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We analyze the electromagnetic field of a charged particle moving uniformly in a circular waveguide

and crossing the boundary between a dielectric and a vacuum. Our study focuses on the case when

Cherenkov radiation is generated in the dielectric. Analytical and numerical investigation of the

waveguide modes is performed. We show that a large radiation can be excited in the vacuum area. The

mode amplitudes in the vacuum can be greater than those in the dielectric. The field from a Gaussian

bunch is also studied. We note that the effect under consideration can be used to generate a large

quasimonochromatic or multimode radiation.
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I. INTRODUCTION

The electromagnetic radiation produced by charge par-
ticles moving in the presence of material media has been
investigated since the second quarter of the 20th century.
Many experimental and theoretical works in this area have
been published, and the most important results have been
presented in monographs and reviews [1–5]. However,
some essential questions have only been partially analyzed.
This especially concerns the electromagnetic field struc-
ture in contrast to energetic characteristics studied in detail
in many papers [5–7]. But the analysis of the field structure
is important as well. For example, it allows clarifying the
problem of generation of a large radiation in an area far
from a material bulk. The radiation used in Cherenkov
detectors is usually measured in a vacuum [1], but these
devices do not generate powerful radiation. This is also
true for detectors using transition radiation (TR).

A dramatically different situation occurs with the wake-
field acceleration technique. One of the variants of this
method consists of the application of the Cherenkov field
(the so-called ‘‘wakefield’’) from a large bunch (’’driver’’)
moving in a vacuum channel in a circular waveguide loaded
with a dielectric layer. Another bunch is accelerated in the
driver field. The final experiments show an accelerating
field >100 MV=m for frequencies 10–30 GHz [8,9] and
>10 GV=m for the THz region [10]. However, this field
exists in the vacuum channel behind the charge. Let us con-
sider the following question: can we obtain a large field in the
waveguide far from the area where the Cherenkov radiation
(CR) is generated? Here we show that this is possible.

This paper is devoted first of all to the Cherenkov-
transition radiation (CTR) effect which has not been practi-
cally described for problems with waveguides (we empha-

size that CTR is not a usual TR). Note that this problem is
of essential importance. CTR can be used for generation of
large field in a vacuum zone and bunching of particles. As
well, in this connection we can mention the idea of gen-
eration of radiation in a waveguide with periodic structure
composed of dielectric plates and vacuum spaces [11]. For
this perspective method, an analysis of penetration of CR
through a dielectric-vacuum interface is a key problem.

II. A POINT CHARGE: ANALYTICAL
INVESTIGATION

First, we consider the following problem. A point charge
particle q moves in the metal circular waveguide of radius
a along its axis (z axis) through the interface (z ¼ 0)
between homogeneous isotropic dielectrics with permittiv-
ity "1 for z < 0 and "2 for z > 0 (Fig. 1). The media are
nonmagnetic and nondispersive. The charge moves uni-

formly with a velocity ~V ¼ c�~ez (where c is the light
velocity in the vacuum) and intersects the boundary at
the moment t ¼ 0. Note that, in practice, the bunch moves
in the vacuum channel. However, for simplicity, we assume
that the channel radius is negligible. This assumption is
warranted because a channel with a radius considerably
less than the typical wavelength does not influence the
generated radiation [3].
The analytical solution of this problem is traditionally

found as expansions into a series of eigenfunctions of the
transversal operator [6,7,12]. In each of two areas, the field
has two summands:

~E 1;2 ¼ ~Eq
1;2 þ ~Eb

1;2: (1)

The first summand ð ~Eq
1;2Þ is the field in a regular waveguide

with homogeneous filling (a so-called ‘‘forced’’ field [2]).
It contains CR if the charge velocity exceeds the

Cherenkov threshold. The second summand ð ~Eb
1;2Þ (a so-

called ‘‘free’’ field [2]) is connected with the influence of
the boundary and includes TR.
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The formulas for the electromagnetic field components
can be derived from the formulas for the general case of the
boundary between arbitrary dispersive homogeneous me-
dia [6,7,12]. Here, we give only expressions for the longi-
tudinal components of the electric field:
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�0n is the n
th zero of the Bessel function (J0ð�0nÞ ¼ 0), and

�ðxÞ is the Heaviside step function. The radicals
are defined on the real axis by the following

rule: sgn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2"1;2 �!2

n
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q
> 0 if !2"1;2 <!2

n (for the case of neg-

ligible losses when Im"1;2 ! þ0). Note that the upper sign
in Bn1;2 applies to Bn1, and the lower sign applies to Bn2.

Further, we analyze the field of a particle flying from the
dielectric into the vacuum ("2 ¼ 1). We investigate the free
field (3) with two methods: analytical and numerical. They
have been described in a prior paper [12] for the case of the
boundary between a vacuum and plasma. We stress that, as
there is no CR in such situation, it is dramatically different
from the case considered here.

We note some results of the analytical investigation for
the area z > 0. Figure 2 shows the singularities of the
function Bn2 and the branch cuts (the positional relation-
ship of the singularities was determined by taking into
account the small losses). The poles of Bn2 are located at
the points

�!ð1Þ
0n ¼ ��n1 � i0;

�!ð2Þ
0n ¼ �i�!nð1� �2Þ�1=2:

The branch cuts are defined by the equations

Re
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 �!2

n

q
¼ 0; Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2"1 �!2

n

q
¼ 0:

For obtaining asymptotic expressions, we use the steep-
est descent technique [13]. Preliminarily, it is convenient to
make the following change of variables for the vacuum
region: ! ¼ !n cosh�. This replacement removes the pair
of branch points �!n. The steepest descent path (SDP)
consists of two branches, as described in [12]. The poles
and the branch points can be crossed in the transformation
of the initial integration contour into the SDP, and the
contributions from the corresponding singularities should
be included in asymptotic expressions.
Omitting all the transforms, we present the most impor-

tant result of the analytical investigation concerning the

contributions of the poles �!ð1Þ
0n . In a vacuum, these con-

tributions give the transmitted wave of the CR, the so-called
Cherenkov-transition radiation (CTR). This radiation exists
only at

�C < �<�CT;

where

FIG. 2. Poles (crosses), branch points (circlets), branch cuts
and integration paths (initial and transformed for computation)
in a complex plane of ! for the field components in the vacuum
region under the condition "1�

2 > 1.

FIG. 1. Geometry of the problem.
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�C ¼ "�1=2
1 ; �CT ¼ ð"1 � 1Þ�1=2:

The lower threshold �C is the threshold for the CR, and the
upper threshold �CT is explained by total internal reflection
of the CR from the boundary that occurs at �>�CT . The
longitudinal component of the CTR is written in the follow-
ing form:

ECTR
z ¼�8q

a2
X1

n¼1

J0ð�0nr=aÞcosð�n1t�ßn1zÞ
J21ð�0nÞ½1þ"1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2ð"1�1Þp �

�ðz1�zÞ;

(4)

where

ßn1 ¼ �n1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2ð"1 � 1Þ

q
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2ð"1 � 1Þ

q
=�:

In the vacuum region, the CTR exists only in the area
0< z < z1. Note that the value z1 is determined by the
group velocity of the waveguide waves Vg. Indeed, it is

connected with the phase velocity Vp by the formula:

Vg ¼ c2=Vp ¼ c2ßn1=�n1 ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2ð"1 � 1Þ

q
=�:

Thus z1 ¼ Vgt, i.e., the area of the CTR increases in time

with velocity Vg. A comparison of the analytical estima-

tions and the computations (below) shows that the CTR is
the main part of radiation in this region.

III. A POINT CHARGE: NUMERICAL
INVESTIGATION

For the numerical calculations, the exact integral repre-
sentations (1)–(3) are used. We develop an efficient algo-
rithm based on a certain transformation of the integration
path in the complex plane. Earlier, such an algorithm was
developed for the computation of the electromagnetic field
in different unbounded or semibounded media [12,14–17].
We demonstrate this method for the vacuum area. The
initial integration path is transformed into a new contour
in the upper half-plane (the dashed green line in Fig. 2) for
z > ct (before the ‘‘wave front’’ z ¼ ct) and into another
contour (the dotted red line) in the lower half-plane for
z < ct (behind the wave front). New contours bypass all of

FIG. 3. The dependence of the longitudinal component Ez (kV/m) of the first mode of the total field (a continuous red line) on the
distance z=a at r ¼ 0 for different dimensionless times ct=a and velocities �; "1 ¼ 1:5, "2 ¼ 1, a ¼ 5 cm, and q ¼ �1 nC. A dashed
blue line applies to the first mode of the CTR (4) in the vacuum region.
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the singularities and travel parallel to the SDP for large
values of ! (i.e., parallel to the imaginary axis). We stress
that the computations are performed with the exact formulas
and without any limitations of the problem parameters. The
field in the dielectric region is computed analogously.

Figure 3 shows the longitudinal component Ez of the first
mode of the total electric field in the dielectric and the
vacuum for different velocities � and at different time
moments. If �<�C, then the field both in the dielectric
and in the vacuum consists of TR and a quasi-Coulomb field
that is essential only near the charge [Figs. 3(a)–3(c)]. If
�>�C, then CR is excited in the dielectric [Figs. 3(d)–3(i)].
It reflects off the boundary and can penetrate through one
(i.e., the CTR effect can take place in the vacuum region).

Note that the upper threshold for the CTR in vacuum�CT ¼
ð"1 � 1Þ�1=2 is of importance only for "1 > 2. We use in

Fig. 3 the value "1 ¼ 1:5; therefore, CTR is generated in the
vacuum at �C < �< 1. One can see that the field of the
mode is quasimonochromatic in the dielectric and in some
parts of the vacuum area [Figs. 3(d)–3(i)].
As the total field is approximately equal to the CTR field

(4) in the area 0< z < z1 [Figs. 3(d), 3(e), 3(g), and 3(h)],
we can use the formula (4) for the analysis of the wave field
from a bunch of finite size.

IV. CTR FROM A GAUSSIAN BUNCH

A typical bunch used as a driver for the wakefield
acceleration technique is characterized by a Gaussian dis-
tribution along the z axis and a negligible thickness, i.e.,
the charge density is

� ¼ q�ðxÞ�ðyÞ exp½��2=ð2�2Þ�=ð ffiffiffiffiffiffiffi
2�

p
�Þ;

where � ¼ z� Vt. The amplitudes of the waveguide
modes of this bunch are equal to the ones of the point
charge multiplied by exp½��2

m1�
2ð2V2Þ�1�. This expo-

nential factor results in the reduction of the significance
of the modes with large numbers.
The frequencies and amplitudes of the CTR in the vacuum

are shown in Fig. 4. The frequencies of the CTR decrease
with the velocity �, but the amplitudes increase. For the

FIG. 4. The frequencies 	m (top) and amplitudes Em
z0 of several

CTR modes in the vacuum part of the waveguide for "1 ¼ 1:9,
a ¼ 5 cm, q ¼ �1 nC, � ¼ 2 mm (middle), and � ¼ 10 mm
(bottom); the mode numbers are shown close to the curves.

FIG. 5. The dependence of the longitudinal component of the
electric field of the CTR on the distance from the boundary for
r ¼ 0, a ¼ 5 cm, q ¼ �100 nC, � ¼ 2 mm, � ¼ 0:999, "1 ¼
1:5 (top), "1 ¼ 1:7 (middle), and "1 ¼ 1:9 (bottom).
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relatively short bunch (� ¼ 2 mm), many modes have sig-
nificant amplitudes (CTR is multimode). For the longer
bunch (� ¼ 10 mm), only a fewofmodes are of importance.

Some examples of multimode CTRs in the vacuum
area are presented in Fig. 5 for the case of electron bunch
with � ¼ 2 mm and q ¼ �100 nC. Such bunches can be
formed nowadays [18]. Note that the field has maximum
magnitude up to 500 MV=m. The structure of CTR is
similar to the multimode wakefield of a bunch in an infinite
regular waveguide with a dielectric [19].

V. CONCLUSION

In summary, we have shown that Cherenkov-transition
radiation can be the main part of the field in the vacuum
area of the waveguide. The modes of the CTR are mono-
chromatic, similar to the modes of CR in an infinite regular
waveguide. The amplitudes of the CTR modes in the
vacuum can be greater than the amplitudes of the CR
modes in the dielectric. This radiation is generated at a
certain bunch speed range, and the area of the CTR in-
creases in time with the group velocity of the waveguide
waves. The radiation from a bunch with finite length can be
both quasimonochromatic and multimode. The CTR effect
can be used to generate large electromagnetic fields in the
vacuum area of the waveguide.
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