channel (at � < b),

� ¼
8><
>:
�I0ðk�Þ for � < b;

"�1
h
	i
2 
H

ð1Þ
0 ðs�Þ þ �J0ðs�Þ

i
for � > b;

(2)

� ¼ sK1ðkbÞc 1ðsÞ þ "kK0ðkbÞc 0ðsÞ
sI1ðkbÞc 1ðsÞ � "kI0ðkbÞc 0ðsÞ ;


 ¼ � 2"k

	bs

J0ðsaÞ
sI1ðkbÞc 1ðsÞ � "kI0ðkbÞc 0ðsÞ ;

� ¼ �	i

2

Hð1Þ
0 ðsaÞ
J0ðsaÞ 
;

(3)

c 0ðsÞ ¼ J1ðsbÞN0ðsaÞ � J0ðsaÞN1ðsbÞ;
c 1ðsÞ ¼ J0ðsbÞN0ðsaÞ � J0ðsaÞN0ðsbÞ;

(4)

k ¼ !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
c�

¼ !

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p ;

s ¼ !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"�2 � 1

p
c�

¼ !

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ð"� 1Þ � "

�2 � 1

s
;

� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p ; �ð�Þ ¼
�
0 for � < 0;
1 for � > 0:

(5)

Here, ResmðFÞ are residues of the function Fð!Þ in its
poles ! ¼ !m, Jnð�Þ and Nnð�Þ are Bessel and Neumann
functions, respectively, and Inð�Þ and Knð�Þ are modified
Bessel and Neumann functions, respectively. The frequen-
cies!m included in (1) are positive solutions of the follow-
ing dispersion equation:

fð!Þ � sð!ÞI1ðkð!ÞbÞc 1ðsð!ÞÞ
� "kð!ÞI0ðkð!ÞbÞc 0ðsð!ÞÞ ¼ 0: (6)

Note that Eq. (1) is a wave field only (so-called wake-
field, or field of CR). It is a part of the total field that also
contains a quasi-Coulomb (quasistatic) field. However, a
quasistatic field does not take the energy from the particle,
and it is not important for our goal. Stress that the total
field is continuous at � ¼ 0 [a discontinuity ð��Þ in the
formula (1) concerns the wave field only].
Properties of the solutions of Eq. (6) are the most

important for our purposes. Let us consider some particular
cases to analyze these properties. First, we assume that the
condition

sð!Þb � 1 (7)

is fulfilled, i.e., that the channel radius is sufficiently large.
Note that this inequality may be correct for only part
of the frequency range; therefore, this assumption should
be justified after determination of the dispersion equation
solutions. The functions (4) can be replaced with their
asymptotics:

c 0ðsÞ � 2 cosðsdÞ
	s

ffiffiffiffiffiffi
ab

p ; c 1ðsÞ � 2 sinðsdÞ
	s

ffiffiffiffiffiffi
ab

p : (8)

One can see that the dispersive equation (6) takes the form

tanðsð!ÞdÞ ¼ "kð!ÞI0ðkð!ÞbÞ
sð!ÞI1ðkð!ÞbÞ : (9)

If we use, in addition to (7), the condition

kð!Þb � 1; (10)

then Eq. (9) can be written in the form

tanðsð!ÞdÞ ¼ "kð!Þ=sð!Þ; (11)

or

tan

0
@d!

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ð"� 1Þ � "

�2 � 1

s 1
A ¼ "ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2ð"� 1Þ � "
p : (12)

First, we are interested in the case of ultrarelativistic
particles, when � � 1. In this case, Eq. (12) can be written
approximately in the form

tan

�
d
!

c

ffiffiffiffiffiffiffiffiffiffiffiffi
"� 1

p �
¼ "

�
ffiffiffiffiffiffiffiffiffiffiffiffi
"� 1

p : (13)

If we assume that the layer thickness is small enough, and
therefore the condition

ab

d

q

FIG. 1. Cross section of the structure.

ANDREY V. TYUKHTIN Phys. Rev. ST Accel. Beams 15, 102801 (2012)

102801-2



d!
ffiffiffiffiffiffiffiffiffiffiffiffi
"� 1

p
=c � 1 (14)

is true, we obtain for the first waveguide mode the simple
expression

!1 � c"

d�ð"� 1Þ : (15)

Thus, under the assumptions made above, the first mode
frequency is inversely proportional to the Lorentz factor.
This dependency is very favorable for determination of �
because the relative error of � is close to the relative error
of the measurement of frequency: ��=� � �!1=!1.

Substituting Eq. (15) into the inequalities (7), (10), and
(14), one can obtain the following conditions on the valid-
ity of the obtained results:

� � b"

d
ffiffiffiffiffiffiffiffiffiffiffiffi
"� 1

p ; � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b"

dð"� 1Þ

s
; � � "ffiffiffiffiffiffiffiffiffiffiffiffi

"� 1
p :

(16)

If the first or second conditions (16) are disturbed, then the
dependency !1ð�Þ will be weaker and the relative error of
�will be greater than the relative error of!1. The strongest
limitation is determined from the second inequalities (16)
[it follows from Eq. (10)]. If " is not close to 1, then we

have the condition � � ffiffiffiffiffiffiffiffiffi
b=d

p
. Thus, to measure the large

values of �, we should decrease the relative thickness of
the dielectric layer d=b.

However, it is also important to address whether the
waveguide mode amplitude is sufficiently large for mea-
surements in the case when the layer thickness is so small.
Note that, in accordance with the boundary condition,
E�j�¼b�0 ¼ "E�j�¼bþ0 and Ezj�¼b�0 ¼ Ezj�¼bþ0. In the

case of a thin dielectric layer, the longitudinal component
Ez is small in the layer and at its boundary � ¼ b. The
component E� is larger than Ez, and it has a maximum at

� ¼ b� 0. Thus, the value E�j�¼b�0 is the most conve-

nient for the method under consideration. Therefore, only
this component will be analyzed further.

Omitting cumbersome transformations, we write out the
approximate formula that follows from Eqs. (1)–(5) under
condition (7):

E� � � 8q�ð��Þ
	c��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"�2 � 1

p
b

ffiffiffi
a

p

� X1
m¼1

8<
:

"I1ðk�Þffiffi
b

p
I1ðkbÞ cosðsdÞ for � < b

��1=2 cos½sða� �Þ� for � > b

9=
;

� exp½�!2�2ð2V2Þ�1�
df=d!

sinð!�V�1Þ
��������!¼!m

; (17)

where

fð!Þ � 2
sI1ðkbÞ sinðsdÞ � "kI0ðkbÞ cosðsdÞ

	s
ffiffiffiffiffiffi
ab

p : (18)

If both conditions (7) and (10) are fulfilled, then the
following approximation takes place:

E��� 4q�ð��Þ
ð"�1Þð"��2þ1Þ

� X1
m¼1

8<
:

2	"!
c��2d

e�2kbI1ðk�Þ for�<bffiffiffiffiffiffiffiffi
2	!

p
cos½sða��Þ�

d
ffiffiffiffiffiffiffiffiffiffiffi
c��3�

p
cosðsdÞ e

�kb for�>b

9=
;

�exp½�!2�2ð2V2Þ�1�sinð!�V�1Þ
��������!¼!m

: (19)

One can see that the amplitude of the m mode at the
vacuum-dielectric boundary is

E�mj�¼b�0 � 4q"
ffiffiffiffiffiffiffiffiffiffiffi
2	!

p
exp½�kb�!2�2=ð2V2Þ�

ð"� 1Þð"��2þ 1Þd ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c��3b

p
��������!¼!m

:

(20)

Under the condition � � "=
ffiffiffiffiffiffiffiffiffiffiffiffi
"� 1

p
, we can use approxi-

mation (15), and the expression for the 1st mode amplitude
has the form

E�1j�¼b�0 � 4q
ffiffiffiffiffiffiffiffiffiffiffi
2	"3

p

ð"� 1Þ3=2�2b2

�
b

d

�
3=2

exp

�
� "b

ð"� 1Þ�2d

�

� exp

�
� "2�2

2ð"� 1Þ2�2d2

�
: (21)

As we see, the first mode amplitude is a nonmonotonic
function of the layer thickness. The amplitude increases

with decrease in d=b [because of the factor ðb=dÞ3=2] if the
following inequalities are fulfilled:

d � "b

ð"� 1Þ�2
; d � "�ffiffiffi

2
p ð"� 1Þ� : (22)

When these conditions are disturbed, the exponential fac-
tors in Eq. (22) play the main role, and the amplitude
decreases with a decrease in d.
It is interesting that the amplitude maximum occurs for

relatively small values of d. For example, if � ¼ 0, then
this maximum is reached for

d=b ¼ 2"=½3ð"� 1Þ�2� � 1: (23)

The formula (21) gives the following value for such a layer:

E�1j�¼b�0 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27	e�3

p
q�b�2: (24)

It is important that the amplitudemaximum takes placewhen
d � b, i.e., in the range of d that is convenient for measure-
ments. For bunches with a finite length, the amplitude has a
maximum at larger values of d. However, as we will see,
these values are sufficiently small in typical situations.

III. NUMERICAL RESULTS AND DISCUSSION

Here we give some results of computations obtained on
the basis of the exact formulas for the first mode.
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Figure 2 shows the dependencies of the first mode
frequency �1 ¼ !1=ð2	Þ on the Lorentz factor for differ-
ent magnitudes of the dielectric layer thickness [computa-
tions have been performed on the basis of the exact
dispersive equation (6)]. One can see that the essential
dependency takes place for values of � below some limit.
This limit increases with a decrease in d=a. If d=a ¼ 0:1,
then we have a considerable dependency for � < 10.
However, for d=a ¼ 5� 10�4, the essential dependency
takes place for � < 100. It is interesting that the depen-
dency of log!1 on log� is almost linear for � < 70 in the
case of d=a ¼ 5� 10�4. In this range, the frequency !1 is

proportional to 1=�, i.e., the approximation (15) is true.
This result is corroborated by Fig. 3, where the comparison
between the solution of the strong dispersive equation (6)
and the solution of the approximate equation (12) is given
[note that Eq. (12) practically results in Eq. (15) for � > 3].
It should be underscored that the linear parts of the

curves in Fig. 2 are the most convenient for the determi-
nation of the Lorentz factor because the relative error of
� is equal to the relative error of the frequency. For the
nonlinear parts of curves, obtaining the Lorentz factor is
possible as well, but the accuracy will be lower. For
example, in the case of d=a ¼ 5� 10�4, one can obtain
that ��=�	 10� �!1=!1 for � ¼ 100. This result is
favorable because the mode frequency can be measured
with a very small error (10�4 and less).
Thus, it is important to use a thin dielectric layer for the

determination of particle energy. However, the mode
amplitude should be sufficiently large for measurement.
Figure 4 shows the dependency of the radial electric field
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FIG. 2. The first mode frequency depending on the Lorentz
factor for a waveguide with radius a ¼ 5 mm and a dielectric
layer with permittivity " ¼ 4; the magnitudes of d=a are given
near the curves.
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amplitude on the distance from the waveguide boundary.
As one would expect, the mode field has a maximum at
� ¼ b� 0, that is on the dielectric-vacuum boundary.

Note that the first mode amplitude increases with the
Lorentz factor and approaches some constant for large �
(Fig. 5). As mentioned above, the dependency of the mode
amplitude on the layer thickness is not monotonic (Fig. 6);
instead, it increases with an increase in d=a up to some
value, and then it decreases with further increase in d=a.
The component E�1 has a maximum, as a rule, at small

magnitudes of d=a (	 10�4–10�1). This fact is favorable
for the method under consideration. Figure 6 shows E�1 for

different values of parameter � characterizing the bunch
length (from � ¼ 0 to � ¼ 1 mm). One can see that the
amplitude of the radial component is sufficiently large for
measurements if the bunch charge is 1 pC.

It should be stressed that measurements are possible for
smaller values of charges as well. The formulas (21) and
(24) show that the radial field increases with decrease in the
channel radius. Therefore we can hope that the method
under consideration can be used for diagnostics of very
small bunches and even for detection of single particles
(if a very thin waveguide with radius<1 mmwill be used).

The analysis performed here concerns the case of infinite
waveguide. It is clear that a real waveguide must be long
enough for implementation of the method under consid-
eration. Estimation shows that the waveguide length L
must be more than a�. One can see that for � < 100 and
a < 1 cm we have L > 1 m that is quite realistic.

IV. CONCLUSION

We considered the nondestructive method of particle
energy determination based on the measurement of the
waveguide mode frequency. Note that Cherenkov radiation
can be applied as well for other methods of measurement
of the bunch energy. For example, an interesting technique
using both deflecting magnetic field and Cherenkov effect
has been developed in the paper [2]. This technique gives
high time resolution but it is destructive for bunches.
The method under consideration can be realized in

different ways. Here, we have analyzed the variant that is
connected with the use of the dielectric layer. It has been
shown that a decrease of the layer thickness results in an
increase in the dependency of the mode frequency on the
Lorentz factor �. Therefore, this method is effective if the
layer thickness is much less than the waveguide radius. In
such a situation, there is a wide range of � where the
accuracy of the determination of � is close to the accuracy
of the mode frequency measurement. Computations show
that, as a rule, the first mode amplitude is sufficient for
measurement in the case of a typical pico-Coulomb bunch.
The mode frequency can be measured with very small error
(
 10�4); therefore the method under consideration can be
the base for real-time particle energy monitoring with high
accuracy. It is essential as well that this method is non-
destructive, i.e., measurements practically have no effect on
the bunch.
Note that there are also other variants of the method

under consideration [7–13]. For example, we can use a
waveguide containing a certain ‘‘wire metamaterial’’
(a system of parallel wires having a dielectric coating)
[12]. This method allows us to determine the Lorentz factor
with high accuracy, but only in some narrow range. The
other version consists of the use of a circular waveguide
with a grid wall with small rectangular cells [13]. Such a
structure gives the essential dependency of the mode fre-
quency on the Lorentz factor in a wide range of values.
However, it should be noted that the method analyzed
in the present paper is the simplest for experimental
realization.
It should be mentioned that recently the waveguide with

a dielectric layer was offered as well for measurement of
the electron bunch length [15]. Thus, we can believe that
this structure is suitable for versatile nondestructive diag-
nostics of bunches.
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