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The diffusion process near low order synchrobetatron resonances driven by beam-beam interactions at a

crossing angle is investigated. Macroscopic observables such as beam emittance, lifetime, and beam

profiles are calculated. These are followed with detailed studies of microscopic quantities such as the

evolution of the variance at several transverse amplitudes and single particle probability distribution

functions. We present evidence to show that the observed diffusion is anomalous and the dynamics follows

a non-Markovian continuous time random walk process. We derive a modified master equation to replace

the Chapman-Kolmogorov equation in action-angle space and a fractional diffusion equation to describe

the density evolution for this class of processes.
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I. INTRODUCTION

Diffusion of particle beams due to nonlinear fields is
often a major source of emittance growth and beam loss in
an accelerator. Measurements of diffusion coefficients
have been reported from several hadron accelerators
[1–3]. The diffusion equation was also used to explain
the change in beam lifetime following the failure of a
separator during a Tevatron store [4]. In collision mode,
the beam-beam interactions are usually the dominant non-
linearity. Diffusion coefficients in the absence of low order
resonances have been calculated for head-on interactions
[5] and for long-range interactions [6]. Diffusion due to
nonlinear resonances is more complex and the study
of this phenomenon has a long history, see e.g. [7–11].
Resonances when modulated, either by dynamical effects
such as synchrobetatron coupling or due to ripple in mag-
net currents, can sweep across phase space and transport
particles to large amplitudes [12,13].

In this article we will study the nature of the diffusion
process due to synchrobetatron resonances driven by
beam-beam interactions with a crossing angle. This was
first investigated at the DORIS collider [14] and the effects
of these resonances have since been observed at other
colliders. Our aim is to establish the correct statistical
mechanical model that describes the evolution of the
beam density. We examine the possibility that the diffusion
process is anomalous with detailed tracking simulations
and derive a master equation and a related fractional dif-
fusion equation that may describe the transport process. A
preliminary version of this study was reported in [15]. An
example of anomalous diffusion observed in particle

beams as a consequence of rf phase modulation was
reported in [16]. Anomalous diffusion processes have
been reported in several areas of physics including plasma
turbulence [17], and in the motion of laser cooled atoms on
a lattice [18].

II. SYNCHROBETATRON RESONANCES
DUE TO CROSSING ANGLES

Synchrobetatron resonances (SBRs) due to beam-beam
interactions at a crossing angle are convenient to study
resonantly driven amplitude growth for several reasons. At
large amplitudes, the nonlinear force vanishes, hence par-
ticle excursions do not go to arbitrarily large amplitudes
which is not the case for resonances due to multipole
nonlinearities. This removes numerical instabilities and
also allows the entire beam to be probed for the particle
dynamics. Another advantage is that the resonances can be
studied in one transverse plane since these resonances are
driven by energy pumped from the longitudinal plane to
the transverse plane with very little impact on the longitu-
dinal dynamics.
When beams collide at an angle, the transverse distance

of a test particle from the center of the opposing bunch
depends on the longitudinal position of the particle.
Consequently, synchrotron oscillations of the particle couple
to the transverse beam-beam force leading to excitation of
synchrobetatron resonances. Since the beam-beam force
goes to zero at large transverse separations, the effects of
these resonances are experienced by particles only within a
certain range of transverse amplitudes.
For simplicity, we choose the resonances to be in only

one transverse plane, here the horizontal plane. In order to
observe effects over relatively short computation times, we
choose low order resonances. The tunes we choose are
unrealistic for operating colliders but it is likely that the
dynamics near high order resonances is similar but occurs
over a longer time scale.
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Linear motion and the beam-beam interactions can be
described by the equations of motion resulting from the
Hamiltonian,

H ¼ �xJx þ �yJy þ �zJz þ
XNIP

i

Uiðx; y; zÞ�Pðs� siÞ: (1)

Here x, y are the betatron coordinates, z is the longitudinal
coordinate with respect to the bunch center, and smeasures
the distance along the ring. ð�x; �y; �zÞ are the tunes, and

ðJx; Jy; JzÞ are the actions. Uðx; y; zÞ is the beam-beam

potential, �P is the periodic delta function, and the sum
extends over the number NIP of interaction points. The
coordinates ðx; zÞ can be expressed in terms of the action-
angle variables ðJx; �xÞ and ðJz; �zÞ as

x ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�xJx

p
cos

�
�x þ

Z ds

�xðsÞ � �x

s

R

�
; (2)

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�R

p0�z

Jz

s
cos�z: (3)

Here R is the machine radius, � is the slip factor, and p0 is
the design momentum. The expression for y is similar to
that for x. Assuming Gaussian distributions in the trans-
verse planes, crossing angles of ð2�x; 2�yÞ in the horizon-

tal and vertical planes respectively, the beam-beam
potential for infinitesimally short colliding proton bunches
can be written as

Uðx; y; zÞ ¼ �Nbrp
�p

Z 1

0

dq

½ð2�2
x þ qÞð2�2

y þ qÞ�1=2

�
�
1� exp

�
�ðxþ z sin2�xÞ2

ð2�2
x þ qÞ

� ðyþ z sin2�yÞ2
ð2�2

y þ qÞ
��

; (4)

where Nb is the bunch intensity of the opposing bunch, rp
is the classical proton radius, �p is the proton energy in

units of its rest mass, and �x, �y are the rms beam sizes of

the opposing beam at the interaction point (IP). The short
bunch approximation is valid when the bunch length is
much smaller than the beta function at the IP. In the
LHC for example, this is a reasonable approximation since
�z ¼ 7:5 cm<�� ¼ 55 cm.

The potential can be expanded as a Fourier series,

Uðx; y; sÞ ¼ X

mx;my;mz;p

Umx;my;mz

� exp½iðmx�x þmy�y þmz�z � p�Þ�: (5)

This potential can excite synchrobetatron resonances given
by the resonance condition mx�x þmy�y þmz�z ¼ p,

where ðmx;my;mz; pÞ are integers. It can be shown from

the structure of the Fourier harmonics Umx;my;mz
that they

are nonzero only when the sum mx þmy þmz is even.

This restriction is relaxed if the bunches are of finite length.
The Fourier harmonics can also be used to calculate the
tune shifts with amplitude and the resonance driving terms,
as was done in [19]. As one example, we write down the
tune shift for zero transverse amplitude with round beams.
This tune shift now depends on the longitudinal oscillation
amplitude az�z as

��xðax ¼ 0; ay ¼ 0; azÞ

¼ 	e�


�
I0ð
Þ � I1ð
Þ

�
1þ 1

2

ðazhxÞ2



��
(6)

and a similar expression for ��y. Here 	 ¼ Nbrp=ð4��NÞ
is the usual beam-beam parameter, (ax�x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2��

xJx
p

,

ay�y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2��

yJy
q

) are the transverse amplitudes of the par-

ticle, I0, I1 are modified Bessel functions, and the other
dimensionless parameters are


 ¼ 1

4
a2zðh2x þ h2yÞ;

hx ¼ �z

�x

sin2�x;

hy ¼ �z

�y

sin2�y:

As a consequence, only those zero transverse amplitude
particles with zero longitudinal amplitude az experience
the full beam-beam tune shift 	. Particles with nonzero
amplitude az experience a smaller tune shift.
Since the LHC employs crossing angles in its collision

scheme, we will use the LHC beam parameters in the
simulations reported here. As in the LHC, the crossing
angle is in the horizontal plane at one IP and in the vertical
plane at the second IP. We consider resonances excited
in the horizontal plane only, so they are of the form
mx�x þmz�z ¼ p with mx þmz even. In our model the
only sources of tune spread are the beam-beam interac-
tions. These interactions between protons lower the
betatron tunes at small amplitudes. We choose the large
amplitude tunes, i.e. the tunes with only the linear lattice,
to satisfy one of the SBR resonance conditions. Having
chosen a particular resonance mx�x þmuz�z ¼ p to be
satisfied by the bare lattice tunes, the tunes inside the bunch
are determined by the beam-beam parameter 	, the syn-
chrotron tune �z, and the amplitudes ðax; ay; azÞ of the

particle. The nominal LHC horizontal tune is 0.31 at
collision, so we searched among the neighboring reso-
nances: 3�x � �z ¼ 1, 2ð3�x � 2�zÞ ¼ 2 as well as
2ð4�x � �zÞ ¼ 2 and 4�x � 2�z ¼ 1 to find those that
cause large growth of the emittance and beam tails.
Given that the betatron tune spread from head-on beam-
beam interactions is about 0.007 and the small amplitude
synchrotron tune is�0:002, the choices 2ð3�x � 2�zÞ ¼ 2
and 4�x � 2�z ¼ 1 had the greatest impact on the beam.
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At these tunes, low amplitude particles are resonant with
the third and fourth order betatron resonances respectively,
and the synchrotron oscillations modulate these resonances
leading to large amplitude growth. The other resonances
are resonant at larger amplitudes and consequently have a
smaller impact on the bunch. The bare lattice (which
becomes the large amplitude) betatron tunes corresponding
to these resonances are shown in Table I. In case of
resonance I, the bunch tunes span the range (0:328 � �x �
0:3353, 0:313 � �y � 0:32) while for resonance II, the

tunes span the range (0:244 � �x � 0:2514, 0:313��y�
0:32). We note that some of the parameters shown in
Table I may be different from the present LHC design
values, e.g. the LHC design value of the crossing angle is
285 rad.

III. SIMULATIONS OF BEAM VARIABLES

In this section we will describe multiparticle simulation
results. These will include the emittance growth, evolution
of beam profiles, amplitude growth at different initial
amplitudes, and also the growth of the variance in action
at these amplitudes. This will allow us to probe both the
macroscopic and microscopic beam behavior.

The simulations were performed with a simple numeri-
cal model consisting of six dimensional linear transport

between the two collision points, a sinusoidal longitudinal
map through an rf cavity, and weak-strong beam-beam
interactions at the two IPs with infinitesimally short
bunches. The beam-beam interactions occur with a hori-
zontal crossing angle at one IP and a vertical crossing angle
at the second IP. The strong beam was assumed to have a
Gaussian distribution in both transverse planes. Magnetic
nonlinearities are not included, both to keep the model as
simple as possible and also to avoid particle amplitudes
from growing exponentially fast far from the beam core.
Limiting amplitude growth to finite values allows us to
keep all particles in the distribution and, hence, study the
growth of the beam tails with good statistics.

A. Emittance growth and lifetimes

Emittance growth was calculated by evolving ensembles
of N particles (5000 � N � 20 000) starting with
Gaussian distributions in all planes. Typically 10 000 par-
ticles sufficed to obtain results that did not change much
with a larger number of particles. The calculated emittance

was the rms emittance, e.g. �x ¼ ½hx2ihx02i � hxx0i2�1=2.
Figure 1 shows the emittance growth with 20 000 particles
on the two resonances. We find that the growth follows a
simple power law; the fits are also shown in the figure. We
observe that the horizontal emittance growth after 106 turns
is more than 2.5 times larger on the 2ð3�x � 2�zÞ ¼ 2
resonance than on the 4�x � 2�z ¼ 1 resonance. The ver-
tical emittance growth is much smaller than the horizontal,
about a factor of 5 smaller for the first resonance and it is
practically zero for the second resonance.
By imposing a finite aperture restriction, we can find the

escape time needed by particles to reach this aperture. This
has been calculated for several different apertures and for
both resonances. Apertures were placed from 5� to 10� at
intervals of 1�. On the 2ð3�x � 2�zÞ ¼ 2 resonance, we
find that about 7% of particles reach 8�, a handful reach
9�, and none reach 10�. On the 4�x � 2�z ¼ 1 resonance,
about 4% of particles reach 6�, a few reach 7�, and
none reach 8�. The amplitude distribution of the particles

TABLE I. Table of basic parameters in simulation model.
Resonance I is 2ð3�x � 2�zÞ ¼ 2, resonance II is 4�x � 2�z ¼ 1.

Beam parameter Value

Energy [TeV] 7.0

Bunch intensity 1:1� 1011

�x;�y [m] 16.6, 16.6

�z [cm] 7.5

rf voltage [MV] 16

Crossing angles [rad] 300

Beam-beam parameter 0.0034

Resonance I: ð�x; �yÞ 0.3353, 0.32

Resonance II: ð�x; �yÞ 0.2514, 0.32
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FIG. 1. Emittance growth vs turns with tunes on the synchrobetatron resonances. Left: horizontal emittance growth; right: vertical
emittance growth. The power law fits and the exponents for the fits are also shown.
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reaching 8� on the first resonance and of the particles
reaching 6� on the second resonance are shown in the
top plots of Fig. 2. The initial distribution in each case was
a Gaussian with 40 000 particles. On the 2ð3�x � 2�zÞ ¼ 2
resonance, the maximum of the amplitude distribution
occurs close to 1:5�—an amplitude close to the lower
edge of the resonance islands, shown later in Fig. 10. The
minimum initial amplitude that reaches the aperture is
0:25�. On the 4�x � 2�z ¼ 1 resonance, the correspond-
ing peak in the amplitude distribution is close to 1:8�, also
at the lower edge of the resonance islands seen in Fig. 11.
The minimum initial amplitude that reaches the aperture on
this resonance is 0:9�.

The average escape time in the simulation may be
interpreted as representing the beam lifetime. The bottom
plot in Fig. 2 shows the average escape time (calculated
with 40 000 particles) as a function of the aperture ampli-
tude for both resonances. The average escape time with
20 000 particles yielded similar values showing that these
numbers have converged. The average escape time in-
creases by an order of magnitude or more for each 1�
increase in aperture . The average escape time at 8�
on the 2ð3�x � 2�zÞ ¼ 2 resonance is about the same
as at 6� on the 4�x � 2�z ¼ 1 resonance. At apertures
5 and 6�, the escape time on the second resonance is
larger by about 2 orders of magnitude and by 3 orders of

magnitude at 7�. One would expect this trend of increasing
lifetimes to continue with higher order resonances.

B. Beam profiles

The beam profiles were also found with these initial
Gaussian distributions and the same resonances. The left
plot in Fig. 3 shows a mountain range view of the horizon-
tal beam profiles (i.e. distribution function of the horizontal
position), initially and then at other intervals up to 106

turns with tunes on the resonance 2ð3�x � 2�zÞ ¼ 2. After
the initial time, the subsequent horizontal profiles develop
long non-Gaussian tails which extend out to about �8�
compared to the initial Gaussian distribution which was
limited to �3:5�. The vertical beam profiles (not shown
here) however stayed Gaussian and close to the initial
distribution. The right plot in this figure shows the hori-
zontal profiles but with tunes on the resonance 4�x �
2�z ¼ 1. We observe that in this case as well that the tails
are non-Gaussian and extend out to about �6�, not quite
as far as on the first resonance. Again there is very little
change in the vertical profile. We observe that the beam
tails do not appear to change very much after the first
100 000 turns or so. It is most likely that the regions of
enhanced diffusion are depleted within these turns. The
particles in the vicinity of the resonance islands are trans-
ported to larger amplitudes quickly and are detuned from
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the resonance. The amplitudes to which they move have
much smaller diffusion, so the beam tails do not change
much. We will see in the next subsection that the evolution
in the beam core shows growth even after several hundred
thousand turns. However, these particles do not migrate to
the tails during the time duration followed. Thus, we con-
tinue to observe emittance growth, as seen in Fig. 1.

In order to find distributions that can best fit the non-
Gaussian tails, we first look to the central limit theorem
(CLT) which explains the ubiquity of the Gaussian distri-
bution. This powerful theorem states that the distribution
of a sum of a sequence of independent and identically
distributed random variables with finite mean and second
moment tends to a Gaussian distribution in the limit
that the number in the sequence approaches infinity.
Generalizing the CLT by dropping the requirement of a
finite second moment leads to the family of Levy stable
distributions [20]. For applications in beam dynamics,
these distributions will still have a finite second moment
because they do not extend to infinity but are truncated at
the beam pipe or the closest physical apertures.

Levy stable distribution functions are defined by an
inverse Fourier transform of a stretched exponentially
decaying function in Fourier space,

L�ðxÞ ¼ 1

2�

Z 1

�1
exp½�ixk� jkj��dk; 0<�< 2:

(7)

There is no known closed form expression for arbitrary
values of �. Special cases include the Lorentz distribution
L1ðxÞ and the Gaussian distribution L2ðxÞ. There are more
general asymmetric versions of the Levy stable distribution
with additional parameters but we shall not need them
here. Some basic properties of these functions are [21]:
(i) these functions are normalized:

R1
�1 dxL�ðxÞ ¼ 1;

(ii) they are even functions: L�ð�xÞ ¼ L�ðxÞ; (iii) at
x ¼ 0, L�ð0Þ ¼ 1

���ð1�Þ, which increases rapidly when

� ! 0; (iv) at large values of x, the distributions decay as

lim
x!1L�ðxÞ � 1

�
sin

�
1

2
��

�
�ð1þ �Þ
jxj1þ�

:

We find that the non-Gaussian horizontal profiles can be
fit by these Levy stable distributions L�. The left plot in
Fig. 4 shows the fit of the final horizontal profile for the
resonance 2ð3�x � 2�xÞ ¼ 2 with a Levy stable distribu-
tion with parameter� ¼ 0:95. This profile is narrower than
a Lorentzian and decays at large x as jxj�1:95. The right plot
in this figure shows the final distribution on the resonance
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4�x � 2�x ¼ 1 can also be fit by a Levy stable distribution
with a larger central width and corresponding to � ¼ 1:3.
This profile is wider than a Lorentzian and decays at large x
as jxj�2:3. The Levy stable distributions were generated
with a MATHEMATICA package [22].

The Gaussian distribution serves as the Green’s function
in the solution to the regular diffusion equation with a
constant diffusion coefficient. Similarly it is known [23]
that the Levy stable distributions serve as Green’s func-
tions to fractional diffusion equations for a density �ðx; tÞ
of the type

@

@t
�ðx; tÞ ¼ ��1D�

x �ðx; tÞ; (8)

where � is a constant diffusion coefficient and �1D�
x is the

Riemann-Liouville fractional space derivative of order �
given by

�1D�
x � ¼ 1

�ð2� �Þ
@2

@x2

Z x

�1
�ðx0Þ

ðx� x0Þ��1
dx0: (9)

The solution of the fractional diffusion equation above is

�ðx; tÞ ¼
Z 1

�1
L�ðx0Þ�0ðx� ð�tÞ1=�x0Þdx0; (10)

where �0ðxÞ is the initial density. Levy stable distributions
have also been shown to be solutions of other fractional
diffusion equations [24]. There is no reason to believe that
either Eq. (8) or of the type in Ref. [24] are appropriate for
our problem. However, the fact that the long time beam
profiles are described by these Levy distributions is our
first indication that the amplitude growth process may be
described by an appropriate fractional diffusion equation
rather than the regular diffusion equation. In Appendix A
we derive a different fractional diffusion equation that may
describe the dynamics observed here.

C. Growth at individual amplitudes

We now take a closer look inside the beam distribution
to determine how the amplitude growth changes with
initial amplitude. Instead of a Gaussian distribution in
phase space, we consider delta function distributions in
action. We select a discrete number of horizontal actions
and at each action we place 4000 particles uniformly
distributed in angle. The vertical amplitude was kept con-
stant at 0:1� for all particles. The initial distribution in
transverse action-angle space can be written as

�ðJx; �x; Jy; �yÞ ¼ �ðJy � J0:1ÞPð�xÞPð�yÞ
X

i

�ðJx � JiÞ;

(11)

where J0:1 is the action at an amplitude of 0:1�, Pð�xÞ is a
uniform distribution in the horizontal angles, etc. The
initial longitudinal variables were chosen to be the same
for all particles: z ¼ 1�z, �p=p ¼ 1�p in these simula-

tions. We let these distributions evolve and record the final
distribution in amplitude after 106 turns. The left plot in
Fig. 5 shows the initial (red) and final (blue) distributions
for resonance I. We observe that particles at 0:5� stay close
to their initial amplitude. At 1�, many particles have
moved to larger amplitudes but a sizable fraction stay in
their original neighborhood. This shows a large variation in
final amplitude depending on their initial angle or sensi-
tivity to their initial conditions. It suggests that motion in
the neighborhood of 1� could correspond to bounded
chaos. At amplitudes of 1:5� and higher, the vast majority
of particles have migrated to larger amplitudes up to 8�
and depleted the initially populated regions. There is a
broad local maximum in the final distributions at �7�.
The right plot in Fig. 5 shows the corresponding results for
resonance II. The results are qualitatively similar with
some differences. The initial amplitude with large variation
in final amplitude is closer to 2� and the largest amplitude
reached is about 7�. On this resonance there remain local
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spikes at 2.5 and 3� showing that diffusion at these
amplitudes is weaker than in the first resonance.

D. Variance of the action and diffusion type

We now examine the diffusion from individual ampli-
tudes. In regular diffusion the variance of the diffusing
quantity, here the action, grows linearly with time which
allows one to define time independent diffusion coeffi-
cients DðJÞ ¼ ð1=2Þhð�JÞ2i=�t. We check the validity of
this assumption for the beam-beam driven SBRs. using the
same initial distribution given by Eq. (11). Variances are
calculated over particles at the same initial action. Figure 6
shows the growth in the variance of the horizontal action at
several initial actions for both resonances. The vertical
amplitude was constant at ay� ¼ 0:1�. Initially the vari-

ance is zero at all actions but then grows at different rates
depending on the action. The growth in the variance is not
linear at any action. In most cases there is a sharp initial
two stage transient growth which is followed by a slower
long term growth. The first stage of the initial increase
occurs over a thousand turns and is likely due to the
mismatch between the invariant contours of the linear
optics and the invariant contours of the perturbed nonlinear
optics due to the beam-beam interactions. The second stage
of the rapid growth is due to the resonances that drive the

particles. The longer term growth can be modeled (in most
cases) by a power law behavior of the form

hð�JxÞ2i � Cxt
px ; hð�JyÞ2i � Cyt

py ; (12)

where the coefficients ðCx; CyÞ and the powers ðpx; pyÞ
depend on the initial action. Exponents less than 1 indicate
subdiffusive behavior while exponents greater than 1 imply
superdiffusive motion. Figure 6 also shows the fits with this
power law. Note that variances of 10�16 are at the level of
numerical noise and are consistent with no diffusion. To
obtain a power law fit to a single exponent, initial data over
the sharp rise had to be dropped in several cases. Growth of
the variance in the vertical action can also be fit by a single
power law with small values of ðCy; pyÞ showing that there
is no appreciable diffusion in that plane. On the resonance
2ð3�x � 2�zÞ ¼ 2, there is significant growth in the action
at amplitudes of 2 and 2:5� compared to neighboring
actions both lower and higher. The exception to the single
power law fit occurs at ax� ¼ 1� where the variance stays
nearly constant after the initial transient and then after
about 400 000 turns grows by an order of magnitude over
the next 600 000 turns but with oscillations in the variance.
These oscillations occur because of the large sensitivity to
the initial angle at this amplitude. The oscillations decrease
significantly when the number of particles at the same
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initial action is increased from 4000 to 20 000 particles,
which results in a more complete sampling of the initial
angle. Simulations show that this greater sensitivity to the
initial angle is also present at amplitudes in the range
1:0� � x � 1:3� with ay� ¼ 0:1�. The fits to a power

law in this zone are applied after the variance starts to grow
rapidly and using 20 000 particles. The average action with
initial jxj ¼ 1:0� grows only about 10% after 106 turns
while the average action with initial jxj ¼ 1:5� grows by
about a factor of 2. So the narrow zone around jxj ¼ 1:0�
corresponds to a zone of bounded chaos.

At the resonance 4�x � 2�z ¼ 1, the growth in variance
is largest in the range ax� ¼ 2:5–3 and drops for both
smaller and larger initial actions. The large oscillations in
the variance occur in a range around ax� ¼ 2:0� and again
these oscillations are reduced when the number of particles
is increased from 4000 to 20 000. For this resonance, the
zone around jxj ¼ 2:0� is a zone of bounded chaos.
Similar behavior is seen at other values of y but the width
of the zone of bounded chaos changes.

The exponents in the power laws were calculated for
several values of the horizontal amplitude and for different
vertical initial amplitudes. Figure 7 shows the exponents
for both resonances. On the resonance 2ð3�x � 2�zÞ ¼ 2
there is a spike in the exponent to values well above 1 in the
regions of bounded chaos for ay� ¼ 0:1; 0:5� suggesting

superdiffusive behavior. Above the zone of bounded chaos,
the exponent falls well below 1 suggesting subdiffusive
behavior. At ay� ¼ 1� the exponent stays well below 1 for

all x showing that zones of bounded chaos have disap-
peared. On the 4�x � 2�z ¼ 1 resonance, the exponent
rises above 1 only in a narrow zone around ax� ¼ 2� at
ay� ¼ 0:1�. At ay� ¼ 0:5� the exponents staywell below

1 at all x with a small spike at ax� ¼ 2�. The motion is
subdiffusive at all x values studied when ay� ¼ 1�. Since

the superdiffusive regions are narrow, it is possible that they
may appear for jyj � 1� when the motion is studied with a
finer resolution or even when the longitudinal variables are

changed. We remark that we have observed here three
different signatures of bounded chaos: large variations in
final amplitude when starting from the same initial ampli-
tude (seen in Fig. 5), large oscillations in the action variance
over time (seen in Fig. 6), and a spike in the power law for
the growth of the variance (seen in Fig. 7). These signatures
apply to an ensemble of particles at the same amplitude but
different initial angle as opposed to the Lyapunov exponent
criterion which is applied to a pair of particles that are
initially infinitesimally close.
The picture that emerges is that near synchrobetatron

resonances, phase space is divided into several zones. At
small amplitudes there is no diffusion. At larger amplitudes
there is a narrow zone of bounded chaos with superdiffu-
sive motion. The next zone outward in phase space is wider
with subdiffusive motion. Finally at even larger ampli-
tudes, the motion becomes linear again and consequently
there is no diffusion. Figure 8 shows a qualitative sketch of
these different zones. The width of the superdiffusive zone

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0.5  1  1.5  2  2.5  3  3.5  4

E
xp

on
en

t

Hor. amplitude [σ]

y=0.1 σ
y=0.5 σ

y=1 σ

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.5  1  1.5  2  2.5  3  3.5  4

E
xp

on
en

t

Hor. amplitude [σ]

y=0.1 σ
y=0.5 σ

y=1 σ

FIG. 7. Exponent px of time in the power law fits of the horizontal action variance vs the initial horizontal amplitude for different
initial values of the vertical amplitude. The left figure corresponds to the resonances 2ð3�x � 2�zÞ ¼ 2 and the right to the resonance
4�x � 2�z ¼ 1. The exponent spikes above 1 in a very narrow range of horizontal amplitudes. Exponent values below 1 indicate
subdiffusive behavior while those above indicate superdiffusive behavior.

Sub-diffusion

Super-diffusion

No diffusion

FIG. 8. Qualitative sketch of phase space divided into zones of
no diffusion, superdiffusion, and subdiffusion when the dynam-
ics is dominated by a beam-beam synchrobetatron resonance.

TANAJI SEN Phys. Rev. ST Accel. Beams 15, 101001 (2012)

101001-8



with bounded chaos depends on the resonance, on the
amplitude of the orthogonal transverse amplitude, and on
the values of the longitudinal variables.

The fact that the subdiffusive regions seem to be domi-
nant in this perturbed Hamiltonian system should not be
unexpected due to the existence of hyperbolic fixed points
and the existence of perturbed KAM tori. These fixed
points and tori lead to orbits which stay in their vicinity
for long time periods and consequently to slower growth.
Similar phenomena have been reported for the standard
map by Balescu [25].

IV. STATISTICS OF SINGLE PARTICLE BEHAVIOR

We saw in the previous section that in most regions of
phase space, the variance grows slower than linearly with
time. If we define an instantaneous or ‘‘running’’ diffusion
coefficient [25] as DJx ¼ ð1=2Þ@h�J2xi=@t, then this coef-

ficient would be time dependent. It would vanish in the
very long time limit for subdiffusive motion and go to
infinity for superdiffusive motion. Near both resonances
we did not observe any zone of regular diffusion with
constant diffusion coefficients. We also saw that the
beam profile was given by a Levy stable distribution which
is known to be the solution of a fractional diffusion equa-
tion. These suggest that the dynamics near these reso-
nances cannot be described by the regular diffusion
equation but instead that the diffusion is anomalous which
needs a different diffusion equation. In order to test this
possibility in more detail, we will examine the validity of
the assumptions behind the regular diffusion equation.

A. Continuous time random walks

The regular diffusion equation arises after assuming
that the particle dynamics can be modeled as a classical
random walk following a Markov process. This implies
that particle jumps occur at regular time intervals and there
is a well-defined time scale such that events separated in
time by longer than this time scale are uncorrelated. It then
follows that transport of the particle density is governed by

the well-known Chapman-Kolmogorov master equation.
From this master equation and a few more assumptions
(e.g. on the smallness of the displacements, etc.) the regu-
lar diffusion equation follows. See Appendix A for a sketch
of this derivation.
A well-known alternative to the standard random walk

picture is the continuous time random walk (CTRW)
model introduced by Montroll and Weiss [26] to consider
processes where both the times at which jumps occur as
well as the sizes of the jumps in space are random func-
tions. A review of CTRW and connections to fractional
diffusion equations may be found in [27].
A general dynamical process may not have a character-

istic time scale. In those cases a Markov description may
not be applicable. The CTRW model introduces the con-
cepts of a probability distribution w for the waiting times
before a jump occurs and a probability distribution � for
the size of a jump. In beam dynamics there is no diffusion
when the motion is linear and the Courant-Snyder actions
are conserved. Consequently, it makes sense to define the
jumps in action space when the motion is nonlinear and
diffusive. Hence, we define wðt; JÞ�t to be the probability
that a particle waits for a time between t and tþ�t at
action J before making a jump. and define�ð�J; J; tÞ�J to
be the probability of making a jump by �J at the action J
at time t. These distributions are normalized, i.e.,

Z
wðt; JÞdt ¼ 1 ¼

Z
�ðJ0; J; tÞdJ0: (13)

The concept of a waiting time endows the system with
memory. The CTRW model reduces to the classical
random walk model when the waiting time follows an

exponential behavior in time e�t=
 with a characteristic
time scale 
.
These waiting time and jump size distributions can be

used in many cases to determine the evolution followed
by the density distribution �ðJ; tÞ. The canonical CTRW
model assumes a power law waiting time distribution, a
Gaussian for the jump size distribution and a constant
diffusion coefficient. These lead to a fractional diffusion
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equation for the density [27]. In our case the dynamics near

resonances is sufficiently complicated that we need to

establish the evolution equation for the density from first

principles. We therefore need to determine the forms of the

jump size distribution and the waiting time distributions

from the dynamics. Simulations in the rest of this section

are used to extract these distributions.
A check of whether the CTRWmodel may be applicable

here can be done by examining the time series of single
particles. Figure 9 shows one example of a time series of
the amplitude

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�xJx

p
for a single particle on the reso-

nance 2ð3�x ¼ 2�zÞ ¼ 2. The left plot shows that a particle
may perform small amplitude quasiperiodic oscillations
for a while before a major qualitative change occurs.
The middle and the right plots show that step sizes can
be large (several �), of varying amplitude, and there are
intermittent sequences of varying duration where there
are smaller steps. The time dependent behavior of this

sequence establishes that this is a process with a distribu-
tion of waiting times and a distribution of action step sizes,
the key ingredients of the CTRW model.

B. Jump size distributions

We now calculate the jump size distributions by follow-
ing a single particle for 106 turns and find the changes �x,
�Jx in position and action per turn. Figure 10 shows the
phase space, and jump distributions of �x, �Jx on the
resonance 2ð3�x � 2�zÞ ¼ 2 with initial values of ax� ¼
ð0:2; 2; 8Þ�. At the smallest initial position x0 ¼ 0:2�, the
phase space is a distorted ellipse with no trace of the
resonance islands; motion here is quasilinear. The plot
for the distribution function of �x also has the distribution
function for a periodic function shown in dotted lines.
When the argument of a periodic function like sine or
cosine is sampled from a random distribution, the distri-
bution function for the periodic function f has the form
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pðfÞ � 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p ; jfj � 1: (14)

The distribution function has local maxima wherever the
function itself becomes stationary, so that many more
points are sampled from the neighborhood of these sta-
tionary points. Since the motion at small and large am-
plitudes is quasiperiodic in our model, it is to be expected
that the distribution in �x is close to that of a periodic
function. The distribution function for �Jx is plotted on a
semilog scale and shown as discrete points, for greater
clarity. At x0 ¼ 0:2�, the distribution for �Jx lies on a
single curve but not given by any simple expression. As
the particle’s initial position increases to 2�, the nonline-
arity of the beam-beam force manifests and we see reso-
nance islands in phase space and large excursions. The
distribution function for �x undergoes a qualitative change
to resembling a truncated parabolic curve butwith a dip in the
center and with peaks close to the center. The distribution
function for �Jx now falls on two separate curves. Similar
distributions for �x, �Jx are seen for initial particle

amplitudes in the range 1:5� � jx0j � 6:5�. At x0 ¼ 8�,
the phase space returns to a distorted ellipse with consider-
able smear, and the distribution functions also resemble those
seen at x0 ¼ 0:2�.
Figure 11 shows similar plots on the resonance 4�x �

2�z ¼ 1 with initial values of ax� ¼ ð0:5; 3:5; 8Þ�. Again,
we see a qualitative change in the distribution functions
when the motion is strongly nonlinear in the presence of
the resonance islands. The shapes of the distributions in�x
are similar to those seen for the previous resonance and the
distribution of �Jx also lies on separate curves at inter-
mediate amplitudes. These suggest that there is a universal
character to the jump distributions which mirrors the
behavior in phase space.

C. Waiting time distributions

The waiting time distribution is the important distribu-
tion that determines the nature of the diffusion process.
As remarked earlier, a waiting time distribution that
follows an exponential law reduces to a Markov process,
otherwise the process is non-Markovian. The waiting time
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for each initial amplitude is found here by tracking a
particle at that amplitude for 106 turns. The phase space
region in action-angle coordinates visited by the particle
is divided into different zones and the time that the
particle stays in the zone before leaving is one instance
of the waiting time. The choice of the width of the zone is
somewhat arbitrary since there is no dynamics dependent
action scale which is applicable to all of phase space. For
example, the resonance width is not relevant at small or
large amplitudes and if there were multiple resonances,
there would be multiple widths. We therefore calculated
the waiting time distribution twice, once with a chosen
width such that there was enough statistics in each zone
and the second time with twice the width. In most cases
we found that the parameters of the distribution change
by less than 10%; we take this to be a sign of convergence
of the distribution. We find that the exponential function
is not a good fit to the distribution for either resonance.
The results for a fit to a power law distribution are shown
in Fig. 12. The distributions are plotted on a log-log scale
for several initial amplitudes where there is significant
amplitude growth. On the 2ð3�x � 2�zÞ ¼ 2 resonance,
most of the points (with the exception of the single
occurrence events with long waiting times) lie on straight
lines showing that a power law is a reasonable fit. The
power law exponents for the different amplitudes are
close. For the amplitudes shown in this figure, the waiting
law distributions are

wðtÞ � t��; 2:4 � � � 2:7: (15)

On the 4�x � 2�z ¼ 1 resonance, the waiting time distri-
bution can also be fit by a power law distribution but the
range of variation in the exponent � is larger: 1:4 � � �
2:7. The greater variability in the exponent is expected to
have an impact of the dependence of the diffusion rate at
different amplitudes on this resonance.

We have also examined the dependence of the waiting
times on the size of the jump in action. The longest waiting
times occur for the shortest jump sizes but excluding
these smallest jumps, the waiting time is independent of

the jump size for both resonances. This shows that it is
reasonable to consider the waiting time to be a function of
time and initial action only, i.e. wðt; JÞ, in any analytical
model that we develop to describe the dynamics.

V. FRACTIONAL DIFFUSION EQUATION

Since the waiting time distribution suggests that the
transport near resonances is non-Markovian, we need to
establish an alternative to the regular diffusion equation.
For a Markov process, the regular diffusion equation is
obtained from the Chapman-Kolmogorov master equation,
a derivation is sketched in the Appendix. There we also
derive a different master equation using general jump size
and waiting time distributions for a CTRW process in
action space following a method outlined in [28]. The
master equation for the density in action-angle space that
we obtain is

@

@t
�ðJ; �Þ ¼ 1




ZZ
d�Jd���ðJ� �J; �� ��; �J;��Þ

� Lt�ðJ��J; �� ��; tÞ � 1



Lt�ðJ; �; tÞ;

(16)

where Lt is an integral operator given by

1



Lt�ðJ; �; tÞ ¼ L�1

�
sŵðs; J; �Þ

1� ŵðs; J;�Þ �̂ðJ; �; sÞ
�
: (17)

Here L�1 is an inverse Laplace transform, 
 is a time
parameter in the waiting time distribution wðt; JÞ,
ŵðs; JÞ; �̂ðs; JÞ are the Laplace transforms of the waiting
time distribution and the density, respectively. In the
Appendix we then show that expanding this master equa-
tion in a Taylor series in the same manner as is done for the
Chapman-Kolmogorov equation, the following fractional
diffusion equation is obtained for a power law waiting time

distribution wðt; JÞ � t��ðJÞ:
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Here the exponent � depends on the action J which
will be true in general and Dkl are action dependent diffu-
sion coefficients, defined in the Appendix. It remains to be
verified that this fractional diffusion equation describes the
dynamics near resonances, as seen in the particle tracking
simulations. However, this diffusion equation has been
derived under general considerations of a CTRW process
in action which the dynamics near the SBR resonance
appears to follow. Given the large variations in the diffu-
sion coefficients, the solution of this diffusion equation
will likely require a special purpose numerical algorithm.
The density can then be used to calculate the beam lifetime
and various moments such as the emittance .

VI. DISCUSSION

We have studied the detailed transport process near two
low order horizontal synchrobetatron resonances driven by
beam-beam interactions at a crossing angle. We found that
the horizontal beam profiles develop long beam tails. The
horizontal beam distribution evolves from an initially
Gaussian distribution to Levy stable distributions on both
resonances. The Levy stable distributions are solutions of
simple fractional diffusion equations which describe some
anomalous diffusion processes. The evolution of the vari-
ance in action at several initial values characterizes the
nature of the diffusion in phase space. At small amplitudes
there is no diffusion, then there is a narrow region where
the motion is superdiffusive (the variance grows faster than
linearly with time), followed by a broad region where the
motion is subdiffusive (the variance grows slower than
linearly with time) and finally no diffusion at large ampli-
tudes. The width and the location of the superdiffusive
region depends on the resonance, the width is narrower
for the weaker resonance. This superdiffusive region is also
marked by signatures of bounded chaos and particles do
not experience large amplitude growth. For both reso-
nances, this region is located at the lower edge of the
resonance islands. The broad subdiffusive region abuts
the superdiffusive region and continues until about 5–6�
depending on the resonance. Here particles do migrate to
larger amplitudes. We do not observe regular diffusion
anywhere in phase space on either resonance with the
particle distributions we used.

The jump size distribution and the waiting time distri-
bution, key ingredients of a continuous time random walk
process, were found by analysis of single particle tracking
data. The jump size distributions for both resonances were
similar—in the linear regions of phase space, the distribu-
tions in �x are close to the arcsine distribution while in the
nonlinear regions they have a more complex shape. The

similarity of these distributions for the two resonances
suggests that these may be universal features near such
resonances. When the waiting time distribution follows an
exponential law, the stochastic process is Markovian. We
find that the waiting time distribution follows instead a
power law, again for both resonances. Since the process is
non-Markovian, the regular diffusion equation cannot be
used to describe the evolution of the density. For a general
CTRW process, we derived a master equation in action-
angle space which is applicable to processes with arbitrary
jump size and waiting time distributions. A fractional
diffusion equation was derived from this master equation
when the waiting time distribution follows a power law.
Numerical solutions of this diffusion equation will allow
computations of beam observables such as lifetimes and
emittance growth.
This model can be tested against beam observations

when anomalous diffusion is suspected. Comparison of
beam profiles with Levy stable distributions would be a
first check. Another indicator would be if the emittance of
pencil beams grows nonlinearly with time. This could then
be followed by measurements of diffusion coefficients at
different amplitudes, using them in the fractional diffusion
equation and comparing the numerically calculated emit-
tance growth and beam lifetime with the measured values.
In this paper we considered low order synchrobetatron

resonances so as to observe effects on a short time scale.
Based on comparisons of the two resonances studied here,
we expect that the physics at high order resonances (and
hence more applicable to operational accelerators) will be
similar but on longer time scales. When multiple such
resonances are present simultaneously, the diffusion is
likely to be anomalous but the phase space dynamics will
be more complicated. Space charge driven resonances may
also cause anomalous diffusion but that remains to be
investigated.
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APPENDIX: REGULAR AND FRACTIONAL
DIFFUSION EQUATIONS

We briefly summarize the derivation of the diffusion
equation in action-angle space. We assume a Hamiltonian
description HðJ; �Þ which has been perturbed from an
integrable Hamiltonian H0ðJÞ. Let �ðJ; �; �J;��Þ be the
transition probability for the action-angle variables to
change from ðJ; �Þ to ðJþ �J; �þ ��Þ in time �t. The
first major assumption is that the dynamics is Markovian.
For a Markov process, the particle density distribution
at time tþ �t only depends on its instantaneous state at
t and is independent of its previous history provided �t is
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longer than a characteristic time 
. Under this assumption,
the density �ðJ; �; tÞ at time tþ �t can be found by sum-
ming over all possible transitions in time�t. This results in
the Chapman-Kolmogorov equation for the density

�ðJ;�;tþ�tÞ¼
ZZ

�ðJ��J;����;tÞ
��ðJ��J;����;�J;��Þdð�JÞdð��Þ:

(A1)

Here � is the transition probability of jumps ð�J;��Þ.
Further assumptions need to be made to obtain a diffusion
equation. These include (i) the angles evolve on a faster time
scale than the actions and their correlation decays rapidly;
(ii) the density in the long time limit is independent of the
angle; (iii) the transition probability can be factorized in

the form �ðJ;�; �J;��Þ ¼ �JðJ; �JÞ�ð��� _��tÞ; and
(iv) the changes in action and angle�J,�� are small during
a time interval �t. Expanding the left-hand side and the
right-hand side (rhs) of Eq. (A1), keeping up to second order
terms, and then taking the limit �t ! 0, we obtain the
Fokker-Planck equation

@�

@t
¼ �rJ 	 ½A�� þX

k

X

l

@2

@Jk@Jl
½Dkl��; (A2)

where the driftA and diffusion coefficientsD are defined as

AðJÞ ¼ lim
�J!0;�t!0

h�Ji
�t

;

DklðJÞ ¼ lim
�J!0;�t!0

1

2

h�Jk�Jli
�t

;

h�Ji 

Z

�J�JðJ;�JÞdJ:

(A3)

Here �t is understood as a time shorter than a time scale
over which the density distribution evolves but longer than
the time over which angle correlations decay.

For Hamiltonian systems, there is a relation between the
drift coefficient and the diffusion coefficients [29,30],

Ak ¼ 1

2

X

l

@

@Jl
Dkl; (A4)

then the Fokker-Planck equation simplifies to the diffusion
equation,

@�

@t
¼ X

k

X

l

@

@Jk

�
Dkl

@�

@Jl

�
: (A5)

The assumptions of Markovian behavior and the smallness
of the changes in action-angle variables are crucial for the
validity of this regular diffusion equation. If these assump-
tions are invalid, then this diffusion equation may not be
the right model for the density evolution.

We now consider a more general master equation for a
CTRW process in action-angle space with arbitrary jump

size and waiting time distributions. We use a method out-
lined in [28]. It uses two basic balance conditions: the first
states that a change of density arises from the difference
in the incoming flux �þðJ; �; tÞ and the outgoing flux
��ðJ; �; tÞ:

@

@t
�ðJ; �Þ ¼ �þðJ;�; tÞ � ��ðJ; �; tÞ: (A6)

The second balance condition states that the influx is
composed of the outflux of particles from all other phase
space locations to that location,

�þðJ; �; tÞ ¼
ZZ

d�Jd���ðJ��J;�� ��; �J;��Þ
� ��ðJ� �J; �� ��; tÞ: (A7)

The outflux at ðJ; �; tÞ has contributions from particles that
were present initially but left after waiting for time t and
those that arrived later before leaving,

��ðJ;�; tÞ ¼ wðt; J; �Þ�ðJ; �; 0Þ
þ

Z t

0
wðt� t0; J; �Þ�þðJ; �; t0Þdt0: (A8)

Substituting Eq. (A8) in Eq. (A6) and taking the Laplace
transform, we obtain for the outflux,

��ðJ;�; tÞ ¼ L�1

�
sŵðs; J; �Þ

1� ŵðs; J; �Þ �̂ðJ; �; sÞ
�


 1



Lt�ðJ; �; tÞ: (A9)

Here ŵðs; J; �Þ and �̂ðJ;�; sÞ are the Laplace transforms in
s space, 
 is a relevant time parameter in the waiting time
distribution, andL�1 is the inverse Laplace transform. The
last equality in this equation defines the integral operator
Lt. Substituting this back in Eq. (A6) and using Eq. (A7)
we obtain

@

@t
�ðJ; �Þ ¼ 1




ZZ
d�Jd���ðJ� �J; �� ��; �J;��Þ

� Lt�ðJ��J; �� ��; tÞ � 1



Lt�ðJ;�; tÞ:

(A10)

This is the modified master equation for the density.
Now we derive the modified diffusion equation from this

master equation. We expand the rhs of Eq. (A10) in a
Taylor series and keep up to second order terms. As before
we define the coefficients

AðJÞ ¼ lim
�J!0;

h�Ji



; DklðJÞ ¼ lim
�J!0

1

2

h�Jk�Jli



:

(A11)

We assume that the same relation as in Eq. (A4) between
the drift and diffusion coefficients holds. Then we have as
the modified diffusion equation
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@�

@t
¼ 1




X

k

X

l

@

@Jk

�
Dkl

@

@Jl

�
Lt�: (A12)

In cases where ð1=
ÞLt� ¼ �, this is the regular diffusion
equation.

Consider now two examples of a waiting time distribu-
tion, first an exponential waiting time,

wðtÞ ¼ 1



exp

�
� t




�
) ŵðsÞ ¼ 1




�
1

sþ 1=


�
: (A13)

The integral operator simplifies to

1



Lt� ¼ L�1

�
sŵðsÞ

1� ŵðsÞ �̂ðJ; sÞ
�
¼ �ðJ; tÞ; (A14)

i.e. the modified diffusion equation reduces to the regular
diffusion equation.

Now consider a power law waiting time,

wðt; JÞ ¼ 1




�
t




���ðJÞ
: (A15)

Here we let the exponent � be action dependent. In the
long time limit t ! 1 or equivalently s ! 0,

1



Lt� ¼ �½1� �ðJÞ�L�1½s�ðJÞ�̂ðJ; sÞ� ¼ 0D

�ðJÞ
t �ðJ; tÞ:

(A16)

Here � is the Gamma function and 0D
�ðJÞ
t is a Riemann-

Liouville fractional derivative in time defined below. The
diffusion equation for � is

@�

@t
¼ X

k

X

l

@

@Jk

�
Dkl

@

@Jl

�
0D

�ðJÞ
t �ðJ; tÞ

¼ X

k

X

l

@

@Jk

�
Dkl

@

@Jl

�
1

�½1� �ðJÞ�

�
�
@

@t

Z t

0
dt0

�ðJ; t0Þ
ðt� t0Þ�ðJÞ

�
: (A17)

This is a nonlocal in time (due to the waiting time
distribution) integrodifferential diffusion equation for the
density.
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