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This paper investigates the focusing properties of linear magnetic undulators, i.e., devices characterized

by weak defocusing properties in the horizontal (wiggling) plane and strongly focusing in the vertical

plane. The problem of identifying the conditions that ensure the existence of the electron beam eigenstates

in the undulator lattice for a given working point of electron beam energy Eb and resonant wavelength �r

is studied. For any given undulator lattice, a bandlike structure is identified defining regions in the ðEb; �rÞ
plane where no periodic matching condition can be found, i.e., it is not possible to transport the electron

beam so that optical functions are periodic at lattice boundaries. Some specific cases are discussed for the

SPARC FEL undulator.
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I. INTRODUCTION

Pure permanent magnet (PPM) undulators are imple-
mented in single pass free-electron lasers (FEL) as inser-
tion devices featuring a magnetostatic periodic (sinusoidal)
field in the longitudinal (z) direction. The transverse
magnetic field ensures coupling between the transverse
wiggling motion of electrons and the transverse field
of the amplified optical wave. The FEL power gain

length, i.e., the exponential growth folding length, is Lg ¼
�u=ð4��

ffiffiffi
3

p Þ, where �u is the undulator period and � is the
Pierce parameter [1–3], proportional to the cubic root of
the current density. An FEL amplifier operating in self-
amplified spontaneous emission has a saturation length
Ls � 18–20Lg. We typically have Ls ranging from few

meters in long wavelength (visible to near UV) devices,
up to several tens of meters, in hard x-ray FEL amplifiers.
The optimization process of the FEL parameters has to take
into consideration the focusing properties of the undulator
and the design of the electron transport lattice over the
undulator length, in order to optimize the transverse beam
size and maximize the current density, reducing therefore
the gain length. The transport lattice of FEL amplifiers
operating with high energy beams, as typical soft to
hard x-ray sources [4–7], is based on a focusing-drift-
defocusing-drift (FODO) scheme, alternated to a seg-
mented undulator [8]. The effect of a (linear) undulator is
that of introducing a small perturbation to the FODO: a
weak focusing in the vertical plane and a negligible effect
in the horizontal plane. At lower beam energies, i.e., for
FEL amplifiers operating at longer wavelengths from vis-
ible to UV, the role of the undulator focusing becomes

dominant in the vertical direction and the undulator itself
may play the role of the focusing element in the FODO
lattice [9,10]. In this paper we analyze this specific regime,
taking as a reference the lattice properties of the SPARC
beam line, where this mode of operation introduces a link
between the transport optics and the operation wavelength,
both depending on the beam energy and undulator gap.
The layout of the SPARC FEL, downward the accelera-

tor, is shown in Fig. 1. The variable gap undulator [11],
divided into six identical sections separated by quadru-
poles/correctors, follows a transfer line, equipped with
two triplets of quadrupoles with the purpose of achieving
a matching condition of the beam Twiss parameters at the
entrance of the undulator. The undulators are variable gap
devices and configurations using different gaps in the un-
dulator line have been used in cascaded FEL experiments
[12], to tune the resonance of part of the elements to the
second harmonic of the previous ones, but for the purposes
of this analysis we will assume that all the undulators are
all tuned at the same resonant wavelength (gap).
The matching condition at the undulator entrance con-

sists in imposing periodical conditions to the propagation
of the Twiss parameters over the distance spanned by the
single undulator + quadrupole unit, including any drift
between the two devices, up to the leading edge of the
next undulator section. Therefore, matching the beam in
the transfer line essentially means to realize at the leading
edge of the unit an eigenstate of the corresponding Twiss
transport matrix associated to the eigenvalue � ¼ 1. All the
following sectionswill bematched accordingly, in the sense
that the optical functions will be periodic from that point
onwards with period equal to the length of the unit lattice.
While the (3� 3) Twiss matrix corresponding to any

physical device invariably admits the real eigenvalue
� ¼ 1 [see (8) below], the corresponding Twiss coefficient
eigenstates ð�x;y; �x;y; �x;yÞ (up to multiplicative constants)

do not necessarily describe a physical beam. Moreover,
since a (linear) magnetic undulator has different optical
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properties in vertical and horizontal directions (as shown in
the Appendix), it may be impossible, once the resonant
wavelength �rðg; �Þ has been set, to arrange the quadru-
pole to obtain eigenstates of the Twiss transport matrix
describing physical beams in both vertical and horizontal
directions. There are situations where the periodicity con-
dition on both planes cannot be met, leading to an orbit
which is not stable in one direction. An unstable orbit can
still be propagated through a finite length undulator beam
line, but the instability leads to a growth of the beam size
and generally to some increase of the FEL gain length.
Because of the dependence of the undulator focusing prop-
erties on the wavelength, the condition of stability of the
orbit introduces prohibited band gaps in the FEL emission
spectrum at a given beam energy. In what follows we have
analyzed the conditions for achieving a stable, i.e. matched
orbit, in both directions, and the dependence of this condi-
tion on the FEL resonant wavelength, with a general di-
gression and some examples of real experimental situations.

II. MATCHING CONDITIONS IN A PPM
LINEAR UNDULATOR

With the main purpose of establishing a common nota-
tion, we recall few elements of linear beam dynamics
[8,13]. The motion of a particle in the phase space is
described in matrix formulation by

uðzÞ
u0ðzÞ

 !
¼ CuðzÞ SuðzÞ

C0
uðzÞ S0uðzÞ

 !
u0

u00

 !
u ¼ x; y;

where ðCu; C
0
u; Su; S

0
uÞ are generic functions of the longi-

tudinal coordinate depending on the elements of the beam
line. The matrix

MuðzÞ ¼
CuðzÞ SuðzÞ
C0
uðzÞ S0uðzÞ

 !
(1)

permits a detailed ray tracing of any given particle through
the accelerator. It is the product of the matrices composing
the sequence of devices:

M u ¼ MðnÞ
u � . . . �Mð2Þ

u �Mð1Þ
u :

Each of the matrices M (and their chain product accord-
ingly) fulfills the following condition:

MJMT ¼ J J ¼ 0 þ1

�1 0

 !
implying that

detMðiÞ
u ¼ 1: (2)

It is easily seen that the same property applies to the whole
matrixMu in (1). The previous property, together with the
Liouville theorem, allows one show that the time evolution
of the rms matrix describing the beam envelope is given by

b� uðzÞ ¼ MuðzÞb�0
MT

u ðzÞ; (3)

where b�0
represents the initial state. Normalized emittance

� is defined as � ¼
ffiffiffiffiffiffiffiffiffiffi
detb�q

(note that detb�> 0 since b� is a
real, symmetric, nonsingular matrix). A consequence of (2)
and (3) is that emittance is a conserved quantity. The rms
matrix can be cast in the form

b�u ¼ �u
�u �u

�u �u

 !
(4)

so that the Twiss coefficients �u, �u, and �u are con-
strained by the condition

N ð�u; �u; �uÞ ¼ 1; (5)

where by definition

N ð�u; �u; �uÞ ¼ �u�u � �2
u: (6)

A consequence of (4) is that �u�u and �u�u represent the
variance of u and u0, respectively—two strictly positive
quantities—so �u and �u must be strictly positive as well.
Quantity ��u expresses instead the correlation between u
and u0 in the phase pace. It is easily shown that evolution of
Twiss coefficients is governed by the following expression:

�u

�u

�u

0BB@
1CCA ¼ TðMuÞ

�0
u

�0
u

�0
u

0BB@
1CCA; (7)

where

TðMuÞ ¼
C2
u �2CuSu S2u

�CuC
0
u SuC

0
u þ CuS

0
u �SuS

0
u

C02
u �2C0

uS
0
u S02u

0BB@
1CCA:

FIG. 1. Layout of SPARC transfer line (quads Q1 ! Q6) and undulator (quads Q7 ! Q11 þ undulator sections UM1 ! UM6) of
SPARC experiment. The S’s tag the positions of imaging screens, the �’s measure the distance from photocathode.
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Moreover, the eigenvalues of (7) are

�1 ¼ CuS
0
u � SuC

0
u ¼ detMu ¼ 1

�2=3 ¼ 1

2
½C2

u þ 2SuC
0
u þ S02u þ�ðCu þ S0uÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCu � S0uÞ2 þ 4SuC

0
u

q
�: (8)

The eigenvector associated to �1 ¼ 1 is obviously the
candidate whenever one wants to leave optical functions�,
�, � unchanged at the exit of a device. The eigenvector
corresponding to unit eigenvalue is

vð1Þ ¼
2Su

Cu � S0u
�2C0

u

0BB@
1CCA (9)

up to a real multiplicative constant r to be found to enforce
condition (6). For example, one can set this multiplicative
constant to

r � v1

jv1j
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jv1v3 � v2
2j

q ; (10)

where vð1Þ ¼ ðv1; v2; v3Þ is the eigenvector associated to
�1 ¼ 1 and

~v �
�u

�u

�u

0BB@
1CCA ¼ rv ¼

rv1

rv2

rv3

0BB@
1CCA

is the rescaled eigenvector. The choice (10) has the merit to
force �u to the positive value

�u ¼ v2
1

jv1j
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijN ðvÞjp ¼ jv1jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijN ðvÞjp :

Note, however, that choice (10) merely ensures that

N ð~vÞ � �u�u � �2
u ¼ r2N ðvÞ ¼ N ðvÞ

jN ðvÞj ¼ �1:

(11)

The last result deserves a few comments: there is no
warranty that the eigenvector associated to the eigenvalue
�1 ¼ 1 fulfills the Twiss condition (6). Consider the case,
for example, that

v1v3 	 0

or (more generally)

N ðvÞ ¼ v1v3 � v2
2 	 0:

Since rescaling of the eigenvector by any constant r
amounts to multiply v1v3 or v1v3 � v2

2 by r2, there is no
chance to make �u and �u to represent both strictly
positive quantities (the product �u�u ¼ r2v1v3 	 0
remains negative), or �u�u � �2

u ¼ r2ð�u�u � �2
uÞ to be-

come positive. These conditions [i.e. N ðvÞ 	 0] signal

that an eigenvector associated to eigenvalue �1 ¼ 1 exists,
but it cannot be rescaled to represent any physical beam.
An apodictic—and limit—case is that of drift, for which
the Twiss matrix reads

DuðLÞ ¼
1 �2L L2

0 1 L

0 0 1

0BB@
1CCA

with characteristic polynomial Pð�Þ ¼ ð1� �Þ3 and eigen-
vector

v ¼
1

0

0

0BB@
1CCA: (12)

In this case the Twiss formN ðvÞ is identically zero. Trivial
considerations confirm that the only eigenstate is obviously
that of a beam with no slope dispersion (�u ¼ 0).
Periodic conditions must be fulfilled simultaneously in

vertical and horizontal directions. The focusing/defocusing
properties of the quadrupole following the undulator sec-
tion are determined by a single parameter (the current
value), and it may well happen that for any given current
permissible in the range of the device, the condition dis-
cussed above (the eigenstate is physical) applies to one of
the two directions only (see Fig. 2). Consider, in this
regard, a lattice unit composed (as for SPARC FEL) by
an undulator section, a drift, a quadrupole, and another
drift up to the leading edge of the following section.
A rough estimation of the current limits for which

physical eigenstates for such a device exist can be found
in the horizontal direction, by assuming that the undulator
behaves as a drift. It is easily shown—quite expectedly—
that no physical eigenstates may exist if the quadrupole is
defocusing horizontally. In this case in Twiss form for the
horizontal eigenstate reads indeed

N xðvÞ ¼ �	Qsinh
2ðLQ

ffiffiffiffiffiffiffi
	Q

p Þ
�
ðLD2

þ LD1
þ LUÞ2

þ 4 cothðLQ
ffiffiffiffiffiffiffi
	Q

p Þffiffiffiffiffiffiffi
	Q

p ðLD2
þ LD1

þ LUÞ þ 4

	Q

�
(13)

which is negative by inspection. In Eq. (13) 	Q is the

quadrupole strength, LQ its length, LU, LD1
, LD2

the

lengths of the undulator, the drift between the undulator
and the quadrupole, and the drift between the quadrupole
to the leading edge of the next undulator section. If the
convention is adopted that the current IQ is positive when

the quadrupole is vertically focusing, this means that
physical horizontal eigenstates may only exist for IQ < 0.
In this case it can be shown that the Twiss form reads
instead
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N xðvÞ ¼ þ	Qsin
2ðLQ

ffiffiffiffiffiffiffi
	Q

p Þ
�
�ðLD2

þ LD1
þ LUÞ2

þ 4 cotðLQ
ffiffiffiffiffiffiffi
	Q

p Þffiffiffiffiffiffiffi
	Q

p ðLD2
þ LD1

þ LUÞ þ 4

	Q

�
:

(14)

The Twiss condition (6) can be realized provided that ex-
pression (14) is positive. If the conditionLQ

ffiffiffiffiffiffiffi
	Q

p 
 1 holds,

then cotðLQ
ffiffiffiffiffiffiffi
	Q

p Þ � 1=ðLQ
ffiffiffiffiffiffiffi
	Q

p Þ and (14) collapses to

N xðvÞ ¼ þ	Qsin
2ðLQ

ffiffiffiffiffiffiffi
	Q

p Þ
�
�ðLU þ LD1

þ LD2
Þ2

þ 4
LD2

þ LQ þ LD1
þ LU

LQ	Q

�
(15)

and fulfillment of conditionN xðvÞ � 0 is equivalent to

	QLQ 	 4
LD2

þ LQ þ LD1
þ LU

ðLD2
þ LD1

þ LUÞ2
: (16)

We also have

	QLQ ¼ 1

jfj ¼
e

�mc

 � jIQj ¼ 0:3
½T=A�

E½GeV� jIQ½A�j;

where f is the focal length of the quadrupole, 
 the calibra-
tion constant yielding the integrated gradient per unit current.
Equation (16) translates to

� IðmaxÞ
Q 	 IQ½A�< 0; (17)

where

IðmaxÞ
Q � 4

E½GeV�
0:3
½T=A�

LU þ LD1
þ LQ þ LD2

ðLU þ LD1
þ LD2

Þ2 : (18)

The value corresponding to (17) is signaled in Fig. 2 by
the blue dashed vertical line. Since the value is very close
to that corresponding to the transition from unphysical
to physical eigenstates, the approximation used proves
fairly accurate. It can be shown that when the current of
the quadrupole approaches zero from negative values the
horizontal eigenstate (normalized in the Twiss sense) ap-
proaches (12) (up to a multiplicative constant) as follows:

�x

�x

�x

0BB@
1CCA �	Q!0

��1
Q

1
2 ðLU þ LD1

� LD2
Þ�Q

�Q

0BB@
1CCA;

where

�Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LQ	Q

LU þ LD1
þ LQ þ LD2

s
and the optical functions �x clearly diverge.
The case for the vertical direction is more complicated.

We recalled in the Appendix the focusing properties of a
linear undulator, which can be approximated to a thick
focusing quadrupole of strength 	y � 2ð�K��u

Þ2. The exis-

tence of a physical vertical eigenstate compatible with (17)

(i.e. consistent with the condition that �IðmaxÞ
Q < IQ 	 0),

must be studied numerically. By calculating then the over-
all matrix governing the propagation of the beam through
the lattice unit and exploiting the equation (9) to obtain the
components of the (unnormalized) eigenvector, one gets
for the Twiss form (6) the following expression:

N yðvÞ ¼ BG� A2; (19)

where

B ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffi
	Q	U

p fCQ½ðLD1
þ LD2

ÞCU
ffiffiffiffiffiffiffiffiffiffiffiffiffi
	Q	U

p þ ffiffiffiffiffiffiffi
	Q

p
SU�

þ SQ½CU
ffiffiffiffiffiffiffi
	U

p ðLD1
LD2

	Q þ 1Þ þ LD2
	QSU�g

A ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
	Q	U

p f�CQSU
ffiffiffiffiffiffiffi
	Q

p
	UðLD1

þ LD2
Þ

� SQ½CU	Q
ffiffiffiffiffiffiffi
	U

p ðLD1
� LD2

Þ
þ SUðLD1

LD2
	Q	U þ 	Q þ 	UÞ�g

G ¼ �2½CUSQ
ffiffiffiffiffiffiffi
	Q

p � SU
ffiffiffiffiffiffiffi
	U

p ðCQ þ SQ
ffiffiffiffiffiffiffi
	Q

p
LD1

Þ�

(20)

and

FIG. 2. Twiss ‘‘norm’’ [in the sense of Eqs. (6), (10), and (11)]
of lattice eigenstates in horizontal (red dashed line) and vertical
(green solid line) directions as a function of the current in the
quadrupole. The beam energy is E ¼ 105 MeV. The undulator is
set at: (top) g ¼ 10:88 (�r ¼ 800 nm); (bottom) g ¼ 11:275 mm
(�r ¼ 760 nm). Positive current IQ means that the quadrupole is

focusing in the vertical direction. Matching is possible whenever
��� �2 ¼ þ1 in both directions. No such interval exists in the
first case, while in the latter the situation is reversed.
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CQ ¼ cos
ffiffiffiffiffiffiffi
	Q

p
LQ SQ ¼ sin

ffiffiffiffiffiffiffi
	Q

p
LQ

CU ¼ cos
ffiffiffiffiffiffiffi
	U

p
LU SU ¼ sin

ffiffiffiffiffiffiffi
	U

p
LU: (21)

The nonlinear dependence on 	Q in Eq. (20) discourages a

comprehensive analytical study ofN y’s sign. Nevertheless,

some understanding of its general behavior can be obtained
by studying the particular case in which the undulator’s
Twiss matrix equals the identity:ffiffiffiffiffiffiffi

	U
p

LU ¼ �� � ¼ 1; 2 . . . (22)

implying that

CU ¼ �1 SU ¼ 0; (23)

where the sign þð�Þ applies for � even (odd). Insertion of
(23) in (20) yields

B ¼ � 2ffiffiffiffiffiffiffi
	Q

p fSQðLD1
LD2

	Q þ 1Þ þ CQðLD1
þ LD2

Þ ffiffiffiffiffiffiffi
	Q

p g

A ¼ �SQ
ffiffiffiffiffiffiffi
	Q

p ðLD1
� LD2

Þ G ¼ �2SQ
ffiffiffiffiffiffiffi
	Q

p
(24)

so that

N yðvÞ ¼ �SQf4CQðLD1
þ LD2

Þ ffiffiffiffiffiffiffi
	Q

p

þ SQ½4þ ðLD1
þ LD2

Þ2	Q�g: (25)

The formula (25) could easily be inferred from Eq. (13) by
setting LU ¼ 0. In fact the undulator can be expunged
completely according to (22), and one is left [exactly as in
(13)] with a defocusing quadrupole between two drifts,
except for the fact that the length of the first is LD1

instead

of LD1
þ LU.

The Twiss norm (25) is always negative. It reaches its
maximum value (as a function of 	Q) at 	Q ¼ 0, where it
cancels (N max;y ¼ 0), which implies that no matching is

possible whatever is 	Q. A deeper understanding of this

condition can be obtained by changing the right-hand side
of (22) by a tiny amount �:ffiffiffiffiffiffiffi

	U
p

LU ¼ ��þ � � ¼ 1; 2 . . . ; � 
 1 (26)

which can be recast in the more suggestive form

	U � 	0
U þ 2

��

L2
U

� 	0
U ¼

�
��

LU

�
2
: (27)

A simple calculation allows one to prove that

N yðvÞ �
4��ðLD1

þ LD2
Þ

LU

� 	Q ¼ 0

implying that

dN max;y

d	U

��������	u¼��
� 2ðLD1

þ LD2
ÞLU > 0: (28)

AsN max;y vanishes whenever 	U fulfills (22) with positive

derivative (see the oblique dashed lines in the upper plot
of Fig. 3 below), there must exist a region on the left
(respectively, right) of the zero in which the function is

negative (respectively, positive). Continuity implies that at
least another zero must exist between 	U ¼ ð �

LU
�Þ2 and

	U ¼ ð�þ1
LU

�Þ2. In Fig. 3 the eigenstate’s maximum Twiss

norm (as a function of 	Q) is displayed as a function of 	U;y

(upper plot). The solid line spans over the same gap
interval as in the lower plot, which is valid only for the
same beam energy as in Fig. 2. In both graphs, however, the
relevant information is the sign of N max. From the plot of
N max vs g it is clear, for example, that no physical vertical
eigenstate exists for 9:83 mm & g & 11:21 mm. The plot
ofN max vs 	U;y, on the other hand, although at the price of

more abstraction, is universal, for it applies equally well to
any combination of parameters conspiring to build up the
same value of 	U;y. For example, the upper plot (including

the dashed part) spans over the very same gap interval of
the lower plot for a beam of energy decreased, e.g., by a
factor 2.5 (� � 82). The above constraint on g, in fact, may
be cast in terms of 	U;y to include other zeros of N max:

	ð1Þ
U;y 	 ð2þ �Þ

�
�K

��U

�
2 	 	ð2Þ

U;y

	ð3Þ
U;y 	 ð2þ �Þ

�
�K

��U

�
2 	 	ð4Þ

U;y

	ð5Þ
U;y 	 ð2þ �Þ

�
�K

��U

�
2 	 	ð6Þ

U;y

. . .

(29)

where (for SPARC undulator layout) 	ð1Þ
U;y � 1:53, 	ð2Þ

U;y ¼
ð�=LUÞ2 � 2:11, 	ð3Þ

U;y � 6:23, 	ð4Þ
U;y ¼ ð2�=LUÞ2 � 8:43,

FIG. 3. Top: maximum of Twiss norm [Eq. (6)] for lattice
eigenstates in the vertical direction for the 1st undulator section
as a function of 	U;y. The maximum is found by varying the

quadrupole current in the range�IðxÞQ 	 IQ 	 0. Dashed vertical

lines delimit the boundaries of regions where no physical match-
ing is possible. Bottom: N max;y as a function of the gap. Beam

parameters are the same as in Fig. 2.
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	ð5Þ
U;y � 14:33, 	ð6Þ

U;y ¼ ð3�=LUÞ2 � 18:97. It is worth not-

ing that in both plots of Fig. 3N max;y seems to be stuck to

the value N max;y ¼ 4 for wide intervals of the variable in

abscissa. This behavior is easily understood by observing
that the Twiss norm of the unnormalized eigenstate [see (9)]
may be cast as

N uðvÞ ¼ 4� ðCu þ S0uÞ2 	 4

after imposing condition (2). The regions in Fig. 3 for which
N max;y ¼ 4 correspond to the cases where, for a given

value of 	U;y, the current of the quadrupole (i.e. 	Q) max-

imizing N y falls within the interval in Eq. (17)

A more suggestive form for constraints (29) is obtained
by casting the undulator strength parameter K in terms of
the resonant wavelength �r and the beam energy �, which
yields

	U;y ¼ 4�2 2�
2�r � �U

�2�3
U

: (30)

Equation (30) can be used to express the resonant wave-
length vs beam energy corresponding to a given value 	U;y.

The curves in Fig. 4 plot �r as a function of beam energy

for 	U;y ¼ 	ðiÞ
U;y, where 	ðiÞ

U;y are the zeros of N max. The

shaded regions delimit the bandlike forbidden zones where
no physical vertical eigenstates can be realized with a
single defocusing quadrupole. It is worth remarking that
an undulator mainly designed to function in the lowermost
region of the plane ð�r; EbÞ can be steadily operated at
considerably larger wavelengths choosing in a different
region a working point resulting from a judicious compro-
mise between beam energy reduction and gain. However,
since the general behavior of eigenstates is modified jump-
ing from one allowed region to the other (see Fig. 5 below),
other practical aspects (mainly sensitivity to magnetic
errors) of the undulator that might hinder a stable operation
should be taken into account.

FIG. 4. Top: resonant wavelength vs beam energy [Eq. (30)]
corresponding to 	U ¼ 1:53; 2:11; 6:23 . . . (see text). In the
shaded regions it is impossible to realize physical vertical
eigenstates with a single defocusing quadrupole. The black lines
correspond to curves where the gap has been kept fixed to g ¼
8:2 mm (dashed), g ¼ 11:5 mm (dash-dotted), and g ¼ 20 mm
(dotted), respectively. Bottom: the same as in the upper plot,
zoomed to a region relevant for SPARC operation. The asterisks
refer to the cases described in Fig. 2.

FIG. 5. Top: merit functionals for undulator eigenstates corre-
sponding to the quadrupole current (in abscissa) for a beam
energy of 105 MeV (� � 205) and gap values g ¼ 11:944 mm
(�r ¼ 700 nm). Blue, magenta, orange, and red curves corre-
spond to functionals (31)–(33), respectively; 2nd ! 3rd row:
optical functions �x (blue) and �y (magenta) for eigenstates

corresponding to the minima of 
2 functionals (31) and (32) (the
crosses atop blue and magenta curves in the top plot).
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III. OPTIMIZATION OF FEL PERFORMANCES

Optimization of FEL performances can be achieved
by identifying the value of quadrupole current downward
the undulator which corresponds to an extreme (usually a
minimum) of a suitably defined merit functional. Some
possible choices are


2 ¼
Z
LU

�x � �yd� (31)


2 ¼
Z
LU

ð�x�x � �y�yÞ2d� (32)


2 ¼
Z
LU

ð�x�x þ �y�yÞ2d� (33)


2 ¼
Z
LU

ð�x�x þ �y�yÞ2ð�x�x � �y�yÞ2d�: (34)

The dependence of functionals (31)–(34) on the quadru-
pole current are plotted in Fig. 5 (top graph) for a ðEb; �rÞ
pair belonging to the lowest allowed band. The crosses
tagging the minima identify the eigenvectors optimizing
the beam parameters. Functionals (31) and (33), for ex-
ample, are designed to minimize the average cross section
of the electron beam, functional (32) is designed to obtain a
round beam, and functional (34) is a compromise between
size and roundness. Not surprisingly, the minima of func-
tionals (31) and (33) are systematically close to each other,
and so the minima of functionals (32) and (34). Moreover,
it is worth noting that the general behavior of the vertical
eigenstates depends on the allowed band to which they
belong. In Fig. 6 the horizontal and vertical �’s are shown
for three different set points chosen in the 1st (lowest), 2nd,
and 3rd band. While the features of horizontal pattern
remain substantially unchanged, the vertical eigenstate
exhibits a number of maxima equal to the order of the
band, defined by the � parameter in Eqs. (22) and (26),
associated to the number of betatron periods of the orbit in
a single undulator module.

IV. CONCLUSIONS

In this paper the focusing properties of linear undulators
have been discussed, along with the analytical conditions
to be fulfilled for transporting the beam through the peri-
odic lattice of the undulator’s sections. It has been shown
that bandlike forbidden zones can be identified in the plane
ðEb; �rÞ of resonant wavelengths vs electron beam energy,
where no physical eigenstates can be realized simulta-
neously in both transverse directions, in the considered
elementary lattice unit. In the specific case of SPARC, the
undulator originally designed to function in the visible-UV
region of the spectrum, in the lowermost region of the plane
ð�r; EbÞ in the diagram in Fig. 4, can be also operated in
the near infrared by a proper choice of beam energy and
undulator gap, an option previously not considered.

APPENDIX: PPM LINEAR UNDULATOR FIELD

Pure permanent magnet (PPM) undulators are insertion
devices featuring a magnetostatic field periodic (sinusoi-
dal) in the longitudinal (z) direction. Many schemes are
possible, reflecting different polarizations of the main field,
and consequently different focusing properties [14]. In this
paper we shall focus on one of several different forms
implicitly reflecting essential features of the SPARC [15]
undulator, for which the field is (i) mainly oriented along
one of the two transverse directions (y) and (ii) essentially
decoupled along the other (x). For what concerns only the
optics of the beam, linear undulators are devices slightly
defocusing in the horizontal (wiggling) plane, and strongly
focusing in the vertical (main field) direction. It can be
shown that such a device yields a field with the following
components:

FIG. 6. Characteristic behavior of horizontal (continuous line)
and vertical eigenstates (dashed line) belonging to 1st to 3rd
allowed region in Fig. 4 (top to bottom). The �’s correspond to
optimum according to merit functional (34). While the horizon-
tal pattern remains substantially unchanged, the vertical eigen-
state exhibits a number of peaks equal to the order of the allowed
band to which it belongs.
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Bxðx; y; zÞ ¼ � kx
ky

B0 sinðkxxÞ sinhðkyyÞ sinðkuzÞ

Byðx; y; zÞ ¼ B0 cosðkxxÞ coshðkyyÞ sinðkuzÞ
Bzðx; y; zÞ ¼ ku

ky
B0 cosðkxxÞ sinhðkyyÞ cosðkuzÞ:

(A1)

The condition of the magnetic field to be solenoidal trans-
lates for (A1) to

k2y � k2x ¼ k2u:

On axis (x, y � 0) field components reduce (up to the
second order) to

Bxðx; y; zÞ � �B0�
k2u
2
xy sinðkuzÞ

Byðx; y; zÞ � �B0

�
1þ k2u

4
½ð2þ �Þy2 � �x2�

�
sinðkuzÞ

Bzðx; y; zÞ � �B0kuy cosðkuzÞ; (A2)

where

� ¼ 2
k2x
k2u

: (A3)

The value of � defined in Eq. (A3) has been calculated as a
function of the gap for an idealized SPARC undulator
section (Fig. 7) modeled with RADIA [16]. The results are
shown in Fig. 8 along with a fit to a straight line. A detailed
analysis of the trajectory of an electron wiggling through
an undulator are derived in Ref. [14]. It can be shown that
the governing differential equations for an electron travel-
ing off the reference orbit by x�ðzÞ (horizontally) and y�ðzÞ
(vertically) read

	
d2x�
dz2



� �

�
�K

��u

�
2hx�ðzÞi	

d2y�
dz2



� �½2þ ��

�
�K

��u

�
2hy�ðzÞi;

(A4)

where the symbol h�i implies average on an undulator
period �u, � is the normalized beam energy, and K the
(peak) parameter for a linear undulator,

K ¼ eB0�u

2�mc
: (A5)

Equation (A4) states that transverse motion is subject to a
linear defocusing ðxÞ or focusing ðyÞ force, with a much
stronger coupling in the vertical than the horizontal direc-
tion. It should be stressed that this analysis refers to
‘‘errors’’ with respect to reference orbit. On a global re-
spect, motion can be described—quite expectedly—as a
sequence of alternate dipoles. The linear maps describing
the effect of the undulator are

x

x0

 !
¼ cosh

ffiffiffiffiffiffi
	x

p
z

sinh
ffiffiffiffi
	x

p
zffiffiffiffi

	x
pffiffiffiffiffiffi

	x
p

sinh
ffiffiffiffiffiffi
	x

p
z cosh

ffiffiffiffiffiffi
	x

p
z

0@ 1A x0

x00

 !

	x ¼ �

�
�K

��u

�
2

(A6)

and

y

y0

 !
¼ cos

ffiffiffiffiffiffi
	y

p
z

sin
ffiffiffiffi
	y

p
zffiffiffiffi

	y
p

� ffiffiffiffiffiffi
	y

p
sin

ffiffiffiffiffiffi
	y

p
z cos

ffiffiffiffiffiffi
	y

p
z

0@ 1A y0

y00

 !

	y ¼ ð2þ �Þ
�
�K

��u

�
2 � 2

�
�K

��u

�
2
:

(A7)
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