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An electron bunch passing through a dielectric-lined waveguide generates Čerenkov radiation that can

result in a high-peak axial electric field suitable for acceleration of a subsequent bunch. Axial fields

beyond gigavolt-per-meter are attainable in structures with sub-mm sizes depending on the achievement

of suitable electron bunch parameters. A promising configuration consists of using a planar dielectric

structure driven by flat electron bunches. In this paper we present a three-dimensional analysis of

wakefields produced by flat beams in planar dielectric structures thereby extending the work of

Tremaine, Rosenzweig, and Schoessow, Phys. Rev. E 56, 7204 (1997)] on the topic. We especially

provide closed-form expressions for the normal frequencies and field amplitudes of the excited modes and

benchmark these analytical results with finite-difference time-domain particle-in-cell numerical simula-

tions. Finally, we implement a semianalytical algorithm into a popular particle-tracking program thereby

enabling start-to-end high-fidelity modeling of linear accelerators based on dielectric-lined planar

waveguides.
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I. INTRODUCTION

Next generation multi-TeV high-energy-physics lepton
accelerators are likely to be based on nonconventional
acceleration techniques given the limitations of radio-
frequency (rf) normal-conducting [1] and superconducting
[2] structures. Nonconventional approaches based on the
laser plasma-wakefield accelerator have recently demon-
strated average energy gradients one order of magnitude
higher than those possible with state-of-the art conven-
tional structures [3]. The applicability of laser-driven tech-
niques to high-energy accelerators is currently limited as
attaining luminosity values similar to those desired at the
International Linear Collider would demand a laser with
power approximately 4 orders of magnitude larger than the
most powerful lasers currently available [4]. Another class
of nonconventional accelerating techniques includes
beam-driven methods which rely on using wakefields pro-
duced by high-charge drive bunches traversing a high-
impedance structure to accelerate subsequent witness
bunches [5]. Such an approach has the advantage of
circumventing the use of an external power source and
can therefore operate at mm and sub-mm wavelengths.
Structures capable of supporting wakefield generation in-
clude plasmas [6] and dielectric-loaded waveguides [7].

The possible use of plasma-wakefield accelerators as the
backbone of a multi-TeVelectron-positron linear collider is
limited by plasma ions motion due to the intense electro-
magnetic field of the bunch [8]. Dielectric wakefield ac-
celerators (DWFAs) are not prone to similar limitations.
In this paper we concentrate on the collinear DWFA. In

such a configuration a highly charged drive bunch prop-
agates through a dielectric-lined waveguide (DLW) and
excites an electromagnetic wake [7,9,10]. A delayed wit-
ness bunch moving on the same path as the drive bunch can
experience an accelerating field.
Recent experiments [11] confirm that DLW can support

accelerating fields in excess of a GV/m thereby making
DWFA a plausible candidate for the next-generation high-
energy-physics linear accelerators [12] or compact short-
wavelength free-electron lasers [13].
In cylindrically symmetric DLW structures, the electric

field amplitude of the wakefield is approximately inverse
proportional to the aperture radius. Given the linear charge
scaling of the field, peak electric field amplitude of the
order of gigavolt-per-meter can be obtained by either using
high-charge drive beams (>100 nC) in mm-sized DLW
structures or by focusing sub-nC bunches in micron-sized
DLW structures [10,14,15].
To date, cylindrically symmetric DLW’s have been ex-

tensively studied both theoretically [10,16–18] and experi-
mentally [19–22]. Since the angular divergence of the
beam also increases during focusing it is hard to maintain
a low transverse size of the beam over a long propagation
distance. Therefore, the design of the DLW structures must
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compromise between a small transverse size to maximize
the intensity of the wakefield, and a longer interaction
length to maximize the energy gain of the test charge.
An appealing solution consists of using flat electron
beams passing through slab-geometry DLWs [14,23–25].
This possibility has become more attractive since the
recent advances toward generating flat beams directly in
photoinjectors [26,27].

In the following sections we present an analysis of the
generation of wakefields in rectangular DLW structures
excited by drive beams with arbitrary three-dimensional
charge distributions. The main goal of this paper is to
extend the formalism introduced in Ref. [14] by including
all types of modes excited in a planar DLW. This paper is
pedagogical in the sense that it is about the method of
derivation rather than the results, which have been derived
in previous papers, most extensively in Ref. [24].
However, this paper provides close-form formulas for
the eigenfrequencies and electromagnetic fields excited
in planar DLWs. These analytical results are bench-
marked against three-dimensional finite-difference time-
domain (FDTD) simulations. Finally, the model is
implemented in a popular particle-in-cell (PIC) beam
dynamics program. The latter provides a fast and high-
fidelity model enabling start-to-end simulation of DLW-
based linear accelerators.

II. WAKEFIELD GENERATION

The geometry of the problem analyzed in this paper is
depicted in Fig. 1. Transient effects resulting from the
injection of the electron bunch in the structure are not
included (the structure is assumed to be infinitely long)
and the drive bunch is taken to be ultrarelativistic with its
Lorentz factor � much greater than unity. The building
block of a real drive bunch is assumed to consist of a finite-
width linear charge distribution oriented along the hori-
zontal x axis which moves in the z direction with velocity v
and has offset y0 in the vertical direction. To simplify, it is
also assumed that the linear charge distribution is symmet-
ric in the x coordinate and it vanishes at the sides of the
dielectric structure. Under these assumptions the charge
distribution can be written as a Fourier series in the hori-
zontal direction [14],

�ðx; y; zÞ ¼ X
m

�m cosðkx;mxÞ�ðy� y0Þ�ðz� z0Þ; (1)

where �m’s are constants, z0 ¼ vt and the index m is
defined such that kx;m � ð2mþ 1Þ �

Lx
. In the charge-free

vacuum region the electromagnetic wakefield satisfies the
wave equation, �

r2 � 1

c2
@2

@2t

�
E ¼ 0: (2)

In this paper we consider only the propagating modes
with harmonic longitudinal and temporal dependencies of

the form Eðx; y; z; tÞ ¼ Eðx; yÞeið!t�kzzÞ [14,25], where
kz ¼ k:ẑ. In addition to the propagating-mode solutions,
Eq. (2) when subject to the boundary conditions also
admits evanescent modes with imaginary eigenfrequencies
! [25]. Since these evanescent modes are present over
short distances behind the drive bunch, they do not con-
tribute to the beam dynamics of a subsequent witness
bunch. These fields are consequently ignored in the re-
mainder of this paper.
In the ultrarelativistic regime the synchronism condition

is achieved because the wakefield phase velocity v’� !
kz
¼

v�c is very close to the velocity of the witness beam.

Since the transverse wave vector k?�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�k2z

q
’k=�¼0,

the wave equation (2) can be written only in terms of
the partial derivatives with respect to the transverse
coordinates:

r2
?Eðx; yÞ ¼ 0: (3)

The symmetry of the drive-beam charge distribution
and the boundary conditions at x ¼ �Lx=2 determine (up
to constants) the analytical expression of the fields. In the
vacuum region the electric field components are simple
combinations of trigonometric and hyperbolic functions:

Ex / sinðkx;mxÞ coshðkyyÞ;
Ey / cosðkx;mxÞ sinhðkyyÞ;
Ez / cosðkx;mxÞ coshðkyyÞ:

(4)

The axial field Ez associated with this set of solutions is
symmetric with respect to the horizontal axis [i.e.
Ezðx;�y; zÞ ¼ Ezðx; y; z)]; we henceforth refer to this set
as ‘‘monopole’’ modes. Similarly, a set of fields with an
antisymmetric axial field [Ezðx;�y; zÞ ¼ �Ezðx; y; zÞ] is
obtained by substitution of sinhðkyyÞ with coshðkyyÞ and
vice versa. This latter set is termed as ‘‘dipole’’ modes in the
remaining of this paper.
Inside the dielectric, the transverse wave number cannot

be neglected:

k2?;m � k2x;m þ k2y � !2

c2
ð�r � 1Þ> 0; (5)

where �r is the relative electric permittivity of the dielec-
tric medium. The boundary conditions at y ¼ �b and at

FIG. 1. Overview of the DLW structure geometry (left) and
transverse cross section (right). A rectangular-shaped drive beam
is displayed in blue.
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x ¼ �Lx=2 determine the trigonometric form of the field
expressions. Inside the dielectric region, there is no dis-
tinction between monopole and dipole modes and the
electric field components are given by

Ex / sinðkx;mxÞ cos½kyðb� yÞ�;
Ey / cosðkx;mxÞ sin½kyðb� yÞ�;
Ez / cosðkx;mxÞ cos½kyðb� yÞ�:

(6)

The corresponding expressions for the magnetic field in the
vacuum and dielectric regions can be easily obtained fol-
lowing a similar prescription.

Inspection of the z component of the fields indicates that
the normal modes cannot be categorized in the usual
transverse electric or transverse magnetic sets. The reason
is that the separation surface between the dielectric and
vacuum regions is in the x-z plane unlike the case of the
uniformly filled waveguides where this surface is in the
transverse x-y plane.

Therefore, it is natural to categorize the modes depend-
ing on the orientation of the fields with respect to the
dielectric surface. Following the definition introduced in
Ref. [28] we classify the mode as longitudinal section
magnetic (LSM) and longitudinal section electric (LSE)
modes corresponding, respectively, to the case when the
magnetic and electric field component perpendicular to the
dielectric surface vanishes. In the configuration shown in
Fig. 1, LSE and LSM modes correspond, respectively, to
Ey ¼ 0 and Hy ¼ 0 at the vacuum-dielectric interface.

III. DISPERSION EQUATIONS AND
ELECTROMAGNETIC WAKEFIELDS

A. Longitudinal section magnetic (LSM) modes

To obtain the normal mode frequencies it is convenient
to use the Hertzian potential vector method [28]. For
example, to determine the LSM modes (Hy ¼ 0 in vacuum

region), it is convenient to exploit that r � B ¼ 0 and to
express the fields in terms of the yet-undetermined
Hertzian electric vector potential �e as

H ¼ i!�r��e: (7)

The curl equation for the electric field implies that

E ¼ k2�e þr�; (8)

where r� is an arbitrary scalar function. A relationship
between the vector potential�e and the scalar potential�
can be obtained from the previous two equations and the
Maxwell’s equation for the curl of the magnetic field:

rðr ��eÞ � r2�e ¼ k2�e þr�: (9)

At this point, in a similar way as for the standard
potentials (�, A), a suitable gauge would decouple the
equations for the vector and scalar Hertzian potentials.
The Lorentz-type condition r ��e ¼ � makes the vector
potential to obey the homogeneous Helmholtz equation,

r2�e þ k2�e ¼ 0: (10)

A similar equation can be derived for the scalar potential
� assuming free-space wave propagation (r �E ¼ 0).
From the previous equation and the Lorentz gauge condi-
tion, the electric field in Eq. (8) can be solely rewritten in
terms of �e as

E ¼ k2�e þrðr ��eÞ: (11)

In this case the Hertzian vector potential is simply pro-
portional with the standard vector potential: A ¼ i!

c2
�e.

The boundary conditions at the perfectly conducting
walls x ¼ � L

2 require x̂ �H / x̂ � ðr��eÞ ¼ 0. Since

the y component of the magnetic field must also vanish
(LSMmodes), only the y component of the Hertzian vector
potential is nonvanishing and

�e ¼ c eðx; yÞeið!t�kzzÞŷ; (12)

where c eðx; yÞ is a function yet to be determined. From
Eqs. (7) and (11) all fields can be expressed in terms of the
unknown function c eðx; yÞ:

Ex¼@2c e

@x@y
; Hx¼��k2zcc e; Ey¼k2c eþ@2c e

@y2
;

Hy¼0; Ez¼�ikz
@c e

@y
; Hz¼ i�kzc

@c e

@x
:

(13)

The expression for c e that satisfies Eqs. (5) and (13),
and the boundary conditions for the electric field at
x ¼ � L

2 is given by

c e ¼
�A cosðkx;mxÞ sinhðkx;myÞ; 0< y < a

B cosðkx;mxÞ cos½kyðb� yÞ�; a < y < b;
(14)

where A and B are constants. Since Hx (/ �c e) and

Ez (/ @c e

@y ) are continuous at the dielectric-vacuum-region

interface, the constants A and B can be eliminated thereby
yielding the dispersion equation,

cothðkx;maÞ cot½kyðb� aÞ� ¼ ky
�rkx;m

: (15)

For each discrete value of kx;m there is an infinite set of

discrete ky;n values where n is an integer. So, the eigenfre-

quencies are indexed by the integer couple ðm; nÞ and verify

k2x:m þ k2y;n ¼ !2
m;n

c2
ð�r � 1Þ: (16)

It is worthwhile noting that the boundary conditions do not
completely determine either the function c e or the fields.
The reason being that, up to this point, the field source terms
ð�; jÞ were not taken into account although their symme-
trieswere invoked. Still, it is straightforward to show that all
fields (and also c e) associated to a certain mode depend on
a common normalization constant, the amplitude E0;m;n,

which remains to be determined. The expressions of the
fields are given by
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Ex;m;n ¼
8<
:
� iE0;m;nkx;m

kz
sinðkx;mxÞ coshðkx;myÞ 0< y< a

� iE0;m;nkx;m
kz

coshðkx;maÞ
sin½ky;nðb�aÞ� sinðkx;mxÞ sin½ky;nðb� yÞ� a < y < b

Ey;m;n ¼
8<
:

iE0;m;n

kx;mkz
ðk2x;m þ k2zÞ cosðkx;mxÞ sinhðkx;myÞ 0< y< a

iE0;m;n coshðkx;maÞ
ky;nkz sin½ky;nðb�aÞ� ðk2z þ k2x;mÞ cosðkx;mxÞ cos½ky;nðb� yÞ� a < y < b

Ez;m;n ¼
8<
:
E0;m;n cosðkx;mxÞ coshðkx;myÞ 0< y< a

E0;m;n
coshðkx;maÞ

sin½ky;nðb�aÞ� cosðkx;mxÞ sin½ky;nðb� yÞ� a < y < b

Hx;m;n ¼
8<
:
� iE0;m;nkz�c

kx;m
cosðkx;mxÞ sinhðkx;myÞ 0< y< a

� iE0;m;nkz�c

kx;m

coshðkx;maÞ
sin½ky;nðb�aÞ� cosðkx;mxÞ cos½ky;nðb� yÞ� a < y < b

Hy;m;n ¼ 0

Hz;m;n ¼
8<
:
E0;m;n�c sinðkx;mxÞ sinhðkx;myÞ 0< y< a

E0;m;nkx;m�c

ky;n

coshðkx;maÞ
sin½ky;nðb�aÞ� sinðkx;mxÞ cos½ky;nðb� yÞ� a < y < b:

(17)

B. Longitudinal section electric (LSE) modes

The case of the LSE modes (Ey ¼ 0) can be treated in

the same way as the LSM modes. The similarity comes
from the fact that r � E ¼ 0 in free space. The Hertzian
vector electric potential is replaced by a vector magnetic
potential �h which is related to the fields in a similar way
as the vector electric potential in Eqs. (7) and (11):

E ¼ �i!�r��h; (18)

H ¼ k2�h þrðr ��hÞ: (19)

As in the previous case, it is convenient to factor out the t
and z dependencies of the �h and to define a scalar

function c hðx; yÞ: �h ¼ c hðx; yÞeið!t�kzzÞŷ. It is straight-
forward to derive the dispersion equation for the LSE
modes,

cothðkxaÞ cot½kyðb� aÞ� ¼ � kx
ky

; (20)

and the expressions for the electromagnetic-field components:

Ex;m;n ¼
8<
:

iE0;m;nkz
kx;m

sinðkx;mxÞ coshðkx;myÞ 0< y < a

iE0;m;nkz
kx;m

coshðkx;maÞ
sin½ky;nðb�aÞ� sinðkx;mxÞ sin½ky;nðb� yÞ� a < y < b

Ey;m;n ¼ 0

Ez;m;n ¼
8<
:
E0;m;n cosðkx;mxÞ coshðkx;myÞ 0< y< a

E0;m;n
coshðkx;maÞ
sin½ky;nb�aÞ� cosðkx;mxÞ sin½ky;nðb� yÞ� a < y < b

Hx;m;n ¼
8<
:

iE0;m;nkx;m
kz�c cosðkx;mxÞ sinhðkx;myÞ 0< y< a

� iE0;m;nky;n
kz�c

coshðkx;maÞ
sin½ky;nðb�aÞ� cosðkx;mxÞ cos½ky;nðb� yÞ� a < y < b

Hy;m;n ¼
8<
:

iE0;m;nðk2x;mþk2z Þ
kx;mkz�c sinðkx;mxÞ coshðkx;myÞ 0< y< a

iE0;m;nðk2x;mþk2z Þ
kx;mkz�c

coshðkx;maÞ
sin½ky;nðb�aÞ� sinðkx;mxÞ cos½ky;nðb� yÞ� a < y < b

Hz;m;n ¼
8<
:

E0;m;n

�c sinðkx;mxÞ sinhðkx;myÞ 0< y< a

� E0;m;nky
kx;m�c

coshðkx;maÞ
sin½ky;nðb�aÞ� sinðkx;mxÞ cos½ky;nðb� yÞ� a < y < b:

(21)

As in the LSM case, the gauge condition between the Hertzian magnetic vector potential (�h) and its associated scalar
potential (�) is also similar to the Lorentz gauge applied to standard potentials. For the LSE mode, the relationships
between the Hertzian and the conventional ð�;AÞ potentials are
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� ¼ i!� A ¼ �r��h þrðr ��hÞ: (22)

The motivation for splitting the modes into LSM and
LSE relies on the orthogonality relation [28] between pairs
of transverse field components

ZZ
S
E?;n �H?;m � ẑda ¼ 0 n � m; (23)

with E?;n and B?;n being the transverse electric and

magnetic fields corresponding to two arbitrary modes ge-
nerically denoted by n andm, respectively. The integration
is extended over the transverse area of the dielectric struc-
ture. It is important to note that the set of eigenfunctions
derived in this paper forms a complete set only when
the evanescent modes with imaginary eigenfrequencies
(not derived here) are also included [25].

IV. WAKEFIELD AMPLITUDES

Although we have obtained the general expression for
the electromagnetic field, the constants E0;m;n still re-

mained to be determined. An often used method to find
the constants E0;m;n in Eqs. (17) and (21), is to evaluate the

Green function of the wave equation with sources included.
The latter is usually a cumbersome procedure and we
instead chose to determine E0;m;n’s based on energy bal-

ance considerations. The electromagnetic energy stored in
the DLW equals the mechanical work performed on the
drive bunch. For a linear wakefield, the decelerating field
Ed acting on a drive point-charge is half of the wakefield

amplitude, i.e. Ed ¼ E0;m;n

2 as a consequence of the funda-

mental wakefield theorem [29]. Suppose the drive charge
moves over an infinitely short distance �z. The work
performed by the wakefield on the drive charge should
equal the energy stored in the field, i.e.,

X
m;n

Z
�ðy� y0ÞEz;m;nðz ¼ vtÞ

2
dxdy�z ¼ 1

2

Z
ð�E2 þ�0H

2Þdxdy�z; (24)

where the integration extends over the transverse plane. It is straightforward to evaluate the full expressions of the
wakefield amplitudes in terms of the wave numbers kx;m and ky;n from Eqs. (24), (17), and (21):

ELSM
0;m;n ¼

1

2�0

�m coshðkx;my0Þ
sinhð2kx;maÞ

2kx;m
þ �rcosh

2ðkx;maÞ
sin2½ky;nðb�aÞ� fb�a

2 ð1þ �rk
2
x;m

k2y;n
Þ � sin½2ky;nðb�aÞ�

4ky;n
ð1� �rk

2
x;m

k2y;n
Þg

ELSE
0;m;n ¼

1

2�0

�m coshðkx;my0Þ
sinhð2kx;maÞ

2kx;m
þ cosh2ðkx;maÞ

sin2½ky;nðb�aÞ� fb�a
2 ð�r þ k2y;n

k2x;m
Þ � sin½2ky;nðb�aÞ�

4ky;n
ð�r � k2y;n

k2x;m
Þg
:

(25)

The field amplitudes for the dipole modes can be
obtained from the previous equations by substituting
sinhðkx;muÞ for coshðkx;muÞ where u takes on the values

of a and y0. As expected, the wakefield amplitude scales
linearly with the drive-bunch charge and inverse propor-
tionally with the transverse size of the structure. To this
point this model is fully three dimensional and the only
limitation stems from the assumed symmetry of the trans-
verse drive charge distribution with respect to the y axis.

V. COMPARISON WITH FDTD SIMULATIONS

A. Three-dimensional case

To evaluate the wakefield associated to a drive bunch, an
integration over the full three-dimensional continuous
charge distribution must be performed. In practice the in-
tegration is replaced by numerical summations of discrete
charge distributions similar to those described by Eq. (1).
This process is similar to the charge discretization proce-
dure used in standard PIC algorithms [30]. An important
feature of this model is that the integration over x direction
is already performed through the Fourier expansion of the
charge distribution. For the charge distributions considered

in this paper, only a few Fourier terms (<10) are sufficient
to obtain an accurate representation of the distribution along
the x direction. This is significantly less than the number of
grid points in x direction needed by most PIC codes to
evaluate the 3D-collective effects and external fields.
The integration over the vertical direction is straightfor-

ward and in most cases, when the drive charge distribution
is also symmetric with respect to the horizontal axis, the
contribution of the dipole modes cancels out.
Since the phase velocity of the wakefield is the same as

the velocity of the drive beam, causality principle requires
that the wakefield vanishes ahead of the drive charge
[29,31,32]. Therefore, the integration over the longitudinal
direction extends only from the observation point to the
actual drive charge position.
In general, the charge density of the drive beam can be

written as �ðx; y; zÞ ¼ R
�ðx; y; z; y0; z0Þfðy0; z0Þdy0dz0,

where fðy; zÞ is the charge density in the y-z subspace
and �ðx; y; zÞ is the same as in Eq. (1). The longitudinal
wakefield assumes the form

WzðzÞ ¼
X

m¼0;1;���

X
n¼0;1;���

Z 1

z
�ðz0ÞWz;m;nðz� z0Þdz0; (26)
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where Wz stands for the longitudinal electric field at the
witness beam position, �ðz0Þ ¼ R

dxdy�ðx; y; z0Þ is the
longitudinal charge distribution, and Wz;m;n is the longitu-

dinal electric field component associated to either LSM or
LSE modes [Eqs. (17) and (21)]. The summation is per-
formed over all excited modes.

The witness beam dynamics is determined by the
Lorentz force generated by a typically much larger
drive-beam charge which moves ahead of it with a
constant ultrarelativistic speed. It is straightforward to
show based on Maxwell equations that the curl of
the Lorentz force acting on a unit charge pointlike wit-
ness beam can be related to the total derivative of the
magnetic field [33]:

r � ðEþ v�BÞ ¼ � dB

dt
: (27)

In most practical applications the witness beam is
also ultrarelativistic and it is moving at a constant
distance behind the drive beam. Therefore the fields
‘‘seen’’ by the witness charge are constant ( dBdt ¼ 0)

and so, based on the previous equation, the witness
charge motion takes place in a quasiconservative external
field. Wakefields are defined as the Lorentz force acting
on a unit charge witness beam W � Eþ v� B. For the
‘‘stationary’’ case described above, r�W ¼ 0 and the
curl operator can be split into its transverse and longitu-
dinal components to obtain the result from Panofsky-
Wenzel theorem:

r?Wz ¼ � @W?
@	

; (28)

where 	 � z� vt. Although the transverse wakefields
can be directly obtained from Eqs. (17) and (21), they
can also be obtained more easily from Panofsky-Wenzel
theorem which also offers some valuable physical in-
sights. An interesting example is when the drive-beam
charge consists of an infinitely long linear distribution. In
this limit kx ! 0 and it is easy to show that the longitu-
dinal wakefield does not depend on the transverse coor-
dinates. Consequently, due to Panofsky-Wenzel theorem,
the transverse wakefields vanish. This case will be ex-
tensively examined in Sec. VC in connection with the
possible use of flatbeams.

The results obtained from Eq. (26) are benchmarked
against simulations performed with VORPAL a conformal
FDTD PIC electromagnetic solver [34]. VORPAL is a par-
allel, object-oriented framework for three-dimensional
relativistic electrostatic and electromagnetic plasma simu-
lation. The DLW model implemented in VORPAL is fully
three dimensional; see Fig. 2. The model consists of the
rectangular DLW surrounded by perfectly conducting
boundaries (PCBs), The lower and upper z planes are
terminated by PMLs that significantly suppresses artificial

reflections of incident radiation [35]. A particle source
located on the surface of the lower z plane produced
macroparticles uniformly distributed in the transverse
plane ðx; yÞ and following a Gaussian longitudinal distri-
bution with total charge Q described by

�ðx;y;	Þ¼ Qffiffiffiffiffiffiffi
2�

p

zwxwy

e�ð	2=2
2
z ÞH

�
wx

2
�jxj

�

�H

�
wy

2
�jyj

�
Hð3
z�j	jÞ; (29)

where wx (wy) is the full width transverse horizontal

(vertical) beam size, and 
z the longitudinal root-mean-
square (rms) length. The function Hð� � �Þ is the Heaviside
function. The longitudinal Gaussian distribution is trun-
cated at �3
z. Finally, a ‘‘particle sink’’ at the upper z
plane allows macroparticles to exit the computational do-
main without being scattered or creating other source of
radiation.
In order to precisely benchmark our model, a DLW

which supports both LSM and LSE modes is chosen. The
parameters of the structure and driving bunch are gathered
in Table I and the frequency and the amplitude associated

FIG. 2. Longitudinal (a) and transverse sections (b) of the
DLW model implemented in VORPAL. The rectangular box
delimited by green blocks represents the 3D computational
domain used in the simulations. Grey, green, and purple blocks,
respectively, stand for perfectly matched layer (PML), perfectly
conducting boundary (PCB), and dielectric material (with asso-
ciated relative dielectric permittivity �r). The cyan rectangles
represent the electron bunch distribution.

TABLE I. Parameters of the DLW structure and drive bunch
used for benchmarking our theoretical model with VORPAL

simulations.

Parameter Symbol Value Unit

Vacuum gap a 2.5 mm

Height b 5.0 mm

Width Lx 10.0 mm

Relative permittivity �r 4.0 � � �
Bunch energy E 1 GeV

Bunch charge Q 1.0 nC

rms bunch length 
z 1.0 mm

Bunch full width wx 6.0 mm

Bunch full height wy 4.0 mm
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to the first few modes appear in Fig. 3. The drive-bunch
energy is set to E ¼ 1:0 GeV consistent with the ultrarela-
tivistic approximation used in the analytical model.

The longitudinal component of the electric field simu-
lated with VORPAL is shown in Fig. 4 as a two-dimensional
projection in the y-z plane.

The comparison between theoretical calculation and
VORPAL simulations is shown in Figs. 5 and 6. The fields

in Fig. 5 are evaluated as a function of the axial coordinate z
at a given transverse location (x ¼ 3:0 mm, y ¼ 2:0 mm)
which corresponds to the upper-left corner of the charge
distribution. Figure 6 displays the electromagnetic field
evaluated as a function of the horizontal [Fig. 6 (left)] and

vertical [Fig. 6 (right)] transverse coordinate at a given axial
location z ¼ 18:6 mm corresponding to the minimum Ez

shown in Fig. 5 (i.e. maximum accelerating field). All plots
show a decent agreement (relative discrepancy <25%)
between our model and VORPAL simulations. The notable
disagreement observed in Fig. 5 for the transverse fields in
the vicinity of the driving charge (i.e. z ’ 27:5 mm) is
rooted in the absence of velocity fields in our model
(only radiation field contributes to the wakefield) while
the VORPAL simulations include both velocity and radiation
fields. In fact given the bunch charge and duration, the
amplitude of the velocity field can be evaluated by convolv-
ing the charge distribution with the electric field generated
by an ultrarelativistic particle Eðr; 	Þ ¼ q=ð2��0Þ�
ðr?=r2?Þ�ð	Þ, where e and �0 are, respectively, the elec-

tronic charge and vacuum permittivity, and r? � ðx; yÞ and
	 are, respectively, the transverse and longitudinal coordi-
nates of the observation point referenced to the particle’s
location. Such a convolution with Eq. (29) yields the trans-
verse electric field components at ðx; y; 	Þ ¼ ðwx;wy; 0Þ to
be�1 MV=m for the bunch parameter listed in Table I. The
latter value is in agreement with the observed difference
between the VORPAL and theoretical models; see Ex and Ey

components in Fig. 6.

FIG. 4. Snapshot of the axial electric field Ezðx ¼ 0; y; zÞ in the
midplane of a slab DLW for the bunch and structure parameters
shown in Table I. The center of the drive bunch is located at z ¼
27 mm and it is moving in the positive z direction. The field was
obtained from VORPAL simulations.

FIG. 3. Eigenfrequencies [fm;n � !m;n=ð2�Þ] and associated
amplitudes for the mode induced in the DLW with parameter
listed in Table I. The ðm; nÞ LSM and LSE modes are, respec-
tively, shown as red and blue bars.
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FIG. 5. Comparison of the electromagnetic-field components
calculated with our model (blue dashed line) and simulated with
VORPAL (red solid lines). The fields are computed on a line

parallel to the z axis with transverse offset x ¼ 3:0 mm and y ¼
2:0 mm. The center of the drive beam is at z ¼ 27:5 mm. The
DLW and bunch parameters are the ones displayed in Table I.
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B. Witness-bunch dynamics

In the previous section our primary focus has been on the
wakefields generated within and downstream of the drive
bunch. In this section we briefly address the wakefield
produced by the witness bunch and especially the fields
within the witness bunch. We refer to these fields as
short-range wakefields. The analytical derivation of these
wakefields is identical to the one detailed in the previous
sections. Considering the case of the longitudinal wake-
field, the total field produced by the drive and witness
bunches can be computed in a straightforward manner by
writing �ðzÞ in Eq. (26) as a sum of the drive bunch and
witness bunch longitudinal charge distribution. In this
section we take

�ðzÞ ¼ Qffiffiffiffiffiffiffi
2�

p
�

1


z;d

e�½ðz�zdÞ2=2
2
z;d
� þ R


z;w

e�½ðz�zwÞ2=2
2
z;w�

�
;

(30)

where the first and second terms on the right-hand side
refer, respectively, to the drive- and witness-bunch distri-
butions. The parameters 
z;½d;w� and z½d;w� are the rms

bunch lengths and positions, Q is the drive-bunch charge,
and RQ is the witness-bunch charge so that R is the
witness-to-drive-bunch charge ratio. The value of zd is
arbitrary but zw is chosen to ensure the witness bunch is
located at an accelerating phase of the wakefield generated
by the drive bunch.
Depending on the witness-bunch parameters, the short-

range wakefield can significantly alter the field seen by
the particles within the witness bunch compared to that
assumed in Sec. VA. Besides being dictated by the front-
end application, the witness-bunch parameters are also
constrained by the DLW accelerating mechanism. The
witness-bunch length 
z;w should be much smaller than

the typical wavelength of the accelerating field. Since the
bunch duration (length) and charge of the witness bunch
set the amplitude of the short-range wakefields, minimiz-
ing these fields implies that the charge should be limited.
Going back to the academic case considered in the
previous subsection, we compare in Fig. 7 the axial
electric field seen by the witness-bunch particles for
the same drive-bunch parameter as shown in Fig. 5.
Two cases of witness-bunch length are considered
(
z;w ¼ 0:1, 1 mm) and the charge ratio is varied R 2
½0:01; 0:1; 0:2�. For R ¼ 0:01, the field within the witness
bunch is very close to the field obtained in the absence of
witness bunch. As R increases the short-range wake
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FIG. 7. Axial electric field generated by a charge distribu-
tion composed of a 1-nC drive bunch followed by a witness
bunches with charge set to R nC. Plots (a) and (b), respec-
tively, correspond to a witness bunch with rms length of 0.1
and 1 mm. The other parameters for the drive bunch are
the ones displayed in Table I. The dotted trace represents the
peak-normalized charge distribution considered for the field
calculations (for sake of clarity the witness bunch is display
for R ¼ 0:5).

FIG. 6. Comparison of the electromagnetic-field components
calculated with our model (blue dashed line) and simulated
with VORPAL (red solid lines). The fields are computed at
a given longitudinal position z ¼ 18:6 mm. The left-column
plots display the dependence on the horizontal coordinate
x at y ¼ 0:043 mm while the right-column plots show the
dependence on the vertical coordinate y at x ¼ 0:043 mm.
The DLW and bunch parameters are the ones displayed in
Table I.
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become important. As expected the effect is more pro-
nounced for the shorter witness bunch. For the 100-�m
witness bunch with R ¼ 0:2, the decelerating field inside
the witness bunch is found to be comparable with the
accelerating field produced by the drive bunch. Such an
observation indicates that the witness-bunch dynamics is
not significantly impacted by the short-range wakefield as
long as R� 0:01.

The short-range wakefields are de facto included
in the VORPAL simulations presented throughout this
paper and in the numerical implementation of our model
in Sec. VI.

C. Two-dimensional limit

An interesting limiting case occurs when Lx 	 Ly. In

this ‘‘two-dimensional limit,’’ the dependence of the fields
on the horizontal coordinate x is weak and completely
vanishes when Lx ! 1 (so that kx ’ 0 and m ¼ 0). In
such a case the field amplitudes associated to the LSM
and LSE modes are, respectively,

ELSM
0;0;n ’ 4�

aþ �rðb�aÞ
sin2½ky;nðb�aÞ�

; and ELSE
0;0;n ’ 0; (31)

where � is charge per unit length in the horizontal
direction. The LSE modes are suppressed and the
latter equation is in agreement with the results of
Ref. [14].

This limit case can be practically reached by using
structures with large aspect ratios (Lx 	 Ly) driven by

flat electron beams with their transverse horizontal emit-
tance much smaller than the vertical one "x 
 "y. Flat

beams can be produced in photoinjectors by using a round-
to-flat beam transformation [36,37]. In such a scheme, a
beam with large angular momentum is produced in a
photoinjector [38]. Upon removal of the angular momen-
tum by applying a torque with a set of skew quadrupole, the
beam has its transverse emittance repartitioned with a
tunable transverse emittances ratio [39]. Flat beams with

transverse emittance ratio of "x="y ’ 100 and aspect ratio

of�20 have been produced, even at a relatively low energy
of 15 MeV [27].
Based on the previous experience in producing flat

beams and preliminary simulation of the Advanced
Superconducting Test Accelerator (ASTA) currently in
construction at Fermilab [40]. It is reasonable to consider
a 3-nC flat beam generated from the ASTA photoinjector to
have parameters tabulated in Table II when accelerated
to 1 GeV. Considering a structure with a ¼ 100 �m,
b ¼ 300 �m, and � ¼ 4:0 would yield a maximum axial
wakefield amplitude of �300 MV=m; see Fig. 8. The
fundamental LSM frequency is f0;0 ¼ 193 GHz and the

nearest LSE mode amplitude is�136 times lower. In Fig. 8
the wakefield is computed with the asymptotic limit
provided in Eq. (31) and is in excellent agreement with
the FDTD simulations.

VI. IMPLEMENTATION IN A PARTICLE-IN-CELL
BEAM DYNAMICS PROGRAM

Although FDTD simulations provide important insight
that can aid the design and optimization of the DLW
geometry, their use to optimize a whole linear accelerator
would be time and CPU prohibitive. Therefore it is worth-
while to include a semianalytical version of the model
developed in this paper in a well-established beam dynam-
ics program IMPACT-T [41]. Our main motivation toward
this choice stems from the availability of a wide range of
beam line elements models. In addition, IMPACT-T takes
into account space-charge forces using a three-dimensional
electrostatic solver. The algorithm consists in solving

TABLE II. Parameter of the DLW structure and drive bunch
used for benchmarking our theoretical model with VORPAL

simulations.

Parameter Symbol Value Unit

Vacuum gap a 100 �m
Height b 300 �m
Width Lx 10.0 mm

Relative permittivity �r 4.0 � � �
Bunch energy E 1 GeV

Bunch charge Q 3.0 nC

rms bunch length 
z 50 �m
Full (rms) bunch width wx (
x) 3 (0.870) mm

Full (rms) bunch height wy (
y) 150 (43.3) �m
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FIG. 8. Longitudinal electric field for a DLW with Lx 	 Ly

driven by a 3-nC bunch. The bunch has a rectangular transverse
shape with full width wx ¼ 3:0 mm and wy ¼ 150 �m, and a

Gaussian longitudinal distribution with rms length 
z ¼ 50 �m.
The theoretical model based on Eq. (31) (dashed blue line) is
compared with VORPAL simulations (red line).
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Poisson’s equation in the bunch’s rest frame and
Lorentz boosting the computed electrostatic fields in the
laboratory frame.

In a typical particle-tracking PIC program, like
IMPACT-T, an electron bunch is described by a set of

‘‘macroparticles’’ arranged to mimic the bunch phase
space distribution. Each macroparticle represents a large
number of electrons (typically 103 in our simulations). To
evaluate the electrostatic fields in the bunch’s rest frame,
the macroparticles are deposited on the cells of a three-
dimensional grid. As a result of this charge deposition
algorithm, the initial charge distribution is approximated
by a set of point charges, located at the nodes of the three-
dimensional grid.

The line charge density corresponding to certain y and z
coordinates is �ðxÞ ¼ P

x0
qðx0Þ�ðx� x0Þ and provided this

distribution is symmetric the Fourier coefficients �m from
Eq. (1) are given by

�m ¼ X
x0

2qðx0Þ cosðkx;mx0Þ
Lx

: (32)

In practice the linear charge distribution may not
be ‘‘exactly’’ symmetric. In this case the charge at an
arbitrary grid point x0 is set at the average of the values
given by the charge deposition algorithm at positions
x0 and �x0.

The expressions of the electric and magnetic fields at a
given position have the following form:

Fi ¼
X
n

fiðx; y; nÞ
�X
z0>z

eikzðz0�zÞTiðz0;nÞ
�
; (33)

where F can be either electric or magnetic field, i is an
index which indicates the field component, n is the mode
index, fi’s are the expressions of the fields from Eqs. (17)
and (21) divided by the amplitude E0;n, and

Tiðz0; nÞ ¼
X
x0;y0

E0;nðx0; y0; z0Þ; (34)

where E0;n’s are given by Eq. (25) with �m’s given by

Eq. (32) in which the charge is evaluated at the
ðx0; y0; z0Þ position.

The simulated electromagnetic-field components are
compared with VORPAL simulations in Fig. 9 for the same
case as presented in Fig. 5. In Fig. 9 the IMPACT-T

simulations are performed with and without activating
the space-charge algorithm. When accounting for space-
charge forces, IMPACT-T is in very good agreement with
VORPAL.

The convolution over the z summation in Eq. (33) can be
performed with a numerical fast Fourier transformation.

Therefore the total number of operations needed to evalu-
ate the wakefields is / NmodesN

2
xN

2
yNz logNz. The total

number of modes is twice the product between the modes
allowed for each of the transverse wave numbers:Nmodes ¼
2NkxNky . The factor of 2 comes from the inclusion of the

dipole modes along with the vertically symmetric mono-
pole modes. For the data generated in Fig. 9, the IMPACT-T

simulations are more than 2 orders of magnitude faster than
the VORPAL ones.
The altered version of IMPACT-T was used to explore

a possible DLW experiment at the ASTA facility as a
1-GeV electron beam is injected in a DLW. The beam and
structure have the parameters displayed in Table II. For
these simulations, the electron beam is an idealized
cold beam without energy spread or divergence.
Figure 10 compares the longitudinal phase spaces simu-
lated with VORPAL (top row) and IMPACT-T (bottom row) at
two axial locations. The agreement on the phase space
structure developing as this nonoptimized beam propa-
gates in the DLW is excellent. The distortion of the
longitudinal phase space associated to the witness bunch
stems from the chosen long pulse duration (length of
0.3 mm) compared with the wavelength of the fundamen-
tal mode (� ¼ 1:6 mm). The mean and rms energies
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FIG. 9. Comparison of the electromagnetic-field components
obtained from IMPACT-T [with (green dashed line) and without
(blue dashed line) accounting for space-charge effects] with the
fields simulated with VORPAL (red solid lines). The fields are
computed on a line parallel to the z axis with transverse offset
x ¼ 3:0 mm and y ¼ 2:0 mm. The center of the drive beam is at
z ¼ 27:5 mm. The DLW and bunch parameters are the ones
displayed in Table I.
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evolution for the witness and drive bunches reported in
Fig. 11 confirms the quantitative agreement between the
FDTD and semianalytical models. Both models give
mean and rms energies in agreement within & 5%.

VII. CONCLUSIONS

In this paper we presented a three-dimensional model to
evaluate wakefields in slab-symmetric dielectric-lined
waveguides. The only limitation of this model stems
from the assumed charge distribution symmetry with re-
spect to the vertical axis [�ðxÞ ¼ �ð�xÞ]. The model was
successfully validated against three-dimensional FDTD
PIC simulations performed with VORPAL and was imple-
mented in the popular beam dynamics tracking program
IMPACT-T. The added capability to IMPACT-T enables start-

to-end simulation of linear accelerators based on DLW
accelerating structures. Furthermore, because IMPACT-T in-
cludes a space-charge algorithm, the upgraded version
provides a valuable tool for investigating the performances
of DLWacceleration when the dynamics of either, or both,
of the drive and witness bunches is significantly impacted
by space-charge effects. The observed good agreement
between the developed algorithm and simulations per-
formed with the VORPAL FDTD PIC program demonstrates
that our model strikes an appropriate balance between
efficiency, accuracy, and simplicity.
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